59
TTC-0161 SAND-80-23D2 Unlimited Release Pn.-.ted £.jb -wry 1981 PHYSICAL AND MECHANICAL PROPEPTIES OF CAST 17-4 PH STAINLESS STEEL* H. J. Rack Mechanical Metallurgy Division 5835 Sandia National Laboratories,"'" Albuquerque, New Mexico The physical and mechanical properties of an overaged 17-4 PH stainless steel casting have been examined. The tensile and compressive properties of cast 17-4 PH are only Influenced to a slight degree by changing test temperature and strain rate. However, both the Charpy impact energy and dynamic fracture toughness exhibit a tough-to-brittle transition with decreasing temperature—this transition being relatcti to a change in fracture mode from ductile, dimple to cleavage-like. Finally, although the overaged 17-4 PH casting had a relatively low room temperature Charpy impact energy when compared to wrought 17-4 Ph. its fracture toughness was at least comparable to that of wrought 17-4 PH. This observation suggests that prior correlations between Charpy impact energies and fracture toughness, as derived from wrought materials, must be approached with caution when applied to cast alloys. This work sponsored by the U. S. Department of Energy under Contract DE-ACO4-76-DP00789. A U. S. Department of Energy facility. DISCI AIM* - I •".'• -^' - - '„'••//' BRTIilEUiiMi CF ThiS DOCUMENT IS UNU^Tti 3 A.

DISCI AIM* - I A

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DISCI AIM* - I A

TTC-0161 SAND-80-23D2

Unlimited Release Pn-ted poundjb -wry 1981

PHYSICAL AND MECHANICAL PROPEPTIES OF CAST 17-4 PH STAINLESS STEEL

H J Rack Mechanical Metallurgy Division 5835

Sandia National Laboratories Albuquerque New Mexico

The physical and mechanical properties of an overaged 17-4 PH stainless steel casting have been examined The tensile and compressive properties of cast 17-4 PH are only Influenced to a slight degree by changing test temperature and strain rate However both the Charpy impact energy and dynamic fracture toughness exhibit a tough-to-brittle transition with decreasing temperaturemdashthis transition being relatcti to a change in fracture mode from ductile dimple to cleavage-like Finally although the overaged 17-4 PH casting had a relatively low room temperature Charpy impact energy when compared to wrought 17-4 Ph its fracture toughness was at least comparable to that of wrought 17-4 PH This observation suggests that prior correlations between Charpy impact energies and fracture toughness as derived from wrought materials must be approached with caution when applied to cast alloys

This work sponsored by the U S Department of Energy under Contract DE-ACO4-76-DP00789 A U S Department of Energy facility

DISCI AIM - I

bull bull -^ - - bdquo bull bull BRTIilEUiiMi CF ThiS DOCUMENT IS UNU^Tti

3 A

ACKNOWLEDGMENT

The author wishes ~-o acknowledge the assMtan^c i bull r iJovc-

I J Mose and A Sturm in trio mechanical t e s t in Kannirlaquo c-ie~tr

bullbullosco-Y portions of th i s program

CONTENTS

Page INTRODUCTION 7 EXPERIMENTAL PROCEDURE 9

Physical Properties 9 Mechanical Behavior 10

RESULTS AND DISCUSSION 13 General 13 Physical Properties 17 Mechanical Behavior 2 5

SUMMARY AND CONCLUSIONS 41 REFERENCES 4 2 APPEKDl X A 4 5 PPEKD1X B 47 APPENDIX C 55

5

This Pago Intentionally Loft Blank

6

INTRODUCTION

Prior Ftudirs of 17-4 PH stainless steel (1-11) have generally bullonsidered the mechanical and physical properties of wrought product forms that is rc-lled plate forcings etc There are however many is varices where because of econorr - -considerations 17-4 PH stainless bull LX 1 castings in gnu be an attrac i ve alternative Unf crfjr^telv j u Jc informatirn exi sts on the mechanical and physical properties of J 7-4 pi stainless steel castings This report presents the results of eva 1 uation of such a casting Where availatolc direct compar iscn MJ data obtained from wrought 17-4 PH stainless steel is also i ncluned

Puio ] Top and Side Views of 17-4 PI Stainless Steel Seal Castiiq

EXPERIMENTAL PROCEDURE

Figure i shows the 17-4 raquoH stainless steel casting evu uatec in

us study This casting was selected since it is currently being

considered as the primary metallic seal for a liquid metal breedpj

irKtor spent f uel sh ipping container As such the sea must operate

it temperatures between 2JJ and 4 7 3K In addition it nist JJO JI - to

w J t hstand appl i ed strin rates approach ng 1 0 sec

hysi_ca I Properties

Phvrs ical proper t nc-su rerents f th 17-4 PU stdinlcsF -ultgtoI

i-t I rg in vol od detcrminations of the 1 nen r uxpans ] on spec bull heat

in LcrrH ] di f fus ivi ty a^ a in rt op o 1 nmpera tine di HO

bull I -u pushrod Ticta d i 1 -ifvvi lt opr at bull- in i r ltbull eripo it n

v rf-nroi was ulaquo=ed oilur lirrat f-Xf-irHion n-isriTcrlaquo in bull

i i-rpri itiM rrgc 28 t -i llMr (12) MCltltSUWPI- bulltwerr 2H f 21 V

v ltbullraquo r- made with a sinnk f iiso-i bull 1 ) ca [-ushroi d i ]- 11 ri-t or m u n n-m

urni in a room temperature environment 1inullv the linear oxptns- gt gtn

ltbullbull I or 2^4 nn in orqth bull 2 rgt4 mn soim i wet gt bull egt i I I Jri t od 1 i -M-

bullbullN1- aL each Lest tempei at ltrr trior tn expansion rc -s roriont -bull

fvociri heit dotoi mi nit on^ ciliec i iv gtbull in life -kiM -

bull ct in scanning Iuurirvicr -laquonnlt ct elt - i bullbull r bull--irr-u or-

rLi CJ j ) t al data acLn s 11 ion sv = Lcn 11 bullltbull he m a 1 d L -s v i l bull

r--SMlts were obtained us rig a cor t er coril rr bull lisor flis di -

-bullbullbull_ UMi-c j Fr-v I r t bull -cv bullbull bullbullbull AI tt t M ~ bull I

I fbdquos s v i ty the thermal conduct t y ^is lt_ -ilcalato- i bullbull

- no re i s t lie dens i ty cor reel ed for changes I n temperature relat ivc

U room temperature (298K)

The dilatometer was calibrated usinn standard fused silica and platinum samples

Vpjvar ca l B e h a v i c

The e l a s t i c - p r o p e r t m s of t he 17-4 P1- s u i i ~s s t t - o --is r ~ v bull r

-DISLII ed ove r t h e t e n p e r a t u r e r ange 2 3 3 t o I -bull 3- J=raquo rc s irrir] r--i J I t r J -

- - - t echn lques 14) These techr i u r p r^ r e bull bull raquo- bull r I T ] l i r e

bull in u l t r a s o n i c wave t o r - ronaqa te t irouqr ltowr sltc ire- l enc t r

-bull -gt rC a s lti fur c pr -f te r r a t r o rve r~ bull i d t r (bull

r i l t r i pn r c vr lrcr tv i e i r igtrr c bull bull t--v

i bull bull -bull rv -1 i r r i r i

s bull iO r o c r 1 k c i t ltbull- bull

bull bull t h lt bull--bull i - L C K i -

bull m i Tr bullbull l e i- c

n r i H o laquo o f I s bull 1 ir

- laquo r - | --s

] | s t r i p s t k

2 so bull r v c i J IM 1 I f f 1 1

Tilt- d r l u n l s a m p l e f o r bull r e -i i ve r n ri bull t k-i -gt I

$8gt

070MA ePi

I 1

TENSH-ECOMPRESSIVE AXIS

The Charpy i - p a c t s a r p l e s were t e s t e d xr e t h c r t he - notched r

f a t i q u e precrackeC c o n d i t i o n F a t i g u e precr-icV ing u t i J i z e c methods 15

where t h e f i n a l s t r e s s i n t e n s i t y d u r i n g p r e c r a c k i r n K a s a lways

i r - le n t l e s s han one -ha If of t h e riynar cr f r ic t i iL L oughnefi s

- - -bull t he no tched and f a t r c p r ^ c r a c k a d sarin Les were t e s t e d u s i n g

bull r e n t e d -bull r-t m c no bullbull i bull 0 1111 K t ve In-- bull bullbull ijcirv

osr v-a-- lt iil ro f r^1

T

-- 2rii

1K t l-o- i s t bull I [

RESULTS AND DISCUSSION

leneral The chemical composition of the 17-4 PH stainless steel cjstin-i

examined in this study is given in Table 1 Before machining this bull Line had been homogenized at 1422K and then solution treated at -7K rinal aging involvec a four hour exposure at 922K Optica - bull oroscopy indicated that the- casting possessed an igc-d irorvrns- itrigt rfith pound-ferrite stringers r inure 3 High magnification c-xi i on of the i-martensite matrix Figure 1 indicate- that the rt-i-

bullis iii t)ic overaged heat treatment condition that it conliinoii = rthci coarHe dispersion of the primary strengthening phase rpiiraquoT i -1 r- centered cubic u pa i i bull] er )-irt her oa i nat irraquoi bullbull)bull i iJed Lhe presence o I rod-shiiped bull rurip iatis W t r t lt -bullbull r bull n-iqirs X-ray energy dispersive iiiivs ]iii-c ltbull t i bull i bull i bull n bull ]articles uere relatively rich in u whir -omparci to i n iVrritc matrix The appearance of these rod-shncl IU rlaquoi pi bull bulltliin the -lerrite stringers seems to be restricted ti- bull-bull ainlosa steel castings sine their presence has not L bull r bullbull laquo previous studies of wrought 17-4 Pl stainless steel i ] -

Table 1 Chemical Composition of i 7- 4 PH ltaUt

bull boT^^ L- ight Percent Cr 1694 Ni 40 Cu 1 - 0 Mn R j C 00 44 F 0 )2 2

Optica] Micrograph o l 1-7-4 Pil Stainless Steel Casting White Areas -Fcrrile Strinqers Darker Matrix Aged i-Ma rtensi to Orir-inal Magnification 100X

Figure 4 Transmission Electron Micrograph of ujed j-Martensite in 17-4 PH Stainless Steel Castin Containing Spherical Cu Precipitates Original Magnification 40000X

Figure 5 Transmission Electron Micrograph of e-Ferrito Stringer Containing Rod-Shaped Cu-Pich Precipitate Original Magnification 52000X

15

r u r r i t n gt fi ha ton Lr

-iy D i s p e r s i v e S p e c t r a Fron (a) i t r i x and lb) Rnrj-Shar-od ^r t i cl o

bull bullgtbull _ bull bull ] t f l - S I J I

- i I l l r U U n l - bullbull - bull

I H 1 - A

t L i l b t

-bull 1

i i n o r I xr j ins i cir o f ) - - bull ii r I-n- S t o n Cast i p--

-T bullbullbull _J_K_ L L n l i t

2 79 - n 1 M

bull bull 0 0 0 0

bull1 bull 1 o i o -1

bull1 bull n I i i rgt(-r 0 3

12 k C i 7 i

127 C 72

gt4 ) 0 40 )

7 7 0 5 4 6

TH 0 5 6 2

bull 3 - 0 S r r

3 7 t l T U

- lt i o f 7

J 2 5 0 0 3

O M 0 8 2 4

212 1 107

IB

T-iblp

S p e c i f i c Heat of 17-4 I S t a r l e s s S t e e l Cas

Tempera tu re (Ki Spc-cif ic i icat U s e c qnt 350 0 4750 37 04884 400 0 4073 425 0 054 450 05147 460 05220 475 0 5228 500 0 5 ) 3 0 525 05396 550 054 7 7 575 0 5548 600 056 36 625 0 5 2 6 650 0 5805 675 n sp T

700 0 5978 725 O608O 750 n r H l 775 06534 795 r 6812 800 06i7 r) 825 0 2 4 850 0740J S75 07576 100 07672 925 07 7 3

Table 4

3] j-i f f us vity cf 17-4 PH Stainless Steel Castirq

T o n o r a t i e 1 r P i f f u s i v i tv 1 err s e c

Tgt 4

e 1 r 004 58

4ftl 0 0452 fgt2 7 0 0457

764 004 20

462 0 0475

1 2 7 0 0548

Table 5

] Crviit-t vi ty of 17-4 PM Stciinlcss Steel Castinn

crppraturc tK) 294 4 61 f27 704

Conductivity (w 0 152 0180 0 199 0 20C 028]

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 2: DISCI AIM* - I A

ACKNOWLEDGMENT

The author wishes ~-o acknowledge the assMtan^c i bull r iJovc-

I J Mose and A Sturm in trio mechanical t e s t in Kannirlaquo c-ie~tr

bullbullosco-Y portions of th i s program

CONTENTS

Page INTRODUCTION 7 EXPERIMENTAL PROCEDURE 9

Physical Properties 9 Mechanical Behavior 10

RESULTS AND DISCUSSION 13 General 13 Physical Properties 17 Mechanical Behavior 2 5

SUMMARY AND CONCLUSIONS 41 REFERENCES 4 2 APPEKDl X A 4 5 PPEKD1X B 47 APPENDIX C 55

5

This Pago Intentionally Loft Blank

6

INTRODUCTION

Prior Ftudirs of 17-4 PH stainless steel (1-11) have generally bullonsidered the mechanical and physical properties of wrought product forms that is rc-lled plate forcings etc There are however many is varices where because of econorr - -considerations 17-4 PH stainless bull LX 1 castings in gnu be an attrac i ve alternative Unf crfjr^telv j u Jc informatirn exi sts on the mechanical and physical properties of J 7-4 pi stainless steel castings This report presents the results of eva 1 uation of such a casting Where availatolc direct compar iscn MJ data obtained from wrought 17-4 PH stainless steel is also i ncluned

Puio ] Top and Side Views of 17-4 PI Stainless Steel Seal Castiiq

EXPERIMENTAL PROCEDURE

Figure i shows the 17-4 raquoH stainless steel casting evu uatec in

us study This casting was selected since it is currently being

considered as the primary metallic seal for a liquid metal breedpj

irKtor spent f uel sh ipping container As such the sea must operate

it temperatures between 2JJ and 4 7 3K In addition it nist JJO JI - to

w J t hstand appl i ed strin rates approach ng 1 0 sec

hysi_ca I Properties

Phvrs ical proper t nc-su rerents f th 17-4 PU stdinlcsF -ultgtoI

i-t I rg in vol od detcrminations of the 1 nen r uxpans ] on spec bull heat

in LcrrH ] di f fus ivi ty a^ a in rt op o 1 nmpera tine di HO

bull I -u pushrod Ticta d i 1 -ifvvi lt opr at bull- in i r ltbull eripo it n

v rf-nroi was ulaquo=ed oilur lirrat f-Xf-irHion n-isriTcrlaquo in bull

i i-rpri itiM rrgc 28 t -i llMr (12) MCltltSUWPI- bulltwerr 2H f 21 V

v ltbullraquo r- made with a sinnk f iiso-i bull 1 ) ca [-ushroi d i ]- 11 ri-t or m u n n-m

urni in a room temperature environment 1inullv the linear oxptns- gt gtn

ltbullbull I or 2^4 nn in orqth bull 2 rgt4 mn soim i wet gt bull egt i I I Jri t od 1 i -M-

bullbullN1- aL each Lest tempei at ltrr trior tn expansion rc -s roriont -bull

fvociri heit dotoi mi nit on^ ciliec i iv gtbull in life -kiM -

bull ct in scanning Iuurirvicr -laquonnlt ct elt - i bullbull r bull--irr-u or-

rLi CJ j ) t al data acLn s 11 ion sv = Lcn 11 bullltbull he m a 1 d L -s v i l bull

r--SMlts were obtained us rig a cor t er coril rr bull lisor flis di -

-bullbullbull_ UMi-c j Fr-v I r t bull -cv bullbull bullbullbull AI tt t M ~ bull I

