76
Dismantlement Technologies Lawrence E. Boing Argonne National Laboratory Decommissioning Program

Dismantlement Technologies

Embed Size (px)

Citation preview

Page 1: Dismantlement Technologies

Dismantlement Technologies

Lawrence E. BoingArgonne National LaboratoryDecommissioning Program

Page 2: Dismantlement Technologies

Outline

Reasons for dismantlement

Typical applications

– Segmentation

– One piece removals

Parameters for selecting a specific technology

Mature technologies

Evolving technologies

2

Page 3: Dismantlement Technologies

Dismantling

Dismantling is defined as the removal of equipment or structures (clean or radioactive) typically to allow for the completion of the decommissioning process (or of the contracted work scope) by use of any of or some combination of thermal, mechanical, or electrical removal methods

In some cases no dismantling will be required to complete decommissioning and in other cases only minimal dismantling will be required; dependent upon desired end‐state

Some techniques useful ex‐situ while others are useful in‐situ

3

Page 4: Dismantlement Technologies

Reasons for Dismantling

Removal of components or structures – partially or completely

Removal of highly activated items Size reduction Decontamination Packaging and/or shipping constraints

– Is intact/one‐piece a viable removal option ?– Is entombment in place a viable option ?

4

Page 5: Dismantlement Technologies

Typical Applications

Metal structures and components

Concrete structures and foundations 

Tanks, equipment, piping and pumps

Gloveboxes

Concrete shielding

Pressure vessels including RPVs

Reactor vessel internals

5

Page 6: Dismantlement Technologies

DOE-Fernald Site / Plants 2 and 3

6

DOE-Fernald Site Plants #2 and #3 were “Large Industrial Radiological Facilities”

Page 7: Dismantlement Technologies

Tokamak Fusion Test Reactor

7

TFTR Facility at DOE-PPPL, Princeton, NJ circa 1997

Page 8: Dismantlement Technologies

One of a Kind Structures

8

Former Vit Cell @DOE - West Valley PFP Glovebox @ DOE-Hanford

Page 9: Dismantlement Technologies

Technique Selection & Optimization

Material to be cut– Type, thickness and geometry– Reinforcement if concrete– Reactionary forces

Environment– Type of facility– In air or underwater– Contamination / activation 

levels and dose rates– Pollution controls ‐ air and 

water

Waste generation Schedule / lead time / cost Highly unlikely that only 

one technique can be used for the project

– Review, evaluate and learn from what others have already done !

9

Page 10: Dismantlement Technologies

0,01

0,1

1

10

100

0 10 20 30 40 50

thickness steel (mm)

cutting speed (cm/min)Plasma cutting

flame cutting

arc sawgrinding

mech. saw

0,01

0,1

1

10

100

0 10 20 30 40 50

thickness steel (mm)

Aerosols (g/m) flame cutting arc saw

grindingplasma cutting

mech. saw

0,01

0,1

1

10

100

0 10 20 30 40 50

thickness steel (mm)

cutting speed (cm/min)Plasma cutting

flame cutting

arc sawgrinding

mech. saw

0,01

0,1

1

10

100

0 10 20 30 40 50

thickness steel (mm)

Aerosols (g/m) flame cutting arc saw

grindingplasma cutting

mech. saw

10

BR-3 Decommissioning Project in Belgium

Page 11: Dismantlement Technologies

Training & Mock-Up Testing

11

Page 12: Dismantlement Technologies

Typical Cutting Scenarios

High contact dose rates

– More remote, semi‐remote, standoff type approaches

Low contact dose rate, but high contamination levels

– More hands on, size reduction station approach, worker protective equipment issues

Low dose rate and contamination levels

– Production rate priority, safety aspects are classic industrial safety ones

12

Page 13: Dismantlement Technologies

One-Piece Removal

Reactor vessels, steam generators, heat exchangers and pressurizers (25 ton – 1100 ton)

Factors to consider– Burial rates – RPV ‐ $4‐7 M USD– Characterization data– Safety analyses– Transportation issues– Preparations ‐ inside and outside facility ‐ dredging

Use of fillers and coatings– Grouts – used as a void filler– Poly‐urea coatings – used as a fixative over shrink wrap

13

Page 14: Dismantlement Technologies

Tent Erection

14

Page 15: Dismantlement Technologies

Small Research Reactor One-Piece Component Removal

Heat Exchanger from the 5 MW CP‐5 Research Reactor

15

Page 16: Dismantlement Technologies

La Crosse NPP RV

16

Page 17: Dismantlement Technologies

Trojan NPP RPV Package

17

Page 18: Dismantlement Technologies

Big Rock Point NPP Reactor Vessel

Shipped to Barnwell Site for disposal

Shipping container: 25’ long, 13’ diameter with walls up to 7” thick

Vessel and canister were filled with 114,000 pounds of concrete

Entire package weighed over 565,000 pounds

October 7, 2003 – left plant site

October 30, 2003 – arrived @ disposal site

18

Page 19: Dismantlement Technologies

Use of Insta-Cote™ SE at Rocky Flats

Sprayable rapid‐curing polyurea elastometer – DOT strong tight container

16 oversized waste items ‐ included 3 large machine tools – up to 25’ x 10’ x 9’ weighing 150 tons

Used 10‐axle ‘low‐boy’ trailer for shipment for disposal at Envirocare

Used on Supercompactor and Repackaging facility equipment

19

Page 20: Dismantlement Technologies

Use of Insta-Cote™ at Rocky Flats (ctd)

Special base unit of molded material

Poly‐urea coat base unit & add waste item

Plastic sheet wrap the waste item and shrink wrap item with heat gun & inspect to ensure 100% coverage of item

Repeatedly poly‐urea coat the item up to a thickness of ¼”

Used as a lock‐down agent during demolition

http://www.instacote.com20

Page 21: Dismantlement Technologies

Dismantlement Technology Groupings

Page 22: Dismantlement Technologies

Dismantlement Technology Groupings

Metal Cutting Technologies

– Mechanical

– Thermal

– Electrical

– Other

Concrete Cutting Technologies

– Mechanical

– Thermal

– Other

22

Page 23: Dismantlement Technologies

Metal Cutting Technologies

Mechanical

Thermal 

Electrical

Others

23

Page 24: Dismantlement Technologies

Mechanical Metal Cutting Technologies

Shears and nibblers

Saws ‐ circular, reciprocating and band

Abrasive wheels

Diamond wire

Milling

Circular cutters

24

Page 25: Dismantlement Technologies

Common Saws

25

Circular Saw Port-a-Band Saw

Page 26: Dismantlement Technologies

Nibblers by Trumpf

26

Page 27: Dismantlement Technologies

Shears

27

Page 28: Dismantlement Technologies

High Speed Clamshell Pipe Cutter

Can make remote cuts up to 250 feet away

No applied heat or flame results in no smoke generation

Does not generate airborne contaminants

28

Page 29: Dismantlement Technologies

Plunging Pipe Crimper/Cutter

29

Page 30: Dismantlement Technologies

Rancho Seco RPV Head Segment

30

Diamond wire sawing used to perform cutting operations

Page 31: Dismantlement Technologies

TFTR Vacuum Vessel Segments

31

Page 32: Dismantlement Technologies

Special Designs

32

Page 33: Dismantlement Technologies

Cable Tensioning for Structural Demolition

Cable tensioning – pull structures down with cables attached to supporting structural members – being used at many DOE sites

33

Page 34: Dismantlement Technologies

Thermal Metal Cutting Technologies

Plasma Arc (Electrical/Gas) Torch Oxy‐fuel Torch Controlled Explosives

34

Page 35: Dismantlement Technologies

Plasma Arc Cutting Technology

35

•Torch is an energy converter from an electric arc (pilot arc) to a plasma gas (usually Argon) and a second arc is transferred to the work piece.

• Conversion process is only about 50% efficient – the balance is radiant light and sound.

extracted from www.plasmateam.com website

Page 36: Dismantlement Technologies

Controlled Explosive Demolition

Uranium mill structural demolition, Canada

USDOE

– Hanford Site, Production Reactor stacks

– Nevada Test Site, Test Cell A Shield wall structure

– INL Site, Numerous decommissioning sites

– Fernald Site, Building structures

Maine Yankee NPP Containment Building demolition, USA

Commercial NPS ‐ Cooling towers 36

Page 37: Dismantlement Technologies

Explosive Demolition of the IET Exhaust Line -INEEL

37

Page 38: Dismantlement Technologies

Electrical Metal Cutting Technologies

Metal Disintegration Machining (MDM)

Electrical Discharge Machining (EDM)

Arc Saw

Electric Arc Gouging

Consumable electrode cutting (in development)

Contact arc metal cutting (in development)

38

Page 39: Dismantlement Technologies

Other Metal Cutting Technologies

Abrasive Water Jet (AWJ) Laser

39

AWJ Cutting was used for several NPP reactor internals size reduction Tasks – San Onofre, Connecticut Yankee and Maine Yankee

Page 40: Dismantlement Technologies

Test Results – Laser Cutting

Laser Type Cutting Capability (thickness)

Speed (in mm / minute)

