29
Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh University October 31, 2008

Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Modeling cytoskeleton self assembly

Dimitrios VavylonisDepartment of Physics, Lehigh University

October 31, 2008

Page 2: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

● How does the cell achieve internal organization?

● How is it regulated? ● Can we model cell structure and dynamics?

Cell organization

http://mgl.scripps.edu/people/goodsell/gallery/patterson.html

Page 3: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Thermal and viscous forces are very large on the scale of proteins

secm/9≈proteinv

The result of this is diffusion

t = 0 t = 3 psec = 3 10-12 sec

in this time the protein travels 0.027 nm << protein size ~ 4 nm

Page 4: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

computer picks arandom direction (up/down/left/right)with equal probability at each step

(a “Monte Carlo” method)“drunkard’s walk”

Modeling diffusion: random walk on a lattice

Page 5: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Brownian motion, continued

Diffusion coefficient D for a protein in the cell ~ 4 μm2/sec

0 steps 100 steps 1000 steps

x(t) = constant · (D t)1/2

x(t)

t = 0 fraction of a sec several sec

5 μm

Page 6: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Polymerization of proteins to filaments

Kovar, Harris, Mahaffy, Higgs, Pollard

Cell, 124 423 (2006)

D ~D/2 ~D/3…

+ cross-links rigid, stationary cytoskeleton

Alberts et al, MBOC

actin filament

actin monomers

Page 7: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Microtubule filaments and cell organization

Alberts et al, MBOC

Page 8: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Search and capture of chromosomesby microtubules during mitosis

dividing cell

dynamic instability

Page 9: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

GTP-cap model of dynamic instability

Alberts et al, MBOC

GDP-tubulin

GTP-tubulin cap

Page 10: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

GTP-cap “toy model”

GTP-tubulin monomersdiffuse in the cytoplasm

at concentration c

microtubule filament

hydrolysis at blue/red interface, rate khydrok+c

kcat

k -

Gillespie algorithm (a Monte Carlo method)1. pick an event at random according to rate constants

(polymerization, depolymerization, hydrolysis)2. update configuration and time

krescue

GDP-tubulinGTP-tubulin

Page 11: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Numerical simulations of the model

large GTP-tubulin monomer concentrations

small GTP-tubulin monomer concentrations

example of length trajectory at small

concentrations:

Time (sec)

subu

nits

Page 12: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Insights from simple model

time (sec)

subu

nits

other trajectories average elongation rate

monomerconcentration

0catastropheand rescue

region

c*

Page 13: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Models of chromosome search and capture

Page 14: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Cytokinesis

Pollard and Earnshaw, “Cell Biology” (2002)

~50 μm

Ring assembly involves ~ 50 or more protein components.How do protein molecules assemble in a ring?What is the mechanistic pathway?How is it coordinated and controlled?How does the ring exert the required force?

5 nm actinmonomers

actinfilament

Page 15: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

time

15 μm

Fission yeast is a a model organism for the study of cytokinesis

nucleus

cell tipcell tip

contractilering

yeastsbuild rigid cell wallsaround them

Page 16: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Contractile ring assembles from ~ 63 nodes in ~ 10 min

~ 40 myosin II (Myo2p) molecules/node~ 2 formin Cdc12p dimers/node Wu and Pollard, Science 2005

Rlc1p-3GFP

Vavylonis, Wu, Hao, O’Shaughnessy, Pollard, Science 2008

spinning disk confocal microscopy

Page 17: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Actin filament meshwork establishes connections among nodes

red: nodes (Rlc1-RFP1)green: actin filaments (GFP-CHD)

radial projection

02π

Rar

c le

ngth

Page 18: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Lateral contraction model

Wu, Sirotkin, Kovar, Lord, Beltzner, Kuhn, Pollard J. Cell Biol. 2006

node

Page 19: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

time

Model with static connections condenses nodes into clumps!

numerical simulation

pattern and dynamics of connections is important

Page 20: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

15x time lapse10 minutes

each frame: average of 6

Nodes move in stochastic manner, making many starts, stops and changes of direction

nm/sec30≈v

sec20≈τ

typical node speed

typical duration

Page 21: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Evidence for dynamic actin meshwork growing out of nodes

4x time lapse (0.3 s/frame)GFP-CHD (binds actin filaments), Rlc1p-tdTomato (nodes)

single confocal slice

Page 22: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

actin filamentpolymerization

m/sec2.0~ μ

actin filament capture

nm 100~cr

traction on filaments between nodes

pNF 4≥

lifetime of connections

lifetime of filamentssec 20~

sec 20~

Dynamic reestablishment of connections plasticity of network

Search, capture, pull and release model

Page 23: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Simulations with search, capture, pull and release

30x time lapse,20min

Simulated radial projectionred: nodesgreen: actin

0 2πR experiment:

• model reproduces many observed features

Page 24: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Actin Dynamics in Cell Motility

frame-to-frame = 1 secmovie lasts 600 sec

5 μm

Diez, Gerisch, Anderson, Muller-Taubenberger, Bretschneider PNAS, 102, 7601 (2005)

Total internal reflectionfluorescence microscopy(TIRFM)

Dictyostelium response tochemoattractant

fluorescent LimE-GFP (binds actin filaments)

Page 25: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh
Page 26: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Dynamic Actin NetworkLamellipodiumSvitkina et alJ. Cell Biol. 139 397 (1997)

Page 27: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Motility of cancer cells causes metastasis

Page 28: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

Green Fluorescent Protein (GFP) and Biological Imaging

greenfluorescent

spots

Aequorea Victoria

Page 29: Dimitrios Vavylonis - Lehigh Universityinbios21/PDF/Fall2008/Vavylonis... · 2010. 10. 13. · Modeling cytoskeleton self assembly Dimitrios Vavylonis Department of Physics, Lehigh

1994

gene gene fused to GFP gene

Live cells become fluorescent

The cell makes its own fluorophore

GFP can be expressed in a different species and remains fluorescent

Tsien lab, UCSD

many more colors:

+ photoconvertible GFP etc.

Chalfie et al. (Columbia)