I fbdquos s v i ty the thermal conduct t y ^is lt_ -ilcalato- i bullbull

- no re i s t lie dens i ty cor reel ed for changes I n temperature relat ivc

U room temperature (298K)

The dilatometer was calibrated usinn standard fused silica and platinum samples

Vpjvar ca l B e h a v i c

The e l a s t i c - p r o p e r t m s of t he 17-4 P1- s u i i ~s s t t - o --is r ~ v bull r

-DISLII ed ove r t h e t e n p e r a t u r e r ange 2 3 3 t o I -bull 3- J=raquo rc s irrir] r--i J I t r J -

- - - t echn lques 14) These techr i u r p r^ r e bull bull raquo- bull r I T ] l i r e

bull in u l t r a s o n i c wave t o r - ronaqa te t irouqr ltowr sltc ire- l enc t r

-bull -gt rC a s lti fur c pr -f te r r a t r o rve r~ bull i d t r (bull

r i l t r i pn r c vr lrcr tv i e i r igtrr c bull bull t--v

i bull bull -bull rv -1 i r r i r i

s bull iO r o c r 1 k c i t ltbull- bull

bull bull t h lt bull--bull i - L C K i -

bull m i Tr bullbull l e i- c

n r i H o laquo o f I s bull 1 ir

- laquo r - | --s

] | s t r i p s t k

2 so bull r v c i J IM 1 I f f 1 1

Tilt- d r l u n l s a m p l e f o r bull r e -i i ve r n ri bull t k-i -gt I

$8gt

070MA ePi

I 1

TENSH-ECOMPRESSIVE AXIS

The Charpy i - p a c t s a r p l e s were t e s t e d xr e t h c r t he - notched r

f a t i q u e precrackeC c o n d i t i o n F a t i g u e precr-icV ing u t i J i z e c methods 15

where t h e f i n a l s t r e s s i n t e n s i t y d u r i n g p r e c r a c k i r n K a s a lways

i r - le n t l e s s han one -ha If of t h e riynar cr f r ic t i iL L oughnefi s

- - -bull t he no tched and f a t r c p r ^ c r a c k a d sarin Les were t e s t e d u s i n g

bull r e n t e d -bull r-t m c no bullbull i bull 0 1111 K t ve In-- bull bullbull ijcirv

osr v-a-- lt iil ro f r^1

T

-- 2rii

1K t l-o- i s t bull I [

RESULTS AND DISCUSSION

leneral The chemical composition of the 17-4 PH stainless steel cjstin-i

examined in this study is given in Table 1 Before machining this bull Line had been homogenized at 1422K and then solution treated at -7K rinal aging involvec a four hour exposure at 922K Optica - bull oroscopy indicated that the- casting possessed an igc-d irorvrns- itrigt rfith pound-ferrite stringers r inure 3 High magnification c-xi i on of the i-martensite matrix Figure 1 indicate- that the rt-i-

bullis iii t)ic overaged heat treatment condition that it conliinoii = rthci coarHe dispersion of the primary strengthening phase rpiiraquoT i -1 r- centered cubic u pa i i bull] er )-irt her oa i nat irraquoi bullbull)bull i iJed Lhe presence o I rod-shiiped bull rurip iatis W t r t lt -bullbull r bull n-iqirs X-ray energy dispersive iiiivs ]iii-c ltbull t i bull i bull i bull n bull ]articles uere relatively rich in u whir -omparci to i n iVrritc matrix The appearance of these rod-shncl IU rlaquoi pi bull bulltliin the -lerrite stringers seems to be restricted ti- bull-bull ainlosa steel castings sine their presence has not L bull r bullbull laquo previous studies of wrought 17-4 Pl stainless steel i ] -

Table 1 Chemical Composition of i 7- 4 PH ltaUt

bull boT^^ L- ight Percent Cr 1694 Ni 40 Cu 1 - 0 Mn R j C 00 44 F 0 )2 2

Optica] Micrograph o l 1-7-4 Pil Stainless Steel Casting White Areas -Fcrrile Strinqers Darker Matrix Aged i-Ma rtensi to Orir-inal Magnification 100X

Figure 4 Transmission Electron Micrograph of ujed j-Martensite in 17-4 PH Stainless Steel Castin Containing Spherical Cu Precipitates Original Magnification 40000X

Figure 5 Transmission Electron Micrograph of e-Ferrito Stringer Containing Rod-Shaped Cu-Pich Precipitate Original Magnification 52000X

15

r u r r i t n gt fi ha ton Lr

-iy D i s p e r s i v e S p e c t r a Fron (a) i t r i x and lb) Rnrj-Shar-od ^r t i cl o

bull bullgtbull _ bull bull ] t f l - S I J I

- i I l l r U U n l - bullbull - bull

I H 1 - A

t L i l b t

-bull 1

i i n o r I xr j ins i cir o f ) - - bull ii r I-n- S t o n Cast i p--

-T bullbullbull _J_K_ L L n l i t

2 79 - n 1 M

bull bull 0 0 0 0

bull1 bull 1 o i o -1

bull1 bull n I i i rgt(-r 0 3

12 k C i 7 i

127 C 72

gt4 ) 0 40 )

7 7 0 5 4 6

TH 0 5 6 2

bull 3 - 0 S r r

3 7 t l T U

- lt i o f 7

J 2 5 0 0 3

O M 0 8 2 4

212 1 107

IB

T-iblp

S p e c i f i c Heat of 17-4 I S t a r l e s s S t e e l Cas

Tempera tu re (Ki Spc-cif ic i icat U s e c qnt 350 0 4750 37 04884 400 0 4073 425 0 054 450 05147 460 05220 475 0 5228 500 0 5 ) 3 0 525 05396 550 054 7 7 575 0 5548 600 056 36 625 0 5 2 6 650 0 5805 675 n sp T

700 0 5978 725 O608O 750 n r H l 775 06534 795 r 6812 800 06i7 r) 825 0 2 4 850 0740J S75 07576 100 07672 925 07 7 3

Table 4

3] j-i f f us vity cf 17-4 PH Stainless Steel Castirq

T o n o r a t i e 1 r P i f f u s i v i tv 1 err s e c

Tgt 4

e 1 r 004 58

4ftl 0 0452 fgt2 7 0 0457

764 004 20

462 0 0475

1 2 7 0 0548

Table 5

] Crviit-t vi ty of 17-4 PM Stciinlcss Steel Castinn

crppraturc tK) 294 4 61 f27 704

Conductivity (w 0 152 0180 0 199 0 20C 028]

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 3: DISCI AIM* - I A

CONTENTS

Page INTRODUCTION 7 EXPERIMENTAL PROCEDURE 9

Physical Properties 9 Mechanical Behavior 10

RESULTS AND DISCUSSION 13 General 13 Physical Properties 17 Mechanical Behavior 2 5

SUMMARY AND CONCLUSIONS 41 REFERENCES 4 2 APPEKDl X A 4 5 PPEKD1X B 47 APPENDIX C 55

5

This Pago Intentionally Loft Blank

6

INTRODUCTION

Prior Ftudirs of 17-4 PH stainless steel (1-11) have generally bullonsidered the mechanical and physical properties of wrought product forms that is rc-lled plate forcings etc There are however many is varices where because of econorr - -considerations 17-4 PH stainless bull LX 1 castings in gnu be an attrac i ve alternative Unf crfjr^telv j u Jc informatirn exi sts on the mechanical and physical properties of J 7-4 pi stainless steel castings This report presents the results of eva 1 uation of such a casting Where availatolc direct compar iscn MJ data obtained from wrought 17-4 PH stainless steel is also i ncluned

Puio ] Top and Side Views of 17-4 PI Stainless Steel Seal Castiiq

EXPERIMENTAL PROCEDURE

Figure i shows the 17-4 raquoH stainless steel casting evu uatec in

us study This casting was selected since it is currently being

considered as the primary metallic seal for a liquid metal breedpj

irKtor spent f uel sh ipping container As such the sea must operate

it temperatures between 2JJ and 4 7 3K In addition it nist JJO JI - to

w J t hstand appl i ed strin rates approach ng 1 0 sec

hysi_ca I Properties

Phvrs ical proper t nc-su rerents f th 17-4 PU stdinlcsF -ultgtoI

i-t I rg in vol od detcrminations of the 1 nen r uxpans ] on spec bull heat

in LcrrH ] di f fus ivi ty a^ a in rt op o 1 nmpera tine di HO

bull I -u pushrod Ticta d i 1 -ifvvi lt opr at bull- in i r ltbull eripo it n

v rf-nroi was ulaquo=ed oilur lirrat f-Xf-irHion n-isriTcrlaquo in bull

i i-rpri itiM rrgc 28 t -i llMr (12) MCltltSUWPI- bulltwerr 2H f 21 V

v ltbullraquo r- made with a sinnk f iiso-i bull 1 ) ca [-ushroi d i ]- 11 ri-t or m u n n-m

urni in a room temperature environment 1inullv the linear oxptns- gt gtn

ltbullbull I or 2^4 nn in orqth bull 2 rgt4 mn soim i wet gt bull egt i I I Jri t od 1 i -M-

bullbullN1- aL each Lest tempei at ltrr trior tn expansion rc -s roriont -bull

fvociri heit dotoi mi nit on^ ciliec i iv gtbull in life -kiM -

bull ct in scanning Iuurirvicr -laquonnlt ct elt - i bullbull r bull--irr-u or-

rLi CJ j ) t al data acLn s 11 ion sv = Lcn 11 bullltbull he m a 1 d L -s v i l bull

r--SMlts were obtained us rig a cor t er coril rr bull lisor flis di -

-bullbullbull_ UMi-c j Fr-v I r t bull -cv bullbull bullbullbull AI tt t M ~ bull I

I fbdquos s v i ty the thermal conduct t y ^is lt_ -ilcalato- i bullbull

- no re i s t lie dens i ty cor reel ed for changes I n temperature relat ivc

U room temperature (298K)

The dilatometer was calibrated usinn standard fused silica and platinum samples

Vpjvar ca l B e h a v i c

The e l a s t i c - p r o p e r t m s of t he 17-4 P1- s u i i ~s s t t - o --is r ~ v bull r

-DISLII ed ove r t h e t e n p e r a t u r e r ange 2 3 3 t o I -bull 3- J=raquo rc s irrir] r--i J I t r J -

- - - t echn lques 14) These techr i u r p r^ r e bull bull raquo- bull r I T ] l i r e

bull in u l t r a s o n i c wave t o r - ronaqa te t irouqr ltowr sltc ire- l enc t r

-bull -gt rC a s lti fur c pr -f te r r a t r o rve r~ bull i d t r (bull

r i l t r i pn r c vr lrcr tv i e i r igtrr c bull bull t--v

i bull bull -bull rv -1 i r r i r i

s bull iO r o c r 1 k c i t ltbull- bull

bull bull t h lt bull--bull i - L C K i -

bull m i Tr bullbull l e i- c

n r i H o laquo o f I s bull 1 ir

- laquo r - | --s

] | s t r i p s t k

2 so bull r v c i J IM 1 I f f 1 1

Tilt- d r l u n l s a m p l e f o r bull r e -i i ve r n ri bull t k-i -gt I

$8gt

070MA ePi

I 1

TENSH-ECOMPRESSIVE AXIS

The Charpy i - p a c t s a r p l e s were t e s t e d xr e t h c r t he - notched r

f a t i q u e precrackeC c o n d i t i o n F a t i g u e precr-icV ing u t i J i z e c methods 15

where t h e f i n a l s t r e s s i n t e n s i t y d u r i n g p r e c r a c k i r n K a s a lways

i r - le n t l e s s han one -ha If of t h e riynar cr f r ic t i iL L oughnefi s

- - -bull t he no tched and f a t r c p r ^ c r a c k a d sarin Les were t e s t e d u s i n g

bull r e n t e d -bull r-t m c no bullbull i bull 0 1111 K t ve In-- bull bullbull ijcirv

osr v-a-- lt iil ro f r^1

T

-- 2rii

1K t l-o- i s t bull I [

RESULTS AND DISCUSSION

leneral The chemical composition of the 17-4 PH stainless steel cjstin-i

examined in this study is given in Table 1 Before machining this bull Line had been homogenized at 1422K and then solution treated at -7K rinal aging involvec a four hour exposure at 922K Optica - bull oroscopy indicated that the- casting possessed an igc-d irorvrns- itrigt rfith pound-ferrite stringers r inure 3 High magnification c-xi i on of the i-martensite matrix Figure 1 indicate- that the rt-i-

bullis iii t)ic overaged heat treatment condition that it conliinoii = rthci coarHe dispersion of the primary strengthening phase rpiiraquoT i -1 r- centered cubic u pa i i bull] er )-irt her oa i nat irraquoi bullbull)bull i iJed Lhe presence o I rod-shiiped bull rurip iatis W t r t lt -bullbull r bull n-iqirs X-ray energy dispersive iiiivs ]iii-c ltbull t i bull i bull i bull n bull ]articles uere relatively rich in u whir -omparci to i n iVrritc matrix The appearance of these rod-shncl IU rlaquoi pi bull bulltliin the -lerrite stringers seems to be restricted ti- bull-bull ainlosa steel castings sine their presence has not L bull r bullbull laquo previous studies of wrought 17-4 Pl stainless steel i ] -

Table 1 Chemical Composition of i 7- 4 PH ltaUt

bull boT^^ L- ight Percent Cr 1694 Ni 40 Cu 1 - 0 Mn R j C 00 44 F 0 )2 2

Optica] Micrograph o l 1-7-4 Pil Stainless Steel Casting White Areas -Fcrrile Strinqers Darker Matrix Aged i-Ma rtensi to Orir-inal Magnification 100X

Figure 4 Transmission Electron Micrograph of ujed j-Martensite in 17-4 PH Stainless Steel Castin Containing Spherical Cu Precipitates Original Magnification 40000X

Figure 5 Transmission Electron Micrograph of e-Ferrito Stringer Containing Rod-Shaped Cu-Pich Precipitate Original Magnification 52000X

15

r u r r i t n gt fi ha ton Lr

-iy D i s p e r s i v e S p e c t r a Fron (a) i t r i x and lb) Rnrj-Shar-od ^r t i cl o

bull bullgtbull _ bull bull ] t f l - S I J I

- i I l l r U U n l - bullbull - bull

I H 1 - A

t L i l b t

-bull 1

i i n o r I xr j ins i cir o f ) - - bull ii r I-n- S t o n Cast i p--

-T bullbullbull _J_K_ L L n l i t

2 79 - n 1 M

bull bull 0 0 0 0

bull1 bull 1 o i o -1

bull1 bull n I i i rgt(-r 0 3

12 k C i 7 i

127 C 72

gt4 ) 0 40 )

7 7 0 5 4 6

TH 0 5 6 2

bull 3 - 0 S r r

3 7 t l T U

- lt i o f 7

J 2 5 0 0 3

O M 0 8 2 4

212 1 107

IB

T-iblp

S p e c i f i c Heat of 17-4 I S t a r l e s s S t e e l Cas

Tempera tu re (Ki Spc-cif ic i icat U s e c qnt 350 0 4750 37 04884 400 0 4073 425 0 054 450 05147 460 05220 475 0 5228 500 0 5 ) 3 0 525 05396 550 054 7 7 575 0 5548 600 056 36 625 0 5 2 6 650 0 5805 675 n sp T

700 0 5978 725 O608O 750 n r H l 775 06534 795 r 6812 800 06i7 r) 825 0 2 4 850 0740J S75 07576 100 07672 925 07 7 3

Table 4

3] j-i f f us vity cf 17-4 PH Stainless Steel Castirq

T o n o r a t i e 1 r P i f f u s i v i tv 1 err s e c

Tgt 4

e 1 r 004 58

4ftl 0 0452 fgt2 7 0 0457

764 004 20

462 0 0475

1 2 7 0 0548

Table 5

] Crviit-t vi ty of 17-4 PM Stciinlcss Steel Castinn

crppraturc tK) 294 4 61 f27 704

Conductivity (w 0 152 0180 0 199 0 20C 028]

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 4: DISCI AIM* - I A

This Pago Intentionally Loft Blank

6

INTRODUCTION

Prior Ftudirs of 17-4 PH stainless steel (1-11) have generally bullonsidered the mechanical and physical properties of wrought product forms that is rc-lled plate forcings etc There are however many is varices where because of econorr - -considerations 17-4 PH stainless bull LX 1 castings in gnu be an attrac i ve alternative Unf crfjr^telv j u Jc informatirn exi sts on the mechanical and physical properties of J 7-4 pi stainless steel castings This report presents the results of eva 1 uation of such a casting Where availatolc direct compar iscn MJ data obtained from wrought 17-4 PH stainless steel is also i ncluned

Puio ] Top and Side Views of 17-4 PI Stainless Steel Seal Castiiq

EXPERIMENTAL PROCEDURE

Figure i shows the 17-4 raquoH stainless steel casting evu uatec in

us study This casting was selected since it is currently being

considered as the primary metallic seal for a liquid metal breedpj

irKtor spent f uel sh ipping container As such the sea must operate

it temperatures between 2JJ and 4 7 3K In addition it nist JJO JI - to

w J t hstand appl i ed strin rates approach ng 1 0 sec

hysi_ca I Properties

Phvrs ical proper t nc-su rerents f th 17-4 PU stdinlcsF -ultgtoI

i-t I rg in vol od detcrminations of the 1 nen r uxpans ] on spec bull heat

in LcrrH ] di f fus ivi ty a^ a in rt op o 1 nmpera tine di HO

bull I -u pushrod Ticta d i 1 -ifvvi lt opr at bull- in i r ltbull eripo it n

v rf-nroi was ulaquo=ed oilur lirrat f-Xf-irHion n-isriTcrlaquo in bull

i i-rpri itiM rrgc 28 t -i llMr (12) MCltltSUWPI- bulltwerr 2H f 21 V

v ltbullraquo r- made with a sinnk f iiso-i bull 1 ) ca [-ushroi d i ]- 11 ri-t or m u n n-m

urni in a room temperature environment 1inullv the linear oxptns- gt gtn

ltbullbull I or 2^4 nn in orqth bull 2 rgt4 mn soim i wet gt bull egt i I I Jri t od 1 i -M-

bullbullN1- aL each Lest tempei at ltrr trior tn expansion rc -s roriont -bull

fvociri heit dotoi mi nit on^ ciliec i iv gtbull in life -kiM -

bull ct in scanning Iuurirvicr -laquonnlt ct elt - i bullbull r bull--irr-u or-

rLi CJ j ) t al data acLn s 11 ion sv = Lcn 11 bullltbull he m a 1 d L -s v i l bull

r--SMlts were obtained us rig a cor t er coril rr bull lisor flis di -

-bullbullbull_ UMi-c j Fr-v I r t bull -cv bullbull bullbullbull AI tt t M ~ bull I

I fbdquos s v i ty the thermal conduct t y ^is lt_ -ilcalato- i bullbull

- no re i s t lie dens i ty cor reel ed for changes I n temperature relat ivc

U room temperature (298K)

The dilatometer was calibrated usinn standard fused silica and platinum samples

Vpjvar ca l B e h a v i c

The e l a s t i c - p r o p e r t m s of t he 17-4 P1- s u i i ~s s t t - o --is r ~ v bull r

-DISLII ed ove r t h e t e n p e r a t u r e r ange 2 3 3 t o I -bull 3- J=raquo rc s irrir] r--i J I t r J -

- - - t echn lques 14) These techr i u r p r^ r e bull bull raquo- bull r I T ] l i r e

bull in u l t r a s o n i c wave t o r - ronaqa te t irouqr ltowr sltc ire- l enc t r

-bull -gt rC a s lti fur c pr -f te r r a t r o rve r~ bull i d t r (bull

r i l t r i pn r c vr lrcr tv i e i r igtrr c bull bull t--v

i bull bull -bull rv -1 i r r i r i

s bull iO r o c r 1 k c i t ltbull- bull

bull bull t h lt bull--bull i - L C K i -

bull m i Tr bullbull l e i- c

n r i H o laquo o f I s bull 1 ir

- laquo r - | --s

] | s t r i p s t k

2 so bull r v c i J IM 1 I f f 1 1

Tilt- d r l u n l s a m p l e f o r bull r e -i i ve r n ri bull t k-i -gt I

$8gt

070MA ePi

I 1

TENSH-ECOMPRESSIVE AXIS

The Charpy i - p a c t s a r p l e s were t e s t e d xr e t h c r t he - notched r

f a t i q u e precrackeC c o n d i t i o n F a t i g u e precr-icV ing u t i J i z e c methods 15

where t h e f i n a l s t r e s s i n t e n s i t y d u r i n g p r e c r a c k i r n K a s a lways

i r - le n t l e s s han one -ha If of t h e riynar cr f r ic t i iL L oughnefi s

- - -bull t he no tched and f a t r c p r ^ c r a c k a d sarin Les were t e s t e d u s i n g

bull r e n t e d -bull r-t m c no bullbull i bull 0 1111 K t ve In-- bull bullbull ijcirv

osr v-a-- lt iil ro f r^1

T

-- 2rii

1K t l-o- i s t bull I [

RESULTS AND DISCUSSION

leneral The chemical composition of the 17-4 PH stainless steel cjstin-i

examined in this study is given in Table 1 Before machining this bull Line had been homogenized at 1422K and then solution treated at -7K rinal aging involvec a four hour exposure at 922K Optica - bull oroscopy indicated that the- casting possessed an igc-d irorvrns- itrigt rfith pound-ferrite stringers r inure 3 High magnification c-xi i on of the i-martensite matrix Figure 1 indicate- that the rt-i-

bullis iii t)ic overaged heat treatment condition that it conliinoii = rthci coarHe dispersion of the primary strengthening phase rpiiraquoT i -1 r- centered cubic u pa i i bull] er )-irt her oa i nat irraquoi bullbull)bull i iJed Lhe presence o I rod-shiiped bull rurip iatis W t r t lt -bullbull r bull n-iqirs X-ray energy dispersive iiiivs ]iii-c ltbull t i bull i bull i bull n bull ]articles uere relatively rich in u whir -omparci to i n iVrritc matrix The appearance of these rod-shncl IU rlaquoi pi bull bulltliin the -lerrite stringers seems to be restricted ti- bull-bull ainlosa steel castings sine their presence has not L bull r bullbull laquo previous studies of wrought 17-4 Pl stainless steel i ] -

Table 1 Chemical Composition of i 7- 4 PH ltaUt

bull boT^^ L- ight Percent Cr 1694 Ni 40 Cu 1 - 0 Mn R j C 00 44 F 0 )2 2

Optica] Micrograph o l 1-7-4 Pil Stainless Steel Casting White Areas -Fcrrile Strinqers Darker Matrix Aged i-Ma rtensi to Orir-inal Magnification 100X

Figure 4 Transmission Electron Micrograph of ujed j-Martensite in 17-4 PH Stainless Steel Castin Containing Spherical Cu Precipitates Original Magnification 40000X

Figure 5 Transmission Electron Micrograph of e-Ferrito Stringer Containing Rod-Shaped Cu-Pich Precipitate Original Magnification 52000X

15

r u r r i t n gt fi ha ton Lr

-iy D i s p e r s i v e S p e c t r a Fron (a) i t r i x and lb) Rnrj-Shar-od ^r t i cl o

bull bullgtbull _ bull bull ] t f l - S I J I

- i I l l r U U n l - bullbull - bull

I H 1 - A

t L i l b t

-bull 1

i i n o r I xr j ins i cir o f ) - - bull ii r I-n- S t o n Cast i p--

-T bullbullbull _J_K_ L L n l i t

2 79 - n 1 M

bull bull 0 0 0 0

bull1 bull 1 o i o -1

bull1 bull n I i i rgt(-r 0 3

12 k C i 7 i

127 C 72

gt4 ) 0 40 )

7 7 0 5 4 6

TH 0 5 6 2

bull 3 - 0 S r r

3 7 t l T U

- lt i o f 7

J 2 5 0 0 3

O M 0 8 2 4

212 1 107

IB

T-iblp

S p e c i f i c Heat of 17-4 I S t a r l e s s S t e e l Cas

Tempera tu re (Ki Spc-cif ic i icat U s e c qnt 350 0 4750 37 04884 400 0 4073 425 0 054 450 05147 460 05220 475 0 5228 500 0 5 ) 3 0 525 05396 550 054 7 7 575 0 5548 600 056 36 625 0 5 2 6 650 0 5805 675 n sp T

700 0 5978 725 O608O 750 n r H l 775 06534 795 r 6812 800 06i7 r) 825 0 2 4 850 0740J S75 07576 100 07672 925 07 7 3

Table 4

3] j-i f f us vity cf 17-4 PH Stainless Steel Castirq

T o n o r a t i e 1 r P i f f u s i v i tv 1 err s e c

Tgt 4

e 1 r 004 58

4ftl 0 0452 fgt2 7 0 0457

764 004 20

462 0 0475

1 2 7 0 0548

Table 5

] Crviit-t vi ty of 17-4 PM Stciinlcss Steel Castinn

crppraturc tK) 294 4 61 f27 704

Conductivity (w 0 152 0180 0 199 0 20C 028]

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 5: DISCI AIM* - I A

INTRODUCTION

Prior Ftudirs of 17-4 PH stainless steel (1-11) have generally bullonsidered the mechanical and physical properties of wrought product forms that is rc-lled plate forcings etc There are however many is varices where because of econorr - -considerations 17-4 PH stainless bull LX 1 castings in gnu be an attrac i ve alternative Unf crfjr^telv j u Jc informatirn exi sts on the mechanical and physical properties of J 7-4 pi stainless steel castings This report presents the results of eva 1 uation of such a casting Where availatolc direct compar iscn MJ data obtained from wrought 17-4 PH stainless steel is also i ncluned

Puio ] Top and Side Views of 17-4 PI Stainless Steel Seal Castiiq

EXPERIMENTAL PROCEDURE

Figure i shows the 17-4 raquoH stainless steel casting evu uatec in

us study This casting was selected since it is currently being

considered as the primary metallic seal for a liquid metal breedpj

irKtor spent f uel sh ipping container As such the sea must operate

it temperatures between 2JJ and 4 7 3K In addition it nist JJO JI - to

w J t hstand appl i ed strin rates approach ng 1 0 sec

hysi_ca I Properties

Phvrs ical proper t nc-su rerents f th 17-4 PU stdinlcsF -ultgtoI

i-t I rg in vol od detcrminations of the 1 nen r uxpans ] on spec bull heat

in LcrrH ] di f fus ivi ty a^ a in rt op o 1 nmpera tine di HO

bull I -u pushrod Ticta d i 1 -ifvvi lt opr at bull- in i r ltbull eripo it n

v rf-nroi was ulaquo=ed oilur lirrat f-Xf-irHion n-isriTcrlaquo in bull

i i-rpri itiM rrgc 28 t -i llMr (12) MCltltSUWPI- bulltwerr 2H f 21 V

v ltbullraquo r- made with a sinnk f iiso-i bull 1 ) ca [-ushroi d i ]- 11 ri-t or m u n n-m

urni in a room temperature environment 1inullv the linear oxptns- gt gtn

ltbullbull I or 2^4 nn in orqth bull 2 rgt4 mn soim i wet gt bull egt i I I Jri t od 1 i -M-

bullbullN1- aL each Lest tempei at ltrr trior tn expansion rc -s roriont -bull

fvociri heit dotoi mi nit on^ ciliec i iv gtbull in life -kiM -

bull ct in scanning Iuurirvicr -laquonnlt ct elt - i bullbull r bull--irr-u or-

rLi CJ j ) t al data acLn s 11 ion sv = Lcn 11 bullltbull he m a 1 d L -s v i l bull

r--SMlts were obtained us rig a cor t er coril rr bull lisor flis di -

-bullbullbull_ UMi-c j Fr-v I r t bull -cv bullbull bullbullbull AI tt t M ~ bull I

I fbdquos s v i ty the thermal conduct t y ^is lt_ -ilcalato- i bullbull

- no re i s t lie dens i ty cor reel ed for changes I n temperature relat ivc

U room temperature (298K)

The dilatometer was calibrated usinn standard fused silica and platinum samples

Vpjvar ca l B e h a v i c

The e l a s t i c - p r o p e r t m s of t he 17-4 P1- s u i i ~s s t t - o --is r ~ v bull r

-DISLII ed ove r t h e t e n p e r a t u r e r ange 2 3 3 t o I -bull 3- J=raquo rc s irrir] r--i J I t r J -

- - - t echn lques 14) These techr i u r p r^ r e bull bull raquo- bull r I T ] l i r e

bull in u l t r a s o n i c wave t o r - ronaqa te t irouqr ltowr sltc ire- l enc t r