Power (in kW)

Condition Source

CO Laser 30‐150 mm(SUS‐304)

10‐260 21 UW NUPEC

CO laser 200‐310 mm(SUS‐304)

20‐30 21 In Air NUPEC

YAG laser 281 mm(CS / insulator / Al)

100 7.5 In Air NUPEC

YAG laser 40 mm(SUS)

100 7.5 UW NUPEC

YAG laser 3 mm(SUS lining)

2500 0.5‐1.0 In Air NUPEC

Chemical Oxygen Iodine Laser (COIL)

23 mm(SUS‐304)

0.5 1.0 UW RANDEC

40

Page 41: Dismantlement Technologies

Concrete Cutting Technologies

Mechanical

Thermal

Other

41

Page 42: Dismantlement Technologies

Mechanical Concrete Cutting Technologies

Diamond Wire Saw

Other Saws

Hydraulic or Pneumatic Hammers / Hoe Rams

Crushers and Shears

Rock Splitters

Wrecking Ball

42

Page 43: Dismantlement Technologies

Diamond Wire Cutting

43

Page 44: Dismantlement Technologies

Diamond Wire Cutting (cont’d)

44

Battelle Columbus Labs Decommissioning Project

Page 45: Dismantlement Technologies

Brokk

45

BROKK 330

Page 46: Dismantlement Technologies

Brokk End Effectors

46Breaker Hammer Scabbler

Concrete Crusher Bucket Grapples with rotator

Page 47: Dismantlement Technologies

BROKK Technical DataWeight(lbs)

Work Area Radius(inches)

Reach Overhead 

w/att (inches)

TransportWidth x Length x 

Height(inches)

Min‐Max Lift Capacity (lbs)

Model 40 794 w/att +66

95 96 24 x 47 x 37 264‐1056

Model 90 2050 w/att+265

142 156 31 x 72 x 48 374‐1452

Model 180 4190 w/att +550

179 186 31 x 98 x 54 814‐4400

Model 250 6750 w/att +660

236 252 47 x 142 x 59 ‐‐‐‐‐

Model 330 9240 w/att  +1200

256 264 59 x 154 x 60 1650‐8250

47

Page 48: Dismantlement Technologies

Demolition of former Pu Production Facilitiesat Rocky Flats

48

www.demcodemolition.com

Page 49: Dismantlement Technologies

Thermal Concrete Cutting Technologies

Flame Cutting 

Oxygen Lance

Explosives

49

Page 50: Dismantlement Technologies

Other Concrete Cutting Technologies

Abrasive Water Jet

Lasers

Concrete Fracturing Products / Expansive Grout – similar products sold under a variety of names– Bristar

– Bustar

– DEXPAN

50

Page 51: Dismantlement Technologies

Abrasive Water Jet

Abrasive Water Jet Cutting ‐used extensively for size reduction/cutting of concrete structures and a wide spectrum of other materials in various industries

51

Page 52: Dismantlement Technologies

Concrete Fracturing Products

A non‐explosive controlled demolition agent

Expansive Grout – similar products sold under a variety of names used for fracturing the concrete and then rubblizing it further 

– Bristar, Bustar, DEXPAN

Useful in areas with smaller sized concrete pad structures or in areas where noise and shock techniques (explosive demolition) are not viable

Mix with water, pour into drilled holes, expand and demolish; 18,000 lbs / cubic inch expansive strength when mixed with water

52

Page 53: Dismantlement Technologies

Remote Technologies

Page 54: Dismantlement Technologies

Use of Remote Technologies Reduce Personnel Radiation Exposures to ALARA

Reduce Personnel Exposure to Harsh Conditions – Underwater, Radiation, Temperature, Accessibility

General Types

– Manual Human Placed Devices

• Long Handled Tools or Diver Deployment

– Master‐Slave Manipulators

– Power Manipulators – use servo systems to amplify the operator force ‐ARTISAN

– Tele‐robots – similar to Power Manipulators only joystick / remote controlled ‐ NEATER

– Wheeled vehicles and travelling robots54

Page 55: Dismantlement Technologies

Long Handled Tool End-Effectors

55

From www.hydro-lek.com website

1. Tore Jet Lance2. Grabber / Clamper3. Sheer4. Rotary Disk Cutter5. 5-Function Manipulator

Page 56: Dismantlement Technologies

Efficiency Considerations

Human Entry versus Remote Equipment 

– Must Consider Operating Efficiencies and Other Supporting Needs to Implement

• Support services required and access factors – ventilation, containments, decontamination capability and rigging features

