36
Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100, Greece [email protected] 1

Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

  • Upload
    hadien

  • View
    248

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Discontinuous Hermite Collocation and DiagonallyImplicit RK3 for a Brain Tumour Invasion Model

John E. Athanasakis

Applied Mathematics & Computers Laboratory

Technical University of Crete

Chania 73100, Greece

[email protected]

1

Page 2: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Gliomas

Gliomas are primary brain tumours that originate from brain’s glialcells. They usually occur in the cerebral (upper) brain’s hemisphereand they are characterized by their aggressive di↵usive invasion ofbrain normal tissue.

2

Page 3: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Analytical Deterministic Models

@c

@t= r · (Drc) + ⇢g(c) , (Cruywagen et.al 1995)

c(x, t) : tumour cell density at location x and time t

D : di↵usion coe�cient representing the active motility(0.0013 cm2/day)

⇢ : net proliferation rate (0.012/day)

g(c) =

⇢c , exponential growth

c(1� c

K

) , logistic growth , K : carrying capacity

Zero flux BC on the anatomy boundaries : @c@⌘ = 0

Initial spatial distribution malignant cells : c(x, 0) = f (x)

3

Page 4: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Analytical Deterministic Models

Homogeneous Brain Tissue (Cruywagen et.al 1995)

#

D is constant

#

@c

@t= Dr2

c + ⇢g(c)

4

Page 5: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Analytical Deterministic Models

Heterogeneous Brain Tissue (Swanson 1999)

#

D(x) =

⇢D

g

, x in Grey MatterD

w

, x in White Matter, D

w

> D

g

#

@c

@t= r · (Drc) + ⇢g(c)

continuity and flux preservation conditions at the interfaces

5

Page 6: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Exponential Growth 3-region Model in 1+1 Dimensions

Dimensionless variables

x q

⇢D

w

x , t ⇢t , c(x , t) c

⇣q⇢D

w

x , ⇢t⌘

D

w

⇢N0

D =

8<

:

� , ↵ x < w

1

1 , w

1

x < w

2

, � =D

g

D

w

< 1

� , w

2

x b

ba

γ γ

11

w1

w2

Transformationc(x , t) = e

t

u(x , t)

Interface conditions at x = w

k

, k = 1, 2⇢

Continuity : [u] := u

+ � u

� = 0 ,Conservation of flux : [Du

x

] := D

+

u

+

x

� D

�u

�x

= 0 ,

6

Page 7: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Exponential Growth 3-region Model in 1+1 Dimensions

8>>>>>>>><

>>>>>>>>:

u

t

= Du

xx

, x 2 R` , ` = 1, 2, 3 , t > 0

u

x

(↵, t) = 0 and u

x

(b, t) = 0

[u] = 0 and [Dux

] = 0 at x = w

k

, k = 1, 2

u(x , 0) = f (x)

R1

:= (↵,w1

) , R2

:= (w1

,w2

) , R3

:= (w2

, b)

t

a w1 w2 b

ux

=0

ux

=0

ut = �uxx ut = uxx ut = �uxx

u(x, 0) = f(x)

7

Page 8: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Domain Discretization

Discretization

�t

x = ↵ x = bt = 0

h�

(xm, tn)

tn = n�t

tn+1

tn�1

x

m

:= ↵+(m�1)h , m = 1, . . . ,N+1 , t

n

= n⌧ , n = 0, 1, . . .

h =

8<

:

h

1

:= (w1

� ↵)/N1

h

2

:= (w2

� w

1

)/N2

h

3

:= (b � w

2

)/N3

, N = N

1

+N

2

+N

3

, ⌧ = �t

8

Page 9: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Hermite Collocation

U(x , t) =N+1X

m=1

[↵2m�1

(t)�2m�1

(x) + ↵2m

(t)�2m

(x)]

�2m�1

(x) =

8>>>><

>>>>:

��x

m

�x

h

�, x 2 [x

m�1

, xm

]

��x�x

m

h

�, x 2 [x

m

, xm+1

]

0 , otherwise

,

�2m

(x) =

8>>>><

>>>>:

�h �x

m

�x

h

�, x 2 [x

m�1

, xm

]

h �x�x

m

h

�, x 2 [x

m

, xm+1

]

0 , otherwise

(1)

�(s) = (1� s)2(1 + 2s) , (s) = s(1� s)2 , s 2 [0, 1]

9

Page 10: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Interface Conditions