-bull -gt rC a s lti fur c pr -f te r r a t r o rve r~ bull i d t r (bull

r i l t r i pn r c vr lrcr tv i e i r igtrr c bull bull t--v

i bull bull -bull rv -1 i r r i r i

s bull iO r o c r 1 k c i t ltbull- bull

bull bull t h lt bull--bull i - L C K i -

bull m i Tr bullbull l e i- c

n r i H o laquo o f I s bull 1 ir

- laquo r - | --s

] | s t r i p s t k

2 so bull r v c i J IM 1 I f f 1 1

Tilt- d r l u n l s a m p l e f o r bull r e -i i ve r n ri bull t k-i -gt I

$8gt

070MA ePi

I 1

TENSH-ECOMPRESSIVE AXIS

The Charpy i - p a c t s a r p l e s were t e s t e d xr e t h c r t he - notched r

f a t i q u e precrackeC c o n d i t i o n F a t i g u e precr-icV ing u t i J i z e c methods 15

where t h e f i n a l s t r e s s i n t e n s i t y d u r i n g p r e c r a c k i r n K a s a lways

i r - le n t l e s s han one -ha If of t h e riynar cr f r ic t i iL L oughnefi s

- - -bull t he no tched and f a t r c p r ^ c r a c k a d sarin Les were t e s t e d u s i n g

bull r e n t e d -bull r-t m c no bullbull i bull 0 1111 K t ve In-- bull bullbull ijcirv

osr v-a-- lt iil ro f r^1

T

-- 2rii

1K t l-o- i s t bull I [

RESULTS AND DISCUSSION

leneral The chemical composition of the 17-4 PH stainless steel cjstin-i

examined in this study is given in Table 1 Before machining this bull Line had been homogenized at 1422K and then solution treated at -7K rinal aging involvec a four hour exposure at 922K Optica - bull oroscopy indicated that the- casting possessed an igc-d irorvrns- itrigt rfith pound-ferrite stringers r inure 3 High magnification c-xi i on of the i-martensite matrix Figure 1 indicate- that the rt-i-

bullis iii t)ic overaged heat treatment condition that it conliinoii = rthci coarHe dispersion of the primary strengthening phase rpiiraquoT i -1 r- centered cubic u pa i i bull] er )-irt her oa i nat irraquoi bullbull)bull i iJed Lhe presence o I rod-shiiped bull rurip iatis W t r t lt -bullbull r bull n-iqirs X-ray energy dispersive iiiivs ]iii-c ltbull t i bull i bull i bull n bull ]articles uere relatively rich in u whir -omparci to i n iVrritc matrix The appearance of these rod-shncl IU rlaquoi pi bull bulltliin the -lerrite stringers seems to be restricted ti- bull-bull ainlosa steel castings sine their presence has not L bull r bullbull laquo previous studies of wrought 17-4 Pl stainless steel i ] -

Table 1 Chemical Composition of i 7- 4 PH ltaUt

bull boT^^ L- ight Percent Cr 1694 Ni 40 Cu 1 - 0 Mn R j C 00 44 F 0 )2 2

Optica] Micrograph o l 1-7-4 Pil Stainless Steel Casting White Areas -Fcrrile Strinqers Darker Matrix Aged i-Ma rtensi to Orir-inal Magnification 100X

Figure 4 Transmission Electron Micrograph of ujed j-Martensite in 17-4 PH Stainless Steel Castin Containing Spherical Cu Precipitates Original Magnification 40000X

Figure 5 Transmission Electron Micrograph of e-Ferrito Stringer Containing Rod-Shaped Cu-Pich Precipitate Original Magnification 52000X

15

r u r r i t n gt fi ha ton Lr

-iy D i s p e r s i v e S p e c t r a Fron (a) i t r i x and lb) Rnrj-Shar-od ^r t i cl o

bull bullgtbull _ bull bull ] t f l - S I J I

- i I l l r U U n l - bullbull - bull

I H 1 - A

t L i l b t

-bull 1

i i n o r I xr j ins i cir o f ) - - bull ii r I-n- S t o n Cast i p--

-T bullbullbull _J_K_ L L n l i t

2 79 - n 1 M

bull bull 0 0 0 0

bull1 bull 1 o i o -1

bull1 bull n I i i rgt(-r 0 3

12 k C i 7 i

127 C 72

gt4 ) 0 40 )

7 7 0 5 4 6

TH 0 5 6 2

bull 3 - 0 S r r

3 7 t l T U

- lt i o f 7

J 2 5 0 0 3

O M 0 8 2 4

212 1 107

IB

T-iblp

S p e c i f i c Heat of 17-4 I S t a r l e s s S t e e l Cas

Tempera tu re (Ki Spc-cif ic i icat U s e c qnt 350 0 4750 37 04884 400 0 4073 425 0 054 450 05147 460 05220 475 0 5228 500 0 5 ) 3 0 525 05396 550 054 7 7 575 0 5548 600 056 36 625 0 5 2 6 650 0 5805 675 n sp T

700 0 5978 725 O608O 750 n r H l 775 06534 795 r 6812 800 06i7 r) 825 0 2 4 850 0740J S75 07576 100 07672 925 07 7 3

Table 4

3] j-i f f us vity cf 17-4 PH Stainless Steel Castirq

T o n o r a t i e 1 r P i f f u s i v i tv 1 err s e c

Tgt 4

e 1 r 004 58

4ftl 0 0452 fgt2 7 0 0457

764 004 20

462 0 0475

1 2 7 0 0548

Table 5

] Crviit-t vi ty of 17-4 PM Stciinlcss Steel Castinn

crppraturc tK) 294 4 61 f27 704

Conductivity (w 0 152 0180 0 199 0 20C 028]

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 6: DISCI AIM* - I A

Puio ] Top and Side Views of 17-4 PI Stainless Steel Seal Castiiq

EXPERIMENTAL PROCEDURE

Figure i shows the 17-4 raquoH stainless steel casting evu uatec in

us study This casting was selected since it is currently being

considered as the primary metallic seal for a liquid metal breedpj

irKtor spent f uel sh ipping container As such the sea must operate

it temperatures between 2JJ and 4 7 3K In addition it nist JJO JI - to

w J t hstand appl i ed strin rates approach ng 1 0 sec

hysi_ca I Properties

Phvrs ical proper t nc-su rerents f th 17-4 PU stdinlcsF -ultgtoI

i-t I rg in vol od detcrminations of the 1 nen r uxpans ] on spec bull heat

in LcrrH ] di f fus ivi ty a^ a in rt op o 1 nmpera tine di HO

bull I -u pushrod Ticta d i 1 -ifvvi lt opr at bull- in i r ltbull eripo it n

v rf-nroi was ulaquo=ed oilur lirrat f-Xf-irHion n-isriTcrlaquo in bull

i i-rpri itiM rrgc 28 t -i llMr (12) MCltltSUWPI- bulltwerr 2H f 21 V

v ltbullraquo r- made with a sinnk f iiso-i bull 1 ) ca [-ushroi d i ]- 11 ri-t or m u n n-m

urni in a room temperature environment 1inullv the linear oxptns- gt gtn

ltbullbull I or 2^4 nn in orqth bull 2 rgt4 mn soim i wet gt bull egt i I I Jri t od 1 i -M-

bullbullN1- aL each Lest tempei at ltrr trior tn expansion rc -s roriont -bull

fvociri heit dotoi mi nit on^ ciliec i iv gtbull in life -kiM -

bull ct in scanning Iuurirvicr -laquonnlt ct elt - i bullbull r bull--irr-u or-

rLi CJ j ) t al data acLn s 11 ion sv = Lcn 11 bullltbull he m a 1 d L -s v i l bull

r--SMlts were obtained us rig a cor t er coril rr bull lisor flis di -

-bullbullbull_ UMi-c j Fr-v I r t bull -cv bullbull bullbullbull AI tt t M ~ bull I

I fbdquos s v i ty the thermal conduct t y ^is lt_ -ilcalato- i bullbull

- no re i s t lie dens i ty cor reel ed for changes I n temperature relat ivc

U room temperature (298K)

The dilatometer was calibrated usinn standard fused silica and platinum samples

Vpjvar ca l B e h a v i c

The e l a s t i c - p r o p e r t m s of t he 17-4 P1- s u i i ~s s t t - o --is r ~ v bull r

-DISLII ed ove r t h e t e n p e r a t u r e r ange 2 3 3 t o I -bull 3- J=raquo rc s irrir] r--i J I t r J -

- - - t echn lques 14) These techr i u r p r^ r e bull bull raquo- bull r I T ] l i r e

bull in u l t r a s o n i c wave t o r - ronaqa te t irouqr ltowr sltc ire- l enc t r

-bull -gt rC a s lti fur c pr -f te r r a t r o rve r~ bull i d t r (bull

r i l t r i pn r c vr lrcr tv i e i r igtrr c bull bull t--v

i bull bull -bull rv -1 i r r i r i

s bull iO r o c r 1 k c i t ltbull- bull

bull bull t h lt bull--bull i - L C K i -

bull m i Tr bullbull l e i- c

n r i H o laquo o f I s bull 1 ir

- laquo r - | --s

] | s t r i p s t k

2 so bull r v c i J IM 1 I f f 1 1

Tilt- d r l u n l s a m p l e f o r bull r e -i i ve r n ri bull t k-i -gt I

$8gt

070MA ePi

I 1

TENSH-ECOMPRESSIVE AXIS

The Charpy i - p a c t s a r p l e s were t e s t e d xr e t h c r t he - notched r

f a t i q u e precrackeC c o n d i t i o n F a t i g u e precr-icV ing u t i J i z e c methods 15

where t h e f i n a l s t r e s s i n t e n s i t y d u r i n g p r e c r a c k i r n K a s a lways

i r - le n t l e s s han one -ha If of t h e riynar cr f r ic t i iL L oughnefi s

- - -bull t he no tched and f a t r c p r ^ c r a c k a d sarin Les were t e s t e d u s i n g

bull r e n t e d -bull r-t m c no bullbull i bull 0 1111 K t ve In-- bull bullbull ijcirv

osr v-a-- lt iil ro f r^1

T

-- 2rii

1K t l-o- i s t bull I [

RESULTS AND DISCUSSION

leneral The chemical composition of the 17-4 PH stainless steel cjstin-i

examined in this study is given in Table 1 Before machining this bull Line had been homogenized at 1422K and then solution treated at -7K rinal aging involvec a four hour exposure at 922K Optica - bull oroscopy indicated that the- casting possessed an igc-d irorvrns- itrigt rfith pound-ferrite stringers r inure 3 High magnification c-xi i on of the i-martensite matrix Figure 1 indicate- that the rt-i-

bullis iii t)ic overaged heat treatment condition that it conliinoii = rthci coarHe dispersion of the primary strengthening phase rpiiraquoT i -1 r- centered cubic u pa i i bull] er )-irt her oa i nat irraquoi bullbull)bull i iJed Lhe presence o I rod-shiiped bull rurip iatis W t r t lt -bullbull r bull n-iqirs X-ray energy dispersive iiiivs ]iii-c ltbull t i bull i bull i bull n bull ]articles uere relatively rich in u whir -omparci to i n iVrritc matrix The appearance of these rod-shncl IU rlaquoi pi bull bulltliin the -lerrite stringers seems to be restricted ti- bull-bull ainlosa steel castings sine their presence has not L bull r bullbull laquo previous studies of wrought 17-4 Pl stainless steel i ] -

Table 1 Chemical Composition of i 7- 4 PH ltaUt

bull boT^^ L- ight Percent Cr 1694 Ni 40 Cu 1 - 0 Mn R j C 00 44 F 0 )2 2

Optica] Micrograph o l 1-7-4 Pil Stainless Steel Casting White Areas -Fcrrile Strinqers Darker Matrix Aged i-Ma rtensi to Orir-inal Magnification 100X

Figure 4 Transmission Electron Micrograph of ujed j-Martensite in 17-4 PH Stainless Steel Castin Containing Spherical Cu Precipitates Original Magnification 40000X

Figure 5 Transmission Electron Micrograph of e-Ferrito Stringer Containing Rod-Shaped Cu-Pich Precipitate Original Magnification 52000X

15

r u r r i t n gt fi ha ton Lr

-iy D i s p e r s i v e S p e c t r a Fron (a) i t r i x and lb) Rnrj-Shar-od ^r t i cl o

bull bullgtbull _ bull bull ] t f l - S I J I

- i I l l r U U n l - bullbull - bull

I H 1 - A

t L i l b t

-bull 1

i i n o r I xr j ins i cir o f ) - - bull ii r I-n- S t o n Cast i p--

-T bullbullbull _J_K_ L L n l i t

2 79 - n 1 M

bull bull 0 0 0 0

bull1 bull 1 o i o -1

bull1 bull n I i i rgt(-r 0 3

12 k C i 7 i

127 C 72

gt4 ) 0 40 )

7 7 0 5 4 6

TH 0 5 6 2

bull 3 - 0 S r r

3 7 t l T U

- lt i o f 7

J 2 5 0 0 3

O M 0 8 2 4

212 1 107

IB

T-iblp

S p e c i f i c Heat of 17-4 I S t a r l e s s S t e e l Cas

Tempera tu re (Ki Spc-cif ic i icat U s e c qnt 350 0 4750 37 04884 400 0 4073 425 0 054 450 05147 460 05220 475 0 5228 500 0 5 ) 3 0 525 05396 550 054 7 7 575 0 5548 600 056 36 625 0 5 2 6 650 0 5805 675 n sp T

700 0 5978 725 O608O 750 n r H l 775 06534 795 r 6812 800 06i7 r) 825 0 2 4 850 0740J S75 07576 100 07672 925 07 7 3

Table 4

3] j-i f f us vity cf 17-4 PH Stainless Steel Castirq

T o n o r a t i e 1 r P i f f u s i v i tv 1 err s e c

Tgt 4

e 1 r 004 58

4ftl 0 0452 fgt2 7 0 0457

764 004 20

462 0 0475

1 2 7 0 0548

Table 5

] Crviit-t vi ty of 17-4 PM Stciinlcss Steel Castinn

crppraturc tK) 294 4 61 f27 704

Conductivity (w 0 152 0180 0 199 0 20C 028]

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 7: DISCI AIM* - I A

EXPERIMENTAL PROCEDURE

Figure i shows the 17-4 raquoH stainless steel casting evu uatec in

us study This casting was selected since it is currently being

considered as the primary metallic seal for a liquid metal breedpj

irKtor spent f uel sh ipping container As such the sea must operate

it temperatures between 2JJ and 4 7 3K In addition it nist JJO JI - to

w J t hstand appl i ed strin rates approach ng 1 0 sec

hysi_ca I Properties

Phvrs ical proper t nc-su rerents f th 17-4 PU stdinlcsF -ultgtoI

i-t I rg in vol od detcrminations of the 1 nen r uxpans ] on spec bull heat

in LcrrH ] di f fus ivi ty a^ a in rt op o 1 nmpera tine di HO

bull I -u pushrod Ticta d i 1 -ifvvi lt opr at bull- in i r ltbull eripo it n

v rf-nroi was ulaquo=ed oilur lirrat f-Xf-irHion n-isriTcrlaquo in bull

i i-rpri itiM rrgc 28 t -i llMr (12) MCltltSUWPI- bulltwerr 2H f 21 V

v ltbullraquo r- made with a sinnk f iiso-i bull 1 ) ca [-ushroi d i ]- 11 ri-t or m u n n-m

urni in a room temperature environment 1inullv the linear oxptns- gt gtn

ltbullbull I or 2^4 nn in orqth bull 2 rgt4 mn soim i wet gt bull egt i I I Jri t od 1 i -M-

bullbullN1- aL each Lest tempei at ltrr trior tn expansion rc -s roriont -bull

fvociri heit dotoi mi nit on^ ciliec i iv gtbull in life -kiM -

bull ct in scanning Iuurirvicr -laquonnlt ct elt - i bullbull r bull--irr-u or-

rLi CJ j ) t al data acLn s 11 ion sv = Lcn 11 bullltbull he m a 1 d L -s v i l bull

r--SMlts were obtained us rig a cor t er coril rr bull lisor flis di -

-bullbullbull_ UMi-c j Fr-v I r t bull -cv bullbull bullbullbull AI tt t M ~ bull I

I fbdquos s v i ty the thermal conduct t y ^is lt_ -ilcalato- i bullbull

- no re i s t lie dens i ty cor reel ed for changes I n temperature relat ivc

U room temperature (298K)

The dilatometer was calibrated usinn standard fused silica and platinum samples

Vpjvar ca l B e h a v i c

The e l a s t i c - p r o p e r t m s of t he 17-4 P1- s u i i ~s s t t - o --is r ~ v bull r

-DISLII ed ove r t h e t e n p e r a t u r e r ange 2 3 3 t o I -bull 3- J=raquo rc s irrir] r--i J I t r J -

- - - t echn lques 14) These techr i u r p r^ r e bull bull raquo- bull r I T ] l i r e

bull in u l t r a s o n i c wave t o r - ronaqa te t irouqr ltowr sltc ire- l enc t r

-bull -gt rC a s lti fur c pr -f te r r a t r o rve r~ bull i d t r (bull

r i l t r i pn r c vr lrcr tv i e i r igtrr c bull bull t--v

i bull bull -bull rv -1 i r r i r i

s bull iO r o c r 1 k c i t ltbull- bull

bull bull t h lt bull--bull i - L C K i -

bull m i Tr bullbull l e i- c

n r i H o laquo o f I s bull 1 ir

- laquo r - | --s

] | s t r i p s t k

2 so bull r v c i J IM 1 I f f 1 1

Tilt- d r l u n l s a m p l e f o r bull r e -i i ve r n ri bull t k-i -gt I

$8gt

070MA ePi

I 1

TENSH-ECOMPRESSIVE AXIS

The Charpy i - p a c t s a r p l e s were t e s t e d xr e t h c r t he - notched r

f a t i q u e precrackeC c o n d i t i o n F a t i g u e precr-icV ing u t i J i z e c methods 15

where t h e f i n a l s t r e s s i n t e n s i t y d u r i n g p r e c r a c k i r n K a s a lways

i r - le n t l e s s han one -ha If of t h e riynar cr f r ic t i iL L oughnefi s

- - -bull t he no tched and f a t r c p r ^ c r a c k a d sarin Les were t e s t e d u s i n g

bull r e n t e d -bull r-t m c no bullbull i bull 0 1111 K t ve In-- bull bullbull ijcirv

osr v-a-- lt iil ro f r^1

T

-- 2rii

1K t l-o- i s t bull I [

RESULTS AND DISCUSSION

leneral The chemical composition of the 17-4 PH stainless steel cjstin-i

examined in this study is given in Table 1 Before machining this bull Line had been homogenized at 1422K and then solution treated at -7K rinal aging involvec a four hour exposure at 922K Optica - bull oroscopy indicated that the- casting possessed an igc-d irorvrns- itrigt rfith pound-ferrite stringers r inure 3 High magnification c-xi i on of the i-martensite matrix Figure 1 indicate- that the rt-i-

bullis iii t)ic overaged heat treatment condition that it conliinoii = rthci coarHe dispersion of the primary strengthening phase rpiiraquoT i -1 r- centered cubic u pa i i bull] er )-irt her oa i nat irraquoi bullbull)bull i iJed Lhe presence o I rod-shiiped bull rurip iatis W t r t lt -bullbull r bull n-iqirs X-ray energy dispersive iiiivs ]iii-c ltbull t i bull i bull i bull n bull ]articles uere relatively rich in u whir -omparci to i n iVrritc matrix The appearance of these rod-shncl IU rlaquoi pi bull bulltliin the -lerrite stringers seems to be restricted ti- bull-bull ainlosa steel castings sine their presence has not L bull r bullbull laquo previous studies of wrought 17-4 Pl stainless steel i ] -

Table 1 Chemical Composition of i 7- 4 PH ltaUt

bull boT^^ L- ight Percent Cr 1694 Ni 40 Cu 1 - 0 Mn R j C 00 44 F 0 )2 2

Optica] Micrograph o l 1-7-4 Pil Stainless Steel Casting White Areas -Fcrrile Strinqers Darker Matrix Aged i-Ma rtensi to Orir-inal Magnification 100X

Figure 4 Transmission Electron Micrograph of ujed j-Martensite in 17-4 PH Stainless Steel Castin Containing Spherical Cu Precipitates Original Magnification 40000X

Figure 5 Transmission Electron Micrograph of e-Ferrito Stringer Containing Rod-Shaped Cu-Pich Precipitate Original Magnification 52000X

15

r u r r i t n gt fi ha ton Lr

-iy D i s p e r s i v e S p e c t r a Fron (a) i t r i x and lb) Rnrj-Shar-od ^r t i cl o

bull bullgtbull _ bull bull ] t f l - S I J I

- i I l l r U U n l - bullbull - bull

I H 1 - A

t L i l b t

-bull 1

i i n o r I xr j ins i cir o f ) - - bull ii r I-n- S t o n Cast i p--

-T bullbullbull _J_K_ L L n l i t

2 79 - n 1 M

bull bull 0 0 0 0

bull1 bull 1 o i o -1

bull1 bull n I i i rgt(-r 0 3

12 k C i 7 i

127 C 72

gt4 ) 0 40 )

7 7 0 5 4 6

TH 0 5 6 2

bull 3 - 0 S r r

3 7 t l T U

- lt i o f 7

J 2 5 0 0 3

O M 0 8 2 4

212 1 107

IB

T-iblp

S p e c i f i c Heat of 17-4 I S t a r l e s s S t e e l Cas

Tempera tu re (Ki Spc-cif ic i icat U s e c qnt 350 0 4750 37 04884 400 0 4073 425 0 054 450 05147 460 05220 475 0 5228 500 0 5 ) 3 0 525 05396 550 054 7 7 575 0 5548 600 056 36 625 0 5 2 6 650 0 5805 675 n sp T

700 0 5978 725 O608O 750 n r H l 775 06534 795 r 6812 800 06i7 r) 825 0 2 4 850 0740J S75 07576 100 07672 925 07 7 3

Table 4

3] j-i f f us vity cf 17-4 PH Stainless Steel Castirq

T o n o r a t i e 1 r P i f f u s i v i tv 1 err s e c

Tgt 4

e 1 r 004 58

4ftl 0 0452 fgt2 7 0 0457

764 004 20

462 0 0475

1 2 7 0 0548

Table 5

] Crviit-t vi ty of 17-4 PM Stciinlcss Steel Castinn

crppraturc tK) 294 4 61 f27 704

Conductivity (w 0 152 0180 0 199 0 20C 028]

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 8: DISCI AIM* - I A

Vpjvar ca l B e h a v i c

The e l a s t i c - p r o p e r t m s of t he 17-4 P1- s u i i ~s s t t - o --is r ~ v bull r

-DISLII ed ove r t h e t e n p e r a t u r e r ange 2 3 3 t o I -bull 3- J=raquo rc s irrir] r--i J I t r J -

- - - t echn lques 14) These techr i u r p r^ r e bull bull raquo- bull r I T ] l i r e

bull in u l t r a s o n i c wave t o r - ronaqa te t irouqr ltowr sltc ire- l enc t r

-bull -gt rC a s lti fur c pr -f te r r a t r o rve r~ bull i d t r (bull

r i l t r i pn r c vr lrcr tv i e i r igtrr c bull bull t--v

i bull bull -bull rv -1 i r r i r i

s bull iO r o c r 1 k c i t ltbull- bull

bull bull t h lt bull--bull i - L C K i -

bull m i Tr bullbull l e i- c

n r i H o laquo o f I s bull 1 ir

- laquo r - | --s

] | s t r i p s t k

2 so bull r v c i J IM 1 I f f 1 1

Tilt- d r l u n l s a m p l e f o r bull r e -i i ve r n ri bull t k-i -gt I

$8gt

070MA ePi

I 1

TENSH-ECOMPRESSIVE AXIS

The Charpy i - p a c t s a r p l e s were t e s t e d xr e t h c r t he - notched r

f a t i q u e precrackeC c o n d i t i o n F a t i g u e precr-icV ing u t i J i z e c methods 15

where t h e f i n a l s t r e s s i n t e n s i t y d u r i n g p r e c r a c k i r n K a s a lways

i r - le n t l e s s han one -ha If of t h e riynar cr f r ic t i iL L oughnefi s

- - -bull t he no tched and f a t r c p r ^ c r a c k a d sarin Les were t e s t e d u s i n g

bull r e n t e d -bull r-t m c no bullbull i bull 0 1111 K t ve In-- bull bullbull ijcirv

osr v-a-- lt iil ro f r^1

T

-- 2rii

1K t l-o- i s t bull I [

RESULTS AND DISCUSSION

leneral The chemical composition of the 17-4 PH stainless steel cjstin-i

examined in this study is given in Table 1 Before machining this bull Line had been homogenized at 1422K and then solution treated at -7K rinal aging involvec a four hour exposure at 922K Optica - bull oroscopy indicated that the- casting possessed an igc-d irorvrns- itrigt rfith pound-ferrite stringers r inure 3 High magnification c-xi i on of the i-martensite matrix Figure 1 indicate- that the rt-i-

bullis iii t)ic overaged heat treatment condition that it conliinoii = rthci coarHe dispersion of the primary strengthening phase rpiiraquoT i -1 r- centered cubic u pa i i bull] er )-irt her oa i nat irraquoi bullbull)bull i iJed Lhe presence o I rod-shiiped bull rurip iatis W t r t lt -bullbull r bull n-iqirs X-ray energy dispersive iiiivs ]iii-c ltbull t i bull i bull i bull n bull ]articles uere relatively rich in u whir -omparci to i n iVrritc matrix The appearance of these rod-shncl IU rlaquoi pi bull bulltliin the -lerrite stringers seems to be restricted ti- bull-bull ainlosa steel castings sine their presence has not L bull r bullbull laquo previous studies of wrought 17-4 Pl stainless steel i ] -

Table 1 Chemical Composition of i 7- 4 PH ltaUt

bull boT^^ L- ight Percent Cr 1694 Ni 40 Cu 1 - 0 Mn R j C 00 44 F 0 )2 2

Optica] Micrograph o l 1-7-4 Pil Stainless Steel Casting White Areas -Fcrrile Strinqers Darker Matrix Aged i-Ma rtensi to Orir-inal Magnification 100X

Figure 4 Transmission Electron Micrograph of ujed j-Martensite in 17-4 PH Stainless Steel Castin Containing Spherical Cu Precipitates Original Magnification 40000X

Figure 5 Transmission Electron Micrograph of e-Ferrito Stringer Containing Rod-Shaped Cu-Pich Precipitate Original Magnification 52000X

15

r u r r i t n gt fi ha ton Lr

-iy D i s p e r s i v e S p e c t r a Fron (a) i t r i x and lb) Rnrj-Shar-od ^r t i cl o

bull bullgtbull _ bull bull ] t f l - S I J I

- i I l l r U U n l - bullbull - bull

I H 1 - A

t L i l b t

-bull 1

i i n o r I xr j ins i cir o f ) - - bull ii r I-n- S t o n Cast i p--

-T bullbullbull _J_K_ L L n l i t

2 79 - n 1 M

bull bull 0 0 0 0

bull1 bull 1 o i o -1

bull1 bull n I i i rgt(-r 0 3

12 k C i 7 i

127 C 72

gt4 ) 0 40 )

7 7 0 5 4 6

TH 0 5 6 2

bull 3 - 0 S r r

3 7 t l T U

- lt i o f 7

J 2 5 0 0 3

O M 0 8 2 4

212 1 107

IB

T-iblp

S p e c i f i c Heat of 17-4 I S t a r l e s s S t e e l Cas

Tempera tu re (Ki Spc-cif ic i icat U s e c qnt 350 0 4750 37 04884 400 0 4073 425 0 054 450 05147 460 05220 475 0 5228 500 0 5 ) 3 0 525 05396 550 054 7 7 575 0 5548 600 056 36 625 0 5 2 6 650 0 5805 675 n sp T

700 0 5978 725 O608O 750 n r H l 775 06534 795 r 6812 800 06i7 r) 825 0 2 4 850 0740J S75 07576 100 07672 925 07 7 3

Table 4

3] j-i f f us vity cf 17-4 PH Stainless Steel Castirq

T o n o r a t i e 1 r P i f f u s i v i tv 1 err s e c

Tgt 4

e 1 r 004 58

4ftl 0 0452 fgt2 7 0 0457

764 004 20

462 0 0475

1 2 7 0 0548

Table 5

] Crviit-t vi ty of 17-4 PM Stciinlcss Steel Castinn

crppraturc tK) 294 4 61 f27 704

Conductivity (w 0 152 0180 0 199 0 20C 028]

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 9: DISCI AIM* - I A

$8gt

070MA ePi

I 1

TENSH-ECOMPRESSIVE AXIS

The Charpy i - p a c t s a r p l e s were t e s t e d xr e t h c r t he - notched r

f a t i q u e precrackeC c o n d i t i o n F a t i g u e precr-icV ing u t i J i z e c methods 15

where t h e f i n a l s t r e s s i n t e n s i t y d u r i n g p r e c r a c k i r n K a s a lways

i r - le n t l e s s han one -ha If of t h e riynar cr f r ic t i iL L oughnefi s

