20
20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 1 Technische Universität Darmstadt Dipl.-Ing. T.J. Kazdal, Prof. Dr.-Ing. Hampe Virtual functional product development of a micro steam methane reformer

Dipl.-Ing. T.J. Kazdal, Prof. Dr.-Ing. Hampe · PDF fileCOMSOL model library: Steam reformer COMSOL ... Import the actual volume flow from the experiment as a boundary condition

Embed Size (px)

Citation preview

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 1

Technische Universität Darmstadt

Dipl.-Ing. T.J. Kazdal, Prof. Dr.-Ing. Hampe

Virtual functional product development of a

micro steam methane reformer

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 2

Air cooled exothermal micro reactor

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 3

Energiewende

energy efficiency

renewable energy

energy saving

Situation in Germany

€-

€0.05

€0.10

€0.15

€0.20

€0.25

€0.30

Price of 1 kWh

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 4

Steam Methane Reformer Fuel Cell Process

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 5

Process simulation with Aspen Plus

for a 1kWhel µ-SMR-FC plant

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 6

COMSOL model library: Steam reformer

COMSOL (2010): Chemical Reaction Engineering Module Model Library. Steam Reformer (models.chem.steam_reformer).

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 7

Micro Structured Catalytic Reactors (MSR)

heat & mass transport:

• transfer capacities increase by

several magnitudes

• homogenous ignition can be avoided

• less catalyst is needed, due to

increased catalyst utilisation

• no runaway, hot spot, cold spot

formation

S. Cruz, O. Sanz, R. Poyato, O.H. Laguna, F.J. Echave, L.C. Almeida, M.A.

Centeno, G. Arzamendi, L.M. Gandia, E.F. Souza-Aguiar, M. Montes, J.A.

Odriozola, Design and testing of a microchannel reactor for the PROX

reaction, Chemical Engineering Journal 167 (2011) 634–642.

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 8

Catalytic combustion

• Stability over wide concentration ranges

• High selectivity → No NOx formation

• lower temperature

• total conversion

Kinetic data for the heterogeneous oxidation of H2 and CH4 Song, X.; Williams, W. R.; Schmidt, L. D.; Aris, R. (1991): Ignition and extinction of homogeneous-heterogeneous combustion: CH4 and C3H8 oxidation on PT.

In: Symposium (International) on Combustion 23 (1), S. 1129–1137. DOI: 10.1016/S0082-0784(06)80372-3.

Schefer, R. W. (1982):Catalyzed combustion of H2/air mixtures in a flat plate boundary layer: II. Numerical model.

In: Combustion and Flame 45, S. 171–190. DOI: 10.1016/0010-2180(82)90043-8.

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 9

Catalytic combustion of H2 and CH4

The reaction engineering module 1D

0

100

200

300

400

500

600

700

800

900

1000

0

1

2

3

4

5

6

7

8

9

10

0 0.002 0.004 0.006 0.008 0.01 0.012

Te

mp

era

ture

[K

]

Co

ncen

trati

on

[m

ol m

^-3

]

Time [s]

c_H2

c_O2

c_H2O

c_CH4

c_CO

T

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 10

Calculation domains

2D axisymmetric time dependant model

Insulation

Insulation

Inlet

CH4+H2+air

Inlet

Coolant

Outlet

Outlet

T T T T T

Catalyst

coated

Wall

T1-T5

Thermocouples

optional

Heater

cartridge

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 11

Interim results

0

50

100

150

200

250

300

350

400

0 500 1000

Te

mp

era

ture

[°C

]

Time [s]

Conversion CH4

Conversion H2

T1

T2

T3

T4

T5

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 12

Experimental design

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 13

2D axisymmetric boundary conditions

influence of the inlet and outlet

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 14

2D axisymmetric boundary conditions

influence of the cooling jacket

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 15

COMSOL aided experimental design

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 16

Final design

12 Thermocouples

2 Mass flow controller

Coolant: 20 – 90°C

Heater: 0 – 350W

Temperature: 50 – 900°C

Variable gap size < 1000μm

exhaust gas analysis by gas

chromatography

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 17

Reactor validation with heat cartridge

(15, 24, 33, 42W)

20

50

80

110

0 10 20 30 40 50 60

Tem

pera

ture

[°C

]

Time [min]

T1 EXP

T2 EXP

T3 EXP

T4 EXP

T5 EXP

T1 SIM

T2 SIM

T3 SIM

T4 SIM

T5 SIM

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 18

100

120

140

160

180

200

220

240

260

280

300

0 10 20 30 40 50 60 70

Te

mp

era

ture

[°C

]

Time [min]

Simulation

T1

T2

T3

T4

T5

Transition from heater to H2-Air reaction

100

120

140

160

180

200

220

240

260

280

300

0 10 20 30 40 50 60 70

Te

mp

era

ture

[°C

]

Time [min]

Experiment

T1

T2

T3

T4

T5

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 19

How to obtain an unsteady line

as a simulation result?

Solution:

Import the actual volume flow from the experiment as a boundary condition

in COMSOL:

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

100

120

140

160

180

200

220

240

260

280

300

0 10 20 30 40 50 60 70

Vo

lum

e f

low

[N

l/m

in]

Te

mp

era

ture

[°C

]

Time [min]

T1

T2

T3

T4

T5

V. H2 Inlet

20/10/2015 | Fachbereich Maschinenbau | TVT | Prof. Dr.-Ing. Hampe | Dipl.-Ing. T.J. Kazdal | 20

Conclusion & outlook

Powerful development tool for chemical engineering.

• NASA polynomials | CHEMKIN → cp(T), ∆HR(T), Transport properties

Virtual functional product development due to multiphysics

• Prediction of the dynamic behaviour of a chemical reactor

Superior pre and post processing

• Import time dependant boundary conditions

• Evaluation of ‘miscarried’ experiments

Catalyst deposition method needs revision: