14
Dislocation-Interface Interactions in Silicon August 10 th , 2011 3PM Lucas Hale Post Doc Sandia National Laboratories, CA Jonathan Zimmerman, Xiaowang Zhou, Neville Moody Sandia National Laboratories, CA William Gerberich, Roberto Ballarini University of Minnesota Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. Funding: NSF NIRT, NSF CMS, AOARD Air Force, Hysitron Inc., ADMIRE

Dislocation-Interface Interactions in Silicon August 10 th, 2011 3PM Lucas Hale Post Doc Sandia National Laboratories, CA Jonathan Zimmerman, Xiaowang

Embed Size (px)

Citation preview

Dislocation-Interface Interactions in Silicon

August 10th, 2011 3PM

Lucas HalePost Doc

Sandia National Laboratories, CA

Jonathan Zimmerman, Xiaowang Zhou, Neville MoodySandia National Laboratories, CA

William Gerberich, Roberto BallariniUniversity of Minnesota

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of

Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Funding: NSF NIRT, NSF CMS, AOARD Air Force, Hysitron Inc., ADMIRE

Super Hard Silicon Nanoparticles

• Compressed Si nanoparticles harder than bulk silicon

W.W. Gerberich, et. al, Int. J. of Plasticity 21 (2005) 2391

W.W. Gerberich, et al. Journal of the Mechanics and Physics of Solids 51 (2003) 979.

Increasing Number of Dislocations

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8

Cont

act S

tres

s (G

Pa)

d (nm)

20 nm Diameter Sphere Using Modified Stillinger-Weber at 0K

0 dislocations 3 4 5

• Hardening at low strain with increasing dislocations

• Softening at high strains – dislocations reach surfaces

Simulation Design

• Perfect edge dislocations

• Systems of 37920, 85648, 152640, and 238784 atoms used

• Stillinger-Weber silicon

• Two testing methods– All atoms unconstrained– Rigid y boundaries

Dislocation Interaction Simulations

• Can mechanically realistic Si-SiO2 systems be easily simulated?

• Will dislocation interactions in MD match elasticity based models?

• Will oxide retain dislocations for hardness increase?

Si/SiO2 Potential

• Watanabe et al.[1] modification of the Stillinger-Weber is able to model both Si and SiO2

• Introduces bond softening function to 2-body term based on Si-O binding energy with coordination

• Cutoffs and preferred bond angles less restricted in three-body term

• Stable and correct polymorphs[1] T Watanabe, H Fujiwara, H Noguchi, T Hoshino, and I Ohdomari, Jpn. J. Appl. Phys. 38 (1999) L366

LAMMPS Implementation

• Stillinger-Weber code modified

• 2 parameter sets in literature, both included

• ~2X slower than Stillinger-Weber (coordination dependent)

• Tested values consistent with report– Si behaves exactly like Stillinger-Weber– Si-O dimer energy and bond length– α-Quartz lattice energy and Si-O length

Oxide Growth

• Use growth routine by Dalla Torre, et al.[1]

1. Add O atoms at surface2. Run LAMMPS3. Add new O atoms in

leap-frog method4. Repeat 2 and 3 until

desired thickness

[1] J. Dalla Torre, J.-L. Bocquet, Y. Limoge, J.-P. Crocombette, E. Adam, G. Martin, T. Baron, P. Rivallin, and P. Mur, J. Appl. Phys. 92 (2002) 1084

Free Surface: No Shear Applied

db

amFX

14

2Im

0

20

40

60

80

100

120

140

160

-50 -40 -30 -20 -10 0

Dis

tanc

e to

sur

face

(A)

Time until dislocation reaches free surface (ps)

4X Free surface with no applied strain

Model fit with C = 250

1 Cda

Attraction to Interface

• Incremental straining with holds

• Attraction during last straining

• C is 1/4 -1/5 free surface value

0

10

20

30

40

50

60

70

80

-30 -25 -20 -15 -10 -5 0

Dis

tanc

e to

oxi

de in

terf

ace,

d (Å

)

Time before dislocation reaches surface (ps)

Slope 3.3 Å/ps

Acceleration fit using C = 65and initial velocity of 3.3 Å/ps

Im*

*

xInt

X FF

Long Range Repulsion

• Dislocation positions remain fixed in unconstrained systems

• No dislocation-dislocation repulsion seen

• Oxide is repulsive

Stress State

• Oxide places surfaces in tension

• Stress gradient results in shear stresses

• Long range repulsion

Summary/Conclusions

• Watanabe, et. al Si-SiO2 implemented in LAMMPS

• Free surface and short range oxide attraction consistent with dislocation theory

• Presence of oxide is repulsive at long range due to stress state of system

• Repulsion can lead to dislocation buildup depending on stress state due to oxide

14