- - -bull t he no tched and f a t r c p r ^ c r a c k a d sarin Les were t e s t e d u s i n g

bull r e n t e d -bull r-t m c no bullbull i bull 0 1111 K t ve In-- bull bullbull ijcirv

osr v-a-- lt iil ro f r^1

T

-- 2rii

1K t l-o- i s t bull I [

RESULTS AND DISCUSSION

leneral The chemical composition of the 17-4 PH stainless steel cjstin-i

examined in this study is given in Table 1 Before machining this bull Line had been homogenized at 1422K and then solution treated at -7K rinal aging involvec a four hour exposure at 922K Optica - bull oroscopy indicated that the- casting possessed an igc-d irorvrns- itrigt rfith pound-ferrite stringers r inure 3 High magnification c-xi i on of the i-martensite matrix Figure 1 indicate- that the rt-i-

bullis iii t)ic overaged heat treatment condition that it conliinoii = rthci coarHe dispersion of the primary strengthening phase rpiiraquoT i -1 r- centered cubic u pa i i bull] er )-irt her oa i nat irraquoi bullbull)bull i iJed Lhe presence o I rod-shiiped bull rurip iatis W t r t lt -bullbull r bull n-iqirs X-ray energy dispersive iiiivs ]iii-c ltbull t i bull i bull i bull n bull ]articles uere relatively rich in u whir -omparci to i n iVrritc matrix The appearance of these rod-shncl IU rlaquoi pi bull bulltliin the -lerrite stringers seems to be restricted ti- bull-bull ainlosa steel castings sine their presence has not L bull r bullbull laquo previous studies of wrought 17-4 Pl stainless steel i ] -

Table 1 Chemical Composition of i 7- 4 PH ltaUt

bull boT^^ L- ight Percent Cr 1694 Ni 40 Cu 1 - 0 Mn R j C 00 44 F 0 )2 2

Optica] Micrograph o l 1-7-4 Pil Stainless Steel Casting White Areas -Fcrrile Strinqers Darker Matrix Aged i-Ma rtensi to Orir-inal Magnification 100X

Figure 4 Transmission Electron Micrograph of ujed j-Martensite in 17-4 PH Stainless Steel Castin Containing Spherical Cu Precipitates Original Magnification 40000X

Figure 5 Transmission Electron Micrograph of e-Ferrito Stringer Containing Rod-Shaped Cu-Pich Precipitate Original Magnification 52000X

15

r u r r i t n gt fi ha ton Lr

-iy D i s p e r s i v e S p e c t r a Fron (a) i t r i x and lb) Rnrj-Shar-od ^r t i cl o

bull bullgtbull _ bull bull ] t f l - S I J I

- i I l l r U U n l - bullbull - bull

I H 1 - A

t L i l b t

-bull 1

i i n o r I xr j ins i cir o f ) - - bull ii r I-n- S t o n Cast i p--

-T bullbullbull _J_K_ L L n l i t

2 79 - n 1 M

bull bull 0 0 0 0

bull1 bull 1 o i o -1

bull1 bull n I i i rgt(-r 0 3

12 k C i 7 i

127 C 72

gt4 ) 0 40 )

7 7 0 5 4 6

TH 0 5 6 2

bull 3 - 0 S r r

3 7 t l T U

- lt i o f 7

J 2 5 0 0 3

O M 0 8 2 4

212 1 107

IB

T-iblp

S p e c i f i c Heat of 17-4 I S t a r l e s s S t e e l Cas

Tempera tu re (Ki Spc-cif ic i icat U s e c qnt 350 0 4750 37 04884 400 0 4073 425 0 054 450 05147 460 05220 475 0 5228 500 0 5 ) 3 0 525 05396 550 054 7 7 575 0 5548 600 056 36 625 0 5 2 6 650 0 5805 675 n sp T

700 0 5978 725 O608O 750 n r H l 775 06534 795 r 6812 800 06i7 r) 825 0 2 4 850 0740J S75 07576 100 07672 925 07 7 3

Table 4

3] j-i f f us vity cf 17-4 PH Stainless Steel Castirq

T o n o r a t i e 1 r P i f f u s i v i tv 1 err s e c

Tgt 4

e 1 r 004 58

4ftl 0 0452 fgt2 7 0 0457

764 004 20

462 0 0475

1 2 7 0 0548

Table 5

] Crviit-t vi ty of 17-4 PM Stciinlcss Steel Castinn

crppraturc tK) 294 4 61 f27 704

Conductivity (w 0 152 0180 0 199 0 20C 028]

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 10: DISCI AIM* - I A

The Charpy i - p a c t s a r p l e s were t e s t e d xr e t h c r t he - notched r

f a t i q u e precrackeC c o n d i t i o n F a t i g u e precr-icV ing u t i J i z e c methods 15

where t h e f i n a l s t r e s s i n t e n s i t y d u r i n g p r e c r a c k i r n K a s a lways

i r - le n t l e s s han one -ha If of t h e riynar cr f r ic t i iL L oughnefi s

- - -bull t he no tched and f a t r c p r ^ c r a c k a d sarin Les were t e s t e d u s i n g

bull r e n t e d -bull r-t m c no bullbull i bull 0 1111 K t ve In-- bull bullbull ijcirv

osr v-a-- lt iil ro f r^1

T

-- 2rii

1K t l-o- i s t bull I [

RESULTS AND DISCUSSION

leneral The chemical composition of the 17-4 PH stainless steel cjstin-i

examined in this study is given in Table 1 Before machining this bull Line had been homogenized at 1422K and then solution treated at -7K rinal aging involvec a four hour exposure at 922K Optica - bull oroscopy indicated that the- casting possessed an igc-d irorvrns- itrigt rfith pound-ferrite stringers r inure 3 High magnification c-xi i on of the i-martensite matrix Figure 1 indicate- that the rt-i-

bullis iii t)ic overaged heat treatment condition that it conliinoii = rthci coarHe dispersion of the primary strengthening phase rpiiraquoT i -1 r- centered cubic u pa i i bull] er )-irt her oa i nat irraquoi bullbull)bull i iJed Lhe presence o I rod-shiiped bull rurip iatis W t r t lt -bullbull r bull n-iqirs X-ray energy dispersive iiiivs ]iii-c ltbull t i bull i bull i bull n bull ]articles uere relatively rich in u whir -omparci to i n iVrritc matrix The appearance of these rod-shncl IU rlaquoi pi bull bulltliin the -lerrite stringers seems to be restricted ti- bull-bull ainlosa steel castings sine their presence has not L bull r bullbull laquo previous studies of wrought 17-4 Pl stainless steel i ] -

Table 1 Chemical Composition of i 7- 4 PH ltaUt

bull boT^^ L- ight Percent Cr 1694 Ni 40 Cu 1 - 0 Mn R j C 00 44 F 0 )2 2

Optica] Micrograph o l 1-7-4 Pil Stainless Steel Casting White Areas -Fcrrile Strinqers Darker Matrix Aged i-Ma rtensi to Orir-inal Magnification 100X

Figure 4 Transmission Electron Micrograph of ujed j-Martensite in 17-4 PH Stainless Steel Castin Containing Spherical Cu Precipitates Original Magnification 40000X

Figure 5 Transmission Electron Micrograph of e-Ferrito Stringer Containing Rod-Shaped Cu-Pich Precipitate Original Magnification 52000X

15

r u r r i t n gt fi ha ton Lr

-iy D i s p e r s i v e S p e c t r a Fron (a) i t r i x and lb) Rnrj-Shar-od ^r t i cl o

bull bullgtbull _ bull bull ] t f l - S I J I

- i I l l r U U n l - bullbull - bull

I H 1 - A

t L i l b t

-bull 1

i i n o r I xr j ins i cir o f ) - - bull ii r I-n- S t o n Cast i p--

-T bullbullbull _J_K_ L L n l i t

2 79 - n 1 M

bull bull 0 0 0 0

bull1 bull 1 o i o -1

bull1 bull n I i i rgt(-r 0 3

12 k C i 7 i

127 C 72

gt4 ) 0 40 )

7 7 0 5 4 6

TH 0 5 6 2

bull 3 - 0 S r r

3 7 t l T U

- lt i o f 7

J 2 5 0 0 3

O M 0 8 2 4

212 1 107

IB

T-iblp

S p e c i f i c Heat of 17-4 I S t a r l e s s S t e e l Cas

Tempera tu re (Ki Spc-cif ic i icat U s e c qnt 350 0 4750 37 04884 400 0 4073 425 0 054 450 05147 460 05220 475 0 5228 500 0 5 ) 3 0 525 05396 550 054 7 7 575 0 5548 600 056 36 625 0 5 2 6 650 0 5805 675 n sp T

700 0 5978 725 O608O 750 n r H l 775 06534 795 r 6812 800 06i7 r) 825 0 2 4 850 0740J S75 07576 100 07672 925 07 7 3

Table 4

3] j-i f f us vity cf 17-4 PH Stainless Steel Castirq

T o n o r a t i e 1 r P i f f u s i v i tv 1 err s e c

Tgt 4

e 1 r 004 58

4ftl 0 0452 fgt2 7 0 0457

764 004 20

462 0 0475

1 2 7 0 0548

Table 5

] Crviit-t vi ty of 17-4 PM Stciinlcss Steel Castinn

crppraturc tK) 294 4 61 f27 704

Conductivity (w 0 152 0180 0 199 0 20C 028]

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 11: DISCI AIM* - I A

RESULTS AND DISCUSSION

leneral The chemical composition of the 17-4 PH stainless steel cjstin-i

examined in this study is given in Table 1 Before machining this bull Line had been homogenized at 1422K and then solution treated at -7K rinal aging involvec a four hour exposure at 922K Optica - bull oroscopy indicated that the- casting possessed an igc-d irorvrns- itrigt rfith pound-ferrite stringers r inure 3 High magnification c-xi i on of the i-martensite matrix Figure 1 indicate- that the rt-i-

bullis iii t)ic overaged heat treatment condition that it conliinoii = rthci coarHe dispersion of the primary strengthening phase rpiiraquoT i -1 r- centered cubic u pa i i bull] er )-irt her oa i nat irraquoi bullbull)bull i iJed Lhe presence o I rod-shiiped bull rurip iatis W t r t lt -bullbull r bull n-iqirs X-ray energy dispersive iiiivs ]iii-c ltbull t i bull i bull i bull n bull ]articles uere relatively rich in u whir -omparci to i n iVrritc matrix The appearance of these rod-shncl IU rlaquoi pi bull bulltliin the -lerrite stringers seems to be restricted ti- bull-bull ainlosa steel castings sine their presence has not L bull r bullbull laquo previous studies of wrought 17-4 Pl stainless steel i ] -

Table 1 Chemical Composition of i 7- 4 PH ltaUt

bull boT^^ L- ight Percent Cr 1694 Ni 40 Cu 1 - 0 Mn R j C 00 44 F 0 )2 2

Optica] Micrograph o l 1-7-4 Pil Stainless Steel Casting White Areas -Fcrrile Strinqers Darker Matrix Aged i-Ma rtensi to Orir-inal Magnification 100X

Figure 4 Transmission Electron Micrograph of ujed j-Martensite in 17-4 PH Stainless Steel Castin Containing Spherical Cu Precipitates Original Magnification 40000X

Figure 5 Transmission Electron Micrograph of e-Ferrito Stringer Containing Rod-Shaped Cu-Pich Precipitate Original Magnification 52000X

15

r u r r i t n gt fi ha ton Lr

-iy D i s p e r s i v e S p e c t r a Fron (a) i t r i x and lb) Rnrj-Shar-od ^r t i cl o

bull bullgtbull _ bull bull ] t f l - S I J I

- i I l l r U U n l - bullbull - bull

I H 1 - A

t L i l b t

-bull 1

i i n o r I xr j ins i cir o f ) - - bull ii r I-n- S t o n Cast i p--

-T bullbullbull _J_K_ L L n l i t

2 79 - n 1 M

bull bull 0 0 0 0

bull1 bull 1 o i o -1

bull1 bull n I i i rgt(-r 0 3

12 k C i 7 i

127 C 72

gt4 ) 0 40 )

7 7 0 5 4 6

TH 0 5 6 2

bull 3 - 0 S r r

3 7 t l T U

- lt i o f 7

J 2 5 0 0 3

O M 0 8 2 4

212 1 107

IB

T-iblp

S p e c i f i c Heat of 17-4 I S t a r l e s s S t e e l Cas

Tempera tu re (Ki Spc-cif ic i icat U s e c qnt 350 0 4750 37 04884 400 0 4073 425 0 054 450 05147 460 05220 475 0 5228 500 0 5 ) 3 0 525 05396 550 054 7 7 575 0 5548 600 056 36 625 0 5 2 6 650 0 5805 675 n sp T

700 0 5978 725 O608O 750 n r H l 775 06534 795 r 6812 800 06i7 r) 825 0 2 4 850 0740J S75 07576 100 07672 925 07 7 3

Table 4

3] j-i f f us vity cf 17-4 PH Stainless Steel Castirq

T o n o r a t i e 1 r P i f f u s i v i tv 1 err s e c

Tgt 4

e 1 r 004 58

4ftl 0 0452 fgt2 7 0 0457

764 004 20

462 0 0475

1 2 7 0 0548

Table 5

] Crviit-t vi ty of 17-4 PM Stciinlcss Steel Castinn

crppraturc tK) 294 4 61 f27 704

Conductivity (w 0 152 0180 0 199 0 20C 028]

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 12: DISCI AIM* - I A

Optica] Micrograph o l 1-7-4 Pil Stainless Steel Casting White Areas -Fcrrile Strinqers Darker Matrix Aged i-Ma rtensi to Orir-inal Magnification 100X

Figure 4 Transmission Electron Micrograph of ujed j-Martensite in 17-4 PH Stainless Steel Castin Containing Spherical Cu Precipitates Original Magnification 40000X

Figure 5 Transmission Electron Micrograph of e-Ferrito Stringer Containing Rod-Shaped Cu-Pich Precipitate Original Magnification 52000X

15

r u r r i t n gt fi ha ton Lr

-iy D i s p e r s i v e S p e c t r a Fron (a) i t r i x and lb) Rnrj-Shar-od ^r t i cl o

bull bullgtbull _ bull bull ] t f l - S I J I

- i I l l r U U n l - bullbull - bull

I H 1 - A

t L i l b t

-bull 1

i i n o r I xr j ins i cir o f ) - - bull ii r I-n- S t o n Cast i p--

-T bullbullbull _J_K_ L L n l i t

2 79 - n 1 M

bull bull 0 0 0 0

bull1 bull 1 o i o -1

bull1 bull n I i i rgt(-r 0 3

12 k C i 7 i

127 C 72

gt4 ) 0 40 )

7 7 0 5 4 6

TH 0 5 6 2

bull 3 - 0 S r r

3 7 t l T U

- lt i o f 7

J 2 5 0 0 3

O M 0 8 2 4

212 1 107

IB

T-iblp

S p e c i f i c Heat of 17-4 I S t a r l e s s S t e e l Cas

Tempera tu re (Ki Spc-cif ic i icat U s e c qnt 350 0 4750 37 04884 400 0 4073 425 0 054 450 05147 460 05220 475 0 5228 500 0 5 ) 3 0 525 05396 550 054 7 7 575 0 5548 600 056 36 625 0 5 2 6 650 0 5805 675 n sp T

700 0 5978 725 O608O 750 n r H l 775 06534 795 r 6812 800 06i7 r) 825 0 2 4 850 0740J S75 07576 100 07672 925 07 7 3