• Radiological, industrial safety and environmental impacts 

• Schedule and costs including lead time and maintenance needs

Remote Equipment Cost versus  Personnel Exposure

– One person‐rem of exposure = $1,000 to $25,000 or higher in some cases – is geographic dependent

– Remote equipment is very expensive with training and maintenance difficult and time consuming

56

Page 57: Dismantlement Technologies

Use of Divers

57

Page 58: Dismantlement Technologies

Large Remote Dismantling Tooling

58

Page 59: Dismantlement Technologies

Mast Type Deployment

59

Page 60: Dismantlement Technologies

Robotic Systems

60

Page 61: Dismantlement Technologies

Dual Arm Work Platform

Robotic system used where exposure levels prevent prolonged human exposure

Max lift capacity of 240‐lbs at full extension of 78”

Tether supplies hydraulics, power and control signals

Deploys a variety of tools and equipment

50% cost savings compared to manual dismantling

61

Page 62: Dismantlement Technologies

Demolition Lessons Learned

Fixative applications are effective

Misting devices and water sprays are effective at controlling contamination

Dispersion modeling used to help establish radiological boundaries 

Surgical demolition is difficult work

62

Page 63: Dismantlement Technologies

Innovative Processes

Some recent emerging dismantlement technologies include more evolutionary than revolutionary technologies:

– Lasers – needs further development

– Tele‐operated Systems – various industrial 

– Oxy‐gas Cutting System ‐ construction

– Liquefied gas cutting

63

Page 64: Dismantlement Technologies

Conclusions

Large variety of dismantling tools available spanning a wide range of costs

The tool needs to be evaluated for the job taking into consideration ‐ safety, radiation dose, environmental impacts and other site specific parameters

Remote operations can and will bring numerous problems along with them

‘Keep it simple stupid’ or the ‘KISS Concept’ is your best friend

64

Page 65: Dismantlement Technologies

Suggested Reading

IAEA Technical Reports Series #395

IAEA Technical Reports Series #440

Health Physics Society ‘1999 Summer School on Decommissioning’

European Commission ‘Decommissioning Handbook’

U S Department of Energy ‘Decommissioning Handbook’

American Welding Society, ‘Welding Handbook, Volume 2, Welding Processes’

65

Page 66: Dismantlement Technologies

66

Page 67: Dismantlement Technologies

67

Page 68: Dismantlement Technologies

MECHANICAL METAL CUTTING TECHNOLOGIES

68

PROCESS ADVANTAGES DISADVANTAGESSHEARS & NIBBLERSBlade/PunchCutting HeadElectric, Hydraulic, Pneumatic Powered

First Controlled CuttingVery Low Waste GenerationRemote OperationCuts Mild Steel & Stainless SteelIn Air & Underwater

Limited Thickness CutLimited Material TypeReaction ForcesSpace Envelope

SAWSCircular BladeReciprocating BladeBandElectric, Hydraulic, Pneumatic Powered

Controlled CuttingLow Waste GenerationNo Off-gas or FumesManual or RemoveOperationIn Air & Underwater

Limited Thickness CutLimited Material typeReaction ForcesSlow CuttingBlade StickingBlades Wear

ABRASIVE WHEELSCircular WheelCutting headElectric, Hydraulic Pneumatic Powered

Manual or Remote OperationIn Air & Underwater

Limited Thickness CutLimited Material TypeReaction ForcesAirborne/Underwater ParticlesPossible SparkingBlades Wear Quickly

Page 69: Dismantlement Technologies

MECHANICAL METAL CUTTING TECHNOLOGIES

PROCESS ADVANTAGES DISADVANTAGESDIAMOND WIREWirePulley SystemWater Lube SystemElectric, Hydraulic Powered

Cut Various ShapesCuts Very Thick ObjectsRemote Operation

Requires 360 Degree AccessWater DischargeWire Sticking & BreakingSlow Cutting

MILLINGMilling HeadMilling Support FrameLube SystemElectric, Hydraulic Powered

Cuts Intricate GeometriesControlled CuttingRemote OperationIn Air & Underwater

Limited Thickness CutSlow CuttingTool Sticking & BreakingLubricant DischargeReaction Forces

CIRCULAR CUTTERSOD or ID MountedCircular Saw TypeSingle Point TypeCircular Machine FrameElectric, Hydraulic, Pneumatic Powered

Cuts Hollow Circular ShapesControlled CuttingRemote OperationLow Reaction Forces

Limited Thickness CutSlow CuttingBlade or Bit Sticking & Breaking Lubricant Discharge

69

Page 70: Dismantlement Technologies

THERMAL METAL CUTTING TECHNOLOGIESPROCESS ADVANTAGES DISADVANTAGES