[DUx

] := D

+

U

+

x

� D

�U

�x

= 0 , at x = w

k

, k = 1, 2

# #

� �2i

(x�i

) = �2i

(x+i

) �2i

(x�i

) = ��2i

(x+i

)x

i

⌘ w

1

x

i

⌘ w

2

i = N

1

+ 1 i = N

1

+ N

2

+ 1

# #

�2i

(x) =

8>>>><

>>>>:

� h

� �x

i

�x

h

h �x�x

i

h

0

�2i

(x) =

8>>>><

>>>>:

�h �x

i

�x

h

h

� �x�x

i

h

0

10

Page 11: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Hermite Elements at the Interfaces

φ2i−1

(x)

xi−1 x

ix

i+1

φ2i

(x)

i = N

1

+ 1

φ2i−1

(x)

φ2i

(x)

xi−1

xi

xi+1

i = N

1

+ N

2

+ 1

11

Page 12: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Boundary Collocation equations

U

x

(↵, t) = 0 �! ↵2

(t) = 0 �! ↵2

(t) = 0

U

x

(b, t) = 0 �! ↵2N+2

(t) = 0 �! ↵2N+2

(t) = 0

12

Page 13: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Interior Collocation equations

N+1X

j=1

[↵2j�1

(t)�2j�1

(�i

) + ↵2j

(t)�2j

(�i

)] = DN+1X

j=1

⇥↵2j�1

(t)�002j�1

(�i

) + ↵2j

(t)�002j

(�i

)⇤

where �i

, i = 1, . . . , 2N are the Gauss points (two per subinterval)

#

Elemental Collocation equations

C

(0)

j

2

666666664

↵2j�1

↵2j

↵2j+1

↵2j+2

3

777777775

=D

h

2

C

(2)

j

2

666666664

↵2j�1

↵2j

↵2j+1

↵2j+2

3

777777775

, j = 1, . . . ,N

13

Page 14: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Elemental Collocation matrices

C

()j

=

2

64s

()1

h

⇣j

s

()2

s

()3

� h

�j

s

()4

s

()3

h

⇣j

s

()4

s

()1

� h

�j

s

()2

3

75 , = 0, 2

s

(0)

1

= 9+4

p3

18

, s

(0)

2

= 3+

p3

36

, s

(0)

3

= 9�4

p3

18

, s

(0)

4

= 3�p3

36

,

s

(2)

1

= �2p3 , s

(2)

2

= �1�p3 , s

(2)

3

= 2p3 and s

(2)

4

= �1 +p3

⇣j

=

8<

:

1 , j 6= N

1

+ N

2

+ 1

� , j = N

1

+ N

2

+ 1, �

j

=

8<

:

1 , j 6= N

1

� , j = N

1

.

14

Page 15: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Collocation system of ODEs

Aa = Ba

where a =⇥↵1

↵3

· · · ↵2N+1

⇤T

, a =⇥↵1

↵3

· · ·↵2N+1

⇤T

A =

2

66664

A

1

B

1

A

2

B

2

�A

N�1

B

N�1

A

N

B

N

3

77775, B =

2

66664

F

1

G

1

F

2

G

2

�F

N�1

G

N�1

F

N

G

N

3

77775.

⇥A

j

B

j

⇤= C

(0)

j

and⇥F

j

G

j

⇤=

D

h

2

C

(2)

j

.

a = C (a, t)

where C (a, t) = A

�1

Ba

15

Page 16: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Backward Euler (BE) - Crank Nicolson (CN)

BE:a

(n+1) � a

(n)

⌧= C

(n+1)(a, t)

or

(A� ⌧B)a(n+1) = Aa

(n)

CN:a

(n+1) � a

(n)

⌧=

1

2(C (n+1)(a, t) + C

(n)(a, t))

or

(A� ⌧

2B) a(n+1) = (A+

2B) a(n)

16

Page 17: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Diagonally Implicit RK3 (DIRK)

DIRK:

a

(n,1) = a

(n) + ⌧ � C

(n,1)(a, t)

a

(n,2) = a

(n) + ⌧⇥(1� 2�)Cn,1(a, t) + �Cn,2(a, t)

a

(n+1) = a

(n) +⌧

2

hC

(n,1)(a, t) + C

(n,2)(a, t)i

or

(A� ⌧�B) a(n,1) = A a

(n)

(A� ⌧�B) a(n,2) = A a

(n) + ⌧(1� 2�)B a

(n,1)

A a

(n+1) = A a

(n) +⌧

2[B a

(n,1) + B a

(n,2)]

17

Page 18: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Numerical Results - Model Problem 1

R1

:= (�5,�1) , R2

:= (�1, 1) , R3

:= (1, 5), � = 0.5

and f (x) = 1

⌘p

⇡e

�x

2/⌘2

, with ⌘ = 0.2.