Table 4

3] j-i f f us vity cf 17-4 PH Stainless Steel Castirq

T o n o r a t i e 1 r P i f f u s i v i tv 1 err s e c

Tgt 4

e 1 r 004 58

4ftl 0 0452 fgt2 7 0 0457

764 004 20

462 0 0475

1 2 7 0 0548

Table 5

] Crviit-t vi ty of 17-4 PM Stciinlcss Steel Castinn

crppraturc tK) 294 4 61 f27 704

Conductivity (w 0 152 0180 0 199 0 20C 028]

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 13: DISCI AIM* - I A

Figure 5 Transmission Electron Micrograph of e-Ferrito Stringer Containing Rod-Shaped Cu-Pich Precipitate Original Magnification 52000X

15

r u r r i t n gt fi ha ton Lr

-iy D i s p e r s i v e S p e c t r a Fron (a) i t r i x and lb) Rnrj-Shar-od ^r t i cl o

bull bullgtbull _ bull bull ] t f l - S I J I

- i I l l r U U n l - bullbull - bull

I H 1 - A

t L i l b t

-bull 1

i i n o r I xr j ins i cir o f ) - - bull ii r I-n- S t o n Cast i p--

-T bullbullbull _J_K_ L L n l i t

2 79 - n 1 M

bull bull 0 0 0 0

bull1 bull 1 o i o -1

bull1 bull n I i i rgt(-r 0 3

12 k C i 7 i

127 C 72

gt4 ) 0 40 )

7 7 0 5 4 6

TH 0 5 6 2

bull 3 - 0 S r r

3 7 t l T U

- lt i o f 7

J 2 5 0 0 3

O M 0 8 2 4

212 1 107

IB

T-iblp

S p e c i f i c Heat of 17-4 I S t a r l e s s S t e e l Cas

Tempera tu re (Ki Spc-cif ic i icat U s e c qnt 350 0 4750 37 04884 400 0 4073 425 0 054 450 05147 460 05220 475 0 5228 500 0 5 ) 3 0 525 05396 550 054 7 7 575 0 5548 600 056 36 625 0 5 2 6 650 0 5805 675 n sp T

700 0 5978 725 O608O 750 n r H l 775 06534 795 r 6812 800 06i7 r) 825 0 2 4 850 0740J S75 07576 100 07672 925 07 7 3

Table 4

3] j-i f f us vity cf 17-4 PH Stainless Steel Castirq

T o n o r a t i e 1 r P i f f u s i v i tv 1 err s e c

Tgt 4

e 1 r 004 58

4ftl 0 0452 fgt2 7 0 0457

764 004 20

462 0 0475

1 2 7 0 0548

Table 5

] Crviit-t vi ty of 17-4 PM Stciinlcss Steel Castinn

crppraturc tK) 294 4 61 f27 704

Conductivity (w 0 152 0180 0 199 0 20C 028]

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 14: DISCI AIM* - I A

r u r r i t n gt fi ha ton Lr

-iy D i s p e r s i v e S p e c t r a Fron (a) i t r i x and lb) Rnrj-Shar-od ^r t i cl o

bull bullgtbull _ bull bull ] t f l - S I J I

- i I l l r U U n l - bullbull - bull

I H 1 - A

t L i l b t

-bull 1

i i n o r I xr j ins i cir o f ) - - bull ii r I-n- S t o n Cast i p--

-T bullbullbull _J_K_ L L n l i t

2 79 - n 1 M

bull bull 0 0 0 0

bull1 bull 1 o i o -1

bull1 bull n I i i rgt(-r 0 3

12 k C i 7 i

127 C 72

gt4 ) 0 40 )

7 7 0 5 4 6

TH 0 5 6 2

bull 3 - 0 S r r

3 7 t l T U

- lt i o f 7

J 2 5 0 0 3

O M 0 8 2 4

212 1 107

IB

T-iblp

S p e c i f i c Heat of 17-4 I S t a r l e s s S t e e l Cas

Tempera tu re (Ki Spc-cif ic i icat U s e c qnt 350 0 4750 37 04884 400 0 4073 425 0 054 450 05147 460 05220 475 0 5228 500 0 5 ) 3 0 525 05396 550 054 7 7 575 0 5548 600 056 36 625 0 5 2 6 650 0 5805 675 n sp T

700 0 5978 725 O608O 750 n r H l 775 06534 795 r 6812 800 06i7 r) 825 0 2 4 850 0740J S75 07576 100 07672 925 07 7 3

Table 4

3] j-i f f us vity cf 17-4 PH Stainless Steel Castirq

T o n o r a t i e 1 r P i f f u s i v i tv 1 err s e c

Tgt 4

e 1 r 004 58

4ftl 0 0452 fgt2 7 0 0457

764 004 20

462 0 0475

1 2 7 0 0548

Table 5

] Crviit-t vi ty of 17-4 PM Stciinlcss Steel Castinn

crppraturc tK) 294 4 61 f27 704

Conductivity (w 0 152 0180 0 199 0 20C 028]

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 15: DISCI AIM* - I A

bull bullgtbull _ bull bull ] t f l - S I J I

- i I l l r U U n l - bullbull - bull

I H 1 - A

t L i l b t

-bull 1

i i n o r I xr j ins i cir o f ) - - bull ii r I-n- S t o n Cast i p--

-T bullbullbull _J_K_ L L n l i t

2 79 - n 1 M

bull bull 0 0 0 0

bull1 bull 1 o i o -1

bull1 bull n I i i rgt(-r 0 3

12 k C i 7 i

127 C 72

gt4 ) 0 40 )

7 7 0 5 4 6

TH 0 5 6 2

bull 3 - 0 S r r

3 7 t l T U

- lt i o f 7

J 2 5 0 0 3

O M 0 8 2 4

212 1 107

IB

T-iblp

S p e c i f i c Heat of 17-4 I S t a r l e s s S t e e l Cas

Tempera tu re (Ki Spc-cif ic i icat U s e c qnt 350 0 4750 37 04884 400 0 4073 425 0 054 450 05147 460 05220 475 0 5228 500 0 5 ) 3 0 525 05396 550 054 7 7 575 0 5548 600 056 36 625 0 5 2 6 650 0 5805 675 n sp T

700 0 5978 725 O608O 750 n r H l 775 06534 795 r 6812 800 06i7 r) 825 0 2 4 850 0740J S75 07576 100 07672 925 07 7 3

Table 4

3] j-i f f us vity cf 17-4 PH Stainless Steel Castirq

T o n o r a t i e 1 r P i f f u s i v i tv 1 err s e c

Tgt 4

e 1 r 004 58

4ftl 0 0452 fgt2 7 0 0457

764 004 20

462 0 0475

1 2 7 0 0548

Table 5

] Crviit-t vi ty of 17-4 PM Stciinlcss Steel Castinn

crppraturc tK) 294 4 61 f27 704

Conductivity (w 0 152 0180 0 199 0 20C 028]

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 16: DISCI AIM* - I A

i i n o r I xr j ins i cir o f ) - - bull ii r I-n- S t o n Cast i p--

-T bullbullbull _J_K_ L L n l i t

2 79 - n 1 M

bull bull 0 0 0 0

bull1 bull 1 o i o -1

bull1 bull n I i i rgt(-r 0 3

12 k C i 7 i

127 C 72

gt4 ) 0 40 )

7 7 0 5 4 6

TH 0 5 6 2

bull 3 - 0 S r r

3 7 t l T U

- lt i o f 7

J 2 5 0 0 3

O M 0 8 2 4

212 1 107

IB

T-iblp

S p e c i f i c Heat of 17-4 I S t a r l e s s S t e e l Cas

Tempera tu re (Ki Spc-cif ic i icat U s e c qnt 350 0 4750 37 04884 400 0 4073 425 0 054 450 05147 460 05220 475 0 5228 500 0 5 ) 3 0 525 05396 550 054 7 7 575 0 5548 600 056 36 625 0 5 2 6 650 0 5805 675 n sp T

700 0 5978 725 O608O 750 n r H l 775 06534 795 r 6812 800 06i7 r) 825 0 2 4 850 0740J S75 07576 100 07672 925 07 7 3

Table 4

3] j-i f f us vity cf 17-4 PH Stainless Steel Castirq

T o n o r a t i e 1 r P i f f u s i v i tv 1 err s e c

Tgt 4

e 1 r 004 58

4ftl 0 0452 fgt2 7 0 0457

764 004 20

462 0 0475

1 2 7 0 0548

Table 5

] Crviit-t vi ty of 17-4 PM Stciinlcss Steel Castinn

crppraturc tK) 294 4 61 f27 704

Conductivity (w 0 152 0180 0 199 0 20C 028]

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 17: DISCI AIM* - I A

T-iblp

S p e c i f i c Heat of 17-4 I S t a r l e s s S t e e l Cas

Tempera tu re (Ki Spc-cif ic i icat U s e c qnt 350 0 4750 37 04884 400 0 4073 425 0 054 450 05147 460 05220 475 0 5228 500 0 5 ) 3 0 525 05396 550 054 7 7 575 0 5548 600 056 36 625 0 5 2 6 650 0 5805 675 n sp T

700 0 5978 725 O608O 750 n r H l 775 06534 795 r 6812 800 06i7 r) 825 0 2 4 850 0740J S75 07576 100 07672 925 07 7 3

Table 4

3] j-i f f us vity cf 17-4 PH Stainless Steel Castirq

T o n o r a t i e 1 r P i f f u s i v i tv 1 err s e c

Tgt 4

e 1 r 004 58

4ftl 0 0452 fgt2 7 0 0457

764 004 20

462 0 0475

1 2 7 0 0548

Table 5

] Crviit-t vi ty of 17-4 PM Stciinlcss Steel Castinn

crppraturc tK) 294 4 61 f27 704

Conductivity (w 0 152 0180 0 199 0 20C 028]

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 18: DISCI AIM* - I A

Table 4

3] j-i f f us vity cf 17-4 PH Stainless Steel Castirq

T o n o r a t i e 1 r P i f f u s i v i tv 1 err s e c

Tgt 4

e 1 r 004 58

4ftl 0 0452 fgt2 7 0 0457

764 004 20

462 0 0475

1 2 7 0 0548

Table 5

] Crviit-t vi ty of 17-4 PM Stciinlcss Steel Castinn

crppraturc tK) 294 4 61 f27 704

Conductivity (w 0 152 0180 0 199 0 20C 028]

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 19: DISCI AIM* - I A

200 400 600 800 1000 1200 14C TEMPERATURE (K)

r i I I R M I M H - I H I ]bull - c-n ^ K - - 1 IM St 31 r J i---i tf n i if r t s r m n i ] - 4 Pll ^ i i h i M i ^ s h o u bull-)bull u

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 20: DISCI AIM* - I A

200 400 600 800 TEMPERATURE (K)

1200

S Specific Heat of 17-4 PH Stainless Steel as a Function of Temperature Data Points from 17-4 PH Casting Dashed iine an Averaqe Obtained from vrouqht 17-4 Pjl Stainless Steel (211

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 21: DISCI AIM* - I A

060

20C 400 600 800 TEMPERATURE (K)

1000 1200

rlinr

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 22: DISCI AIM* - I A

J_ _L 600 800

TEMPERATURE (K)

1000

bull i - i l v O Il-A bull Tompcrai uro

basiled iiro ] -4 PU S t a i n i o s

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 23: DISCI AIM* - I A

I bull i e s t

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 24: DISCI AIM* - I A

Table 6

Younq s Modulus and Poi s s o n s Pat i o of 17-4 PM C a s t i n g

T c r ^ c r a t j j r c (Ki Young s Modulus (GPa) i o i s s u n s H a t t c 2 4 8 2 1 1 0 f 2 8 3

29 7 2 0 4 2 0 2 9 1

29 8 2 0 4 1 0 2 9

3 0 2 0 2 8 ( 2 8 h

I l l 1 1 4 6 0 2 9 5

5 0) 1 9 1 5 9 2 9 6

5 8 0 1 8 6 7 0 2 9 6

6 3 2 1 8 6 2 0 2 9 4

6 50 1 8 2 2 0 3Or

6 5 0 1 8 1 9 0 3 0 4

7 2 8 1 7 6 3 C 316

7 4 2 1 7 4 0 0 3 0 7

7 D 8 1 6 7 8 0 309

8 1 7 1 6 4 7 0 1 2 1

8 8 5 1 5 3 3 0 122

1 5 7 1 4 2 3 0 3 3

1 0 ) 1 1 4 0 0 4 J

1 0 6 7 1 2 8 8 0 LIB

1 1 5 1 1 1 B 0 0 359

116 2 1 1 7 3 0 3 6 1

26

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 25: DISCI AIM* - I A

220

200

O 180 -

- ^ I I I B bull

cf^-v^

- I ^ gt -bull i X -

I I - REF 22-24

-O - THIS INVESTIGATION

bull

bull

I I I I -

400 600 800 TEMPERATURE (K)

1000 1200

Figure II Elastic Properties of Overayed 17-4 PH Stajniess Steel Casting (a) Youngs Modulus (fc) shear Modulus and (c) Poissons Ratio

28

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 26: DISCI AIM* - I A

90

0

200 400 600 800 1000 1200 TEMPERATURE (K)

Figure 11 (Contd)

29

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 27: DISCI AIM* - I A

1 1 1 1 1 1

[3 I - REF 25 O - THIS INVESTIGATION

-

-

-o

O y o -

8^ 0

i^___^_^gt-8

i i i gt 1 1 _ 1

200 600 800

TEMPERATURE (K)

1200

ij-qure 1 1 (con t d )

JO

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 28: DISCI AIM* - I A

1200

1000

800

600

400

200

TmdashI 1mdashImdashI I I I (21

200

TlmdashTT - mdashlmdashimdashImdashr - 1mdashimdashimdashrmdashr

ULTIMATE TENS ILL STRENGTH I H

02 PCT YIELD STRENGTH

INITIAL STRAIN RATES

O bull 16X 10~ 4 S _ 1

bull bull 12 S 1

l I I I L J _ I I l_J I I I l I I I I I

250 300 350 TEMPERATURE (K)

400 450

Figure 12 Influence oT Test Temperature and Strain Rate on the Tensile -operties of Overaged Cast 17-4 PM Stainless St 1

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 29: DISCI AIM* - I A

m

bull 2 i

i2)

RV IK

bull I U J 450

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 30: DISCI AIM* - I A

1200

1000

800 -

K 600

200 -

200

TT T 1 | 1 T 1 | 1 T | 1 1 1

(2)omdash ^ sect

1 1

1 INITIAL STRAIN RATES

o 13 x 10 4 S _ 1

D 12 S 1

-

i i bull i i i

250 300 350

TEMPERATURE (Kgt

400 450

13 Influence of Test Temperature and Strain Rate on Compressive Yield Strength of Overoqed Cast 17-4 PH Stainless steel

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 31: DISCI AIM* - I A

ri ijj-o Jti-J strain rate Figure 12(b) shows that the uniform jt ion decreased with both increasing test terpcrflturc arr st Ths fiTurc further indicates that except at the IOVUF1- st

ID---

1 7 - J 1

bull rgat io - as independent of test temperature and decreased LTOUS r =Lra in rate Fi nal ly f ractogranhic examination showec - rersile failure node was in all cases characterized by the