−5 −4 −3 −2 −1 0 1 2 3 4 50

2

4

6

8

10

12

τ=0.1 tmax

=4

Spatial variable x

Tum

our

gro

wth

c(x

,t)

18

Page 19: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Numerical Results - Model Problem 2

R1

:= (�5, 1) , R2

:= (1, 1.5) , R3

:= (1.5, 5), � = 0.5

and f (x) = 1

⌘p

⇡(e�(x+3.5)2/⌘2

+ e

�(x�3)

2/⌘2

) , with ⌘ = 0.2.

−5 −4 −3 −2 −1 0 1 2 3 4 50

2

4

6

8

10

12

14

16

18

τ=0.1, tmax

=4

Spatial variable x

Tum

our

gro

wth

c(x

,t)

19

Page 20: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Numerical Results - Spatial Relative Error

Model Problem 1 Model Problem 2

102

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

g=0.5 ksi=0 w1=−1 w2=1 [−5 5] dt=0.01

Number of Elements

Rela

tive E

rror

DIRK

CN

BE

102

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Number of ElementsR

ela

tive E

rror

DIRK

CN

BE

20

Page 21: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Logistic Growth 3-region Model in 1+1 Dimensions

8>>>>>>>><

>>>>>>>>:

c

t

= Dc

xx

+ c(1� c) , x 2 R` , ` = 1, 2, 3 , t � 0

c

x

(a, t) = 0 and c

x

(b, t) = 0

[c] = 0 and [Dcx

] = 0 at x = w

k

, k = 1, 2

c(x , 0) = f (x)

R1

:= (↵,w1

) , R2

:= (w1

,w2

) , R3

:= (w2

, b)

D(x) =

8<

:

� , ↵ x < w

1

1 , w

1

x < w

2

� , w

2

x b

21

Page 22: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Interior Collocation equations

2N+2X

j=1

[↵j

(t)�j

(�i

)] = D2N+2X

j=1

[↵j

(t)�00j

(�i

)] +2N+2X

j=1

[↵j

(t)�j

(�i

)]�

2N+2X

j=1

[↵j

(t)�j

(�i

)]

!2

C

(0)

j

2

664

↵2j�1

↵2j

↵2j+1

↵2j+2

3

775 = DC

(2)

j

2

664

↵2j�1

↵2j

↵2j+1

↵2j+2

3

775+ C

(0)

j

2

664

↵2j�1

↵2j

↵2j+1

↵2j+2

3

775�

0

BB@C

(0)

j

2

664

↵2j�1

↵2j

↵2j+1

↵2j+2

3

775

1

CCA

.2

22

Page 23: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Collocation System of ODEs

Aa = Ma+⇣C

(0)

j

a

⌘.2

where

M =

2

66664

P

1

Q

1

P

2

Q

2

�P

N�1

Q

N�1

P

N

Q

N

3

77775,

⇥P

j

Q

j

⇤= C

(2)

j

+ C

(0)

j

a = K (a, t)

where K (a, t) = A

�1

hMa+

�C

(0)

a

�.2i

23

Page 24: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Time Discretization

BE:

(A� ⌧M)a(n+1) � ⌧⇣C

(0)

a

(n+1)

⌘.2= Aa

(n)

CN:

(A�⌧2M) a(n+1)�⌧

2

⇣C

(0)

a

(n+1)

⌘.2= (A+

2M) a(n)+

2

⇣C

(0)

a

(n)

⌘.2

DIRK:

(A� ⌧�M) a(n,1) � ⌧�⇣C (0)

a

(n,1)⌘.2

= A a

(n)

(A� ⌧�M) a(n,2) � ⌧�⇣C (0)

a

(n,2)⌘.2

= A a

(n) + ⌧(1� 2�)

✓M a

(n,1) +⇣C (0)

a

(n,1)⌘.2◆

A a

(n+1) = A a

(n) +⌧2

[M a

(n,1) +⇣C (0)

a

(n,1)⌘.2

+M a

(n,2) +⇣C (0)

a

(n,2)⌘.2

]

24

Page 25: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Numerical Results

Model Problem 1 Model Problem 2

−5 −4 −3 −2 −1 0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

τ=0.1 tmax

=4

Spatial variable x

Tum

our

gro

wth

c(x

,t)

−5 −4 −3 −2 −1 0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

τ=0.1 tmax

=4

Spatial variable xT

um

our

gro

wth

c(x

,t)

25

Page 26: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Numerical Results - Spatial Relative Error

Model Problem 1 Model Problem 2

102

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Number of Elements

Rela

tive E

rror

DIRK

CN

BE

102

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Number of ElemetsR

ela

tive E

rror

DIRK

CN

BE

26

Page 27: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Generalization in m+1 Regions

R1

= (↵,w1

) , R2

= (w1

,w2

) , . . . , Rm+1

= (wm

, b)

D(x) =

⇢� , x 2 [↵,w

1

) [ [w2

,w3

) [ . . . [ [wm

, b]1 , x else

� �

1 1 1 1

↵ w1 w2 w3 bwmwm�1wm�2

#

[c] = 0 and [Dcx

] = 0 at x = w

k

, k = 1, . . . ,m

27

Page 28: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Interface Conditions

[DUx

] := D

+

U

+

x

� D

�U

�x

= 0 , at x = w

k

, k = 1, . . . ,m

# #

� �2i

(x�i

) = �2i

(x+i

) �2i

(x�i

) = ��2i

(x+i

)x

i

⌘ w

k

, k odd x

i

⌘ w

k

, k even

i =kP

j=1

N

j

+ 1 i =kP

j=1

N

j

+ 1

# #

�2i

(x) =

8>>>><

>>>>:

� h

� �x

i

�x

h

h �x�x

i

h

0

�2i

(x) =

8>>>><

>>>>:

�h �x

i

�x

h

h

� �x�x

i

h

0

28

Page 29: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Numerical Results

Model Problem 1 Model Problem 2

−5 −4 −3 −2 −1 0 1 2 3 4 50

1

2

3

4

5

6

7

8

9

10

τ=0.1 tmax

=4

Spatial variable x

Tu

mo

ur

gro

wth

c(x

,t)

−10 −8 −6 −4 −2 0 2 4 6 8 100

5

10

15

τ=0.1 tmax

=4

Spatial variable x

Tu

mo

ur

gro

wth

c(x

,t)

29

Page 30: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Numerical Results - Spatial Relative Error

Model Problem 1 Model Problem 2

101

102

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Number of Elements

Re

lativ

e E

rro

r

DIRK

C.N.

B.E.

102

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Number of Elements

Re

lativ

e E

rro

r

DIRK

C.N.

B.E.

30

Page 31: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Exponential Growth 3-region Model in 2+1 Dimensions

D =

8<

:

� , (x , y) 2 [↵,w1

)⇥ [↵, b]1 , (x , y) 2 [w

1

,w2

)⇥ [↵, b]� , (x , y) 2 [w

2

, b]⇥ [↵, b],

8>>>>>>>>>><

>>>>>>>>>>:

u

t

= Du

xx

+ Du

yy

, x 2 R` , ` = 1, 2, 3 , t > 0

@u

@⌘= 0

[u] = 0 and [Dx

u

x

] = 0 at x = w

k

, k = 1, 2 and y 2 (↵, b)

u(x , y , 0) = f (x , y)

R1

:= (↵,w1

)⇥(↵, b) , R2

:= (w1

,w2

)⇥(↵, b) , R3

:= (w2

, b)⇥(↵, b)

31

Page 32: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Exponential Growth 3-region Model in 2+1 Dimensions

−4−3

−2−1

01

23

4

−4

−3

−2

−1

0

1

2

3

4

−0.5

0

0.5

1

1.5

xy

Di↵usion coe�cient D32

Page 33: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

Exponential Growth 3-region Model in 2+1 Dimensions

U(x , y , t) =N

x

+1X

m=1

N

y

+1X

n=1

[↵2m�1

(t)�2m�1

(x) + ↵2m

(t)�2m

(x)]

[�2n�1

(t)�2n�1

(y) + �2n

(t)�2n

(y)]

#

[DUx

] := D

+

U

+

x

� D

�U

�x

= 0 , at x = w

k

, k = 1, 2

# #

� �2i

(x�i

) = �2i

(x+i

) �2i

(x�i

) = ��2i

(x+i

)x

i

⌘ w

1

x

i

⌘ w

2

i = N

x

1

+ 1 i = N

x

1

+ N

x

2

+ 1

33

Page 34: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

2-d Screenshots

−4 −3 −2 −1 0 1 2 3 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1t= 2

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

34

Page 35: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

2-d Screenshots

−4 −3 −2 −1 0 1 2 3 4−4−2024

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 t= 4

−4 −3 −2 −1 0 1 2 3 4−4

−3

−2

−1

0

1

2

3

4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

35

Page 36: Discontinuous Hermite Collocation and Diagonally Implicit ... · PDF fileDiscontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis

2-D Model Problem - Solution

(Loading movie2.mpg)

36