- trarisnranular dimples with the larger dimples beinq bull_poundbull with v-jrious inclusions and -ferrite Fioure 14 is1- cal ]y tte fracture tougness behavior of low strength bull bull I ] f bullbull s -ins boon examined by consider ing the influence of test bull-bull rn the energy absorbed during imps fracture of a standn - bull -I rh sroci man These investigations hTc- typically sho^n

-ltbull -(eels undergo a tough-to-brittle transition vith decreasing bullbull)bull that is there is a large reduction in absorbed energy elntively small temperature region Figure 15 shows that the -bull cl cneruy of the overaged 17mdash4 PH stainless steel casting

bull bull idogt- study also underwent such an energy related transition -bull gtit- the values of the upper shelf energy and rate of energy with dec-reasing temperature were less than those normally

bullbullbull(- lower strength alloys (26) If a typical 20 joule absorr-ei bull -i-to-brittle transition temperature criteria were applied to

bull - ~-A P the T_ T transition temperature would have beer bull (bull -jr- ie well above room temperature Finally com-

bull bullgt -h rccr temperature Charny impact ererqy obtained for the ltbullbulllt cast 17-4 P n~ll joules) with that reported for wrought 17--1 bull at hbullbull bull - 37 jcules) suggests that cast 17-4 Pll w 11 two-thirds less energy during impact loading than will wrought

Ithough the dynamic fracture toughness measurementsmdashas shown in 16mdashalso exhih-ed such a tough-tq-brittle transition behavior

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 32: DISCI AIM* - I A

Scanning Electron Fractographs of Cast 17-4 PI Stainless Steel Tensile Samples Tested at

0 a-1 16 16

10 10 bull4 bdquo-l

(a (b) (c) L = 12 s-1 T = 4J3K Original Magnification 400X

233K 423K and

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 33: DISCI AIM* - I A

fo (2)

gta ^ o (a

o(2)

0 L i i i i I i i i i_l L _l I I _ I I I 200 250 300 350 400

TEMPERATURE ( K )

i I i i i

450 500

iqjrlaquo 15 Charpy Impact Energy-Temperature Relationship in ds- 17-4PH Stainless Steel

36

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 34: DISCI AIM* - I A

50

a 25 ^JD

200 250 300 350 400

TEMPERATURE (K)

f t n m l L S S S t i n

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 35: DISCI AIM* - I A

the fracture toughness of the overaged 17-4 PH casting even at the lowest test temperature examined was still quite high approximately 60 MPam in addition the room temperature toughness ( -90 MPam J was at least comparable to that observed in wrought overaged 17-tj PH (27) K- - 130 MPam These observations reinforce those of Floreen (28) wherein he concluded that Charpy impact energy-fracture toughness correlations previously suggested for wrought products are generally not applicable to castings that is the latters Charpy impact values are typically quite low even though their fracture toughness properties may be high

Finally fractographic examination of the Charpy V-notch and pre-cr^cked samples indicated that the fracture toughness transitions described above could be related to a change in fracture mode At temperatures above 350K failure in both types of samples involved microvoid initiation and growth Figure 17(a) Decreasing the test temperature below 350K resulted in the introduction of increasing amounts of cleavage-like failure Figure 17(b)

38

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 36: DISCI AIM* - I A

bull3ampv NU- ^ 3 1 bullbullbullbullbullbull

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 37: DISCI AIM* - I A

This Page Intentionally Left Blank

40

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 38: DISCI AIM* - I A

= r v e s r i g a t ion has examined trie prys bull c i J bullbull

(-bull= - c in cveraqeci 17-4 Pi s t a i r l e s s s t e e ran i

t rcsv i T o p e r t i C i wnere a v a i l a b l e wi th t L= C-

T i i r l c s i s t e e l The s t u d y has shown th i t - -

TiG i i i ea r e x p a n s i o n b e h a v i o i of c a s t i~-J If LdfnMiv t o t h a t of trie wrought a l l o y

I h- t normal p r o p e r t i e s s p e c i f i c h e a t t hcrr il bull 1 j s t v i tv and the rmal c o n d u c t i v i t y of c i s i --1 VI K taLn los s s t e e l arc- mnre S L I I r v v t T i -rit lie than i bull wrought 17-4 Pll th i t s bull i vir I n i more conpl i cater i fash i en v - bullc- r j f j r e than Jo t h e t h e r m a l p r o p e r t 11 r-Tht 17-4 PH

L c L i t c p r o p e r t i e s Youngs rociul i -lt-bull bull bull I lorn m be h i g h e r in c a s t ~-A bullbull s t r bullbullltbull] tuar bull r t i e wrought a l l o y a l t h o u the -bullbull(-(bulllt isi v i h i r r eas inq t e m p e r a t u r e

i bullbull--sj]t- r bullbull i i r c s s i v i p r o p e l t i e s of bullbull - bull - i-1 r bdquo(bull Sfjru i eqree a f u n c t on of t e s r r bull ( bullbullbullbull jr-i s t r i i n r a t e a l t h o u n h not t o t h e ^in- bullbullbullbull -T5 fgt r lower s t r e n g t h f e r r o u s s t r n l

- bull bullbull 7 - n o t r h impact energy iind t he laquo bull i- r - i j i n n e s s be Mi e x h i b i t e d a i r n r i - i i -

bull bull bull bull iis t i -r bull-bullbull i th - Jcc rcas inq torn totrade r i M I r ans t r n WgtIH r e l n t o d U 1 bull r bull= i bull

bull bull lt bull bull bull bull _ 1 bull bull i r l e bullbull bullbull gtv i -

bullbull bull i-- r i -nr- f( bull- -is -4 i

I i bull -r ic-iil-nosE of LM- bull bull bull - i 1 raquoo re c o n p a r a h l e Th = ^ bullbull bull

i -bull - bull R J T U S I QIS th i t Lharpv ] np-tcl - f rar u 11 ihnops I f r r o l m o n B o b t a i ned for wromht

- t r r rr-t be a p j l i c a b l e t o c a s t i n g

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 39: DISCI AIM* - I A

REFERENCES

1 K C Antonv Aging Reactions in Precipitation tiardenable Stainless Steel J Metals 15 923 (1963)

2 E Hornbogen and R c Glenn A Metallographic st-jdy c i-rt--it-i tbdquo-tion of Cu from g Fe Trans Met Soc AIMS 218 1064 (1960)

3 E Hornbogen Aging and Plastic Deformation of a re-Q9 d Moy Trans ASM 57 120 (1964)

4 E Hornbogen The Role of Strain Energy During Precini tatioi o Qv and Au from a-Fe Acta Met 10 525 (1962)

5 K c Russell and L M Brown A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Fe-Cu System Acta Met 20 969 (1972)

6 A Youle and B Ralph A Study of the Precipitation of Cc from i-Fe in the Pre-Peak to Peak Hardness Range of Aging Met 5ci Jn 6 149 (1972)

7 H J Rack and David Kalish The Strength Fracture Toughness a-xi Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel Met Trans 5 1595 (1974)

8 G N Goller and N C Clarke Jr Hew Precipi tation-iUraemn-j Stainless Steels Iron Age 165 86 (1950)

9 K J Irvine D T Llewellyn and F B Pickering Controlled-TransformatiQn Stainless Steels J Iron Steel Inst 192 2iS (1959)

10 C s Carter D G Farwick A M Ron and 3 M Ucheda Stress Corrosion Properties of High Strength Precipitation Hardening Stainless Steel Corrosion 27 190 (1971)

11 E A Lauchner The Microstructure and Ductility of 17-4 Pll and 15-5 PH Stainless Steels J Material 5 129 (1970)

12 Memo J E McCreight to H J Rack November 28 1971 5ii j-t

Thermal Expansion Measurements 23 R E Taylor and H Groot Thermophysical Properties of Alloys

Tpki 19 5 Thermophysical Properties Research Laboratory Purrut - r i versity West Lafayette Indiana August 1979

14 J F Gieske Ultrasonic Measurement of Elastic Moduli ampf 17-4 PH Staliless Steel and U-2 wt pt M Q from-^Q to 800degC SAK38Q- IKT Tuly 19B0

15 J M Krafft and R A Gray Effects of Neutron Irradiation on Bulk and Micro Flow-Fracture Behavior of Pressure VesscL Sv- lr in Practical Applications of Fracture Mechanics tn Pressure vassal Technology Institution of Mechanical Engineers London 1071 pp 9 3-J02

16 R A Wullaert Applications of the Instrumented Charpy Impact Tgsj Impact Tasting of Metals ASTM STP 466 Am Soc Testing and Materials Philadelphia PA 1970 pp 148-164

42

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 40: DISCI AIM* - I A

W L- Server and A S Tetelman The Use of Pre-Cracked Charpv Specimens to Determine Dynamic Fracture Toughness Eng Fract Mech 4 367 (1972) V L Server Impact Three-Point Bend Testing for Notched and Precracked Specimens Jn Testing and Evaluation 6_ 29 (1978) V Arp J H Wilson L Winrich and P Sikora Thermal Expansion of Some Engineering Materials from 20 to 293K Cryogenics 2_ 230 U962) h F Hoenie and D B Roach New Developments in High-strength Stainless Steels U S Air Force Report DMIC-223 1966 I B Fieldhouse and J I Lang Measurement of Thermal Properties V S Air Force Report KADD-TR-60-904 1961 C L Deel and H Mindlin Engineering Data on New Aerospace Structural Materials AFML-TR-72-196 Vol 1 Batteile Ccluirbs Labs September 1972 Anon Armco 17-4 PH Precipitation-Hardening Stainless Steel 3i and Wire Armco Steel Corp 3-6C LA 10273 January 1974 E G Takacs Armco 17-4 PH Type 410 - Youngs Modulus and Poissons Ratio Adv Matls Div Armco Steel Corp October l)T( W J Lanning Tursion Properties of 17-4 PII and 15-5 PH Stainless Steel Bars Advanced Matls Div Armco Steel Corp March 1972 J F Knott Mechanics and Mechanism of Large-Scale Brittle Fracshyture in Structural Metals Mat Sci Eng 1_ 1 (1971) [1 J- Rack Unpublished Research Sandia Laboratories Mbviruerltie NM 87185 April 1975 S Floreen The Fracture Toughness of Cast High-Strergth Steels Jr Eng Mat Tech 99_ 70 (1977)

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 41: DISCI AIM* - I A

This Page Intentionally Left Blank

44

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 42: DISCI AIM* - I A

API TNOIX A 3l Property Sa-ple Configurations

0250plusmn020R 2 PLCS

p 0113 + 0002 10 - 32UNF - 2A

2 PLCS

t I 0020 + 062 i

-000 I

175 + 0030-

J-igure A-I Pub ed Tensile Specimen

r- 0300 plusmn 0002

0900 plusmn OX 10

v]rii j ji Con-prossior Spec

(-bullnmnns in inches

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 43: DISCI AIM* - I A

U 2 165 plusmn 0 0 2 5 -

1082 plusmn 0025

45 plusmn 1deg

^ - ^ _ 0011 R

0316 0314

Llaquo_-raquoJ 0395 0393

bull 63 ~T 0395

63 j 0393

0009

DETAIL D

Figure A-3 ASTM Standard charpy Impact fjnec-imc-n

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 44: DISCI AIM* - I A

APPENDIX B

Representative Tensile Stress-Strain Curves for Overaqr-d 17-4 PH Stainless Steel Castirq

Test Temperature (K) strain Rate i )

K-A 233 16 x 10

r-B 233 12

U-C 297 16 x in

is-3 29 7 12

M-E 4 33 16 x 10

Fi-r 433 12

bull 4

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 45: DISCI AIM* - I A

H

ENG STRESS-STRAIN

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 46: DISCI AIM* - I A

TEST TEMPERATUHE 233K

i - i 2 s

TRUE STRESS STRAIN

PNG JURiSS-STRAI

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 47: DISCI AIM* - I A

ENG STRESS-STRAIN

STRAIN (PCT)

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 48: DISCI AIM* - I A

TRUE STRESS-STRAIN

ENG STRESS-STRAIN

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 49: DISCI AIM* - I A

I5T rEMPFRATURt 4T3K

nui sRi ss SIHAIN

IMC STfUSS STflAI

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 50: DISCI AIM* - I A

This Page Intentionally Left Blank

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 51: DISCI AIM* - I A

TRUE STRAIN

0000 0010 0020 0030 0040 0050 0060 0070 0060 0090 0 100 01 10 0120

- _ r

ENG STRESS-STRAIN 0

TRUE STRESS-STRAW

TEST TEMPERATURE 233K

( - 13 K 10 4

0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0100 0110 0120

ENGINEERING STRAIN

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 52: DISCI AIM* - I A

TRUE STRAIN

- 0 0 0 5 0004 0013 0022 0 0 3 0040 0049 0058 0 0 6 7 007copy 0085 0094 0103 16000

g 6000

_ j _ r r bdquo _ T r r

ENG STRESS-STRAIN

a

TRUE STRESS-STRAIN

TEST TEMPERATURE 233K

rr 12 S 1

- 0 00b 0104 0013 0 0 2 0 031 0 0-10 0 04ltJ 0 05B 0 06 OOfR 0 085 0 004 0 103

ENGINEERING STRAIN

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 53: DISCI AIM* - I A

TRUE STRAIN

0000 0 020 0040 0060 0080 0100 0120 0140 0 160 0160 16000 1 1 1 I I 1 1

ENG STRESS-STRAW^-mdash

0

^~-~~ TRUE STRESS-STRAIN

^~

-TEST TEMPERATURE 2fiK

( 13 x 10 4 S 1

-

I 1 i I 1 1 i 0000 0020 0040 0060 0080 0100 012D 0140 0160 0 180

ENGINEERING STRAIN

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 54: DISCI AIM* - I A

TRUE STRAIN

-0003 0005 00 3 0021 0029 0037 0045 0 053 0 061 0069 007 0065 00B3 16000 | T - bull mdash -i T ] r 1 mdash r i i i~

0

ENG STRESS-STRAtN

TEST TEMPERATURE 297K

( ^ 12 S _ 1

00 -0003 0005 0013 0021 CQ29 0 037 0045 0 053 0 061

ENGINEERING STRAIN

006) 0077 00A5 0 093

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 55: DISCI AIM* - I A

TRUE STRAIN

0090 0 ij0 0 110 01J0 1 rmdash 1 r

m

TEST TEMPERATURE 433K

f = 13 x 1 0 4 S 1

OOOC 0010 0020 0030 0040 0050 0060 0070 OOflO 0090 0 100 0 110 0120

ENGINEERING STRAIN

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N

Page 56: DISCI AIM* - I A

TRUIF STRAIN

ooao o i o o 0120 O M O o i e o o m o 0 2 0 0 0220 0 2 4 0

ENG STRESS-STRAIN

TRUE STRESS-STRAIN

TEST TEMPERATURE 433K

12 S -

ra

0000 0020 0 Q 4 0 006Q QOKO 0 100 0 120 n U U 0 160 0 IflO 0 200 0220 i) 240

rNGiNfcEnirjc S T R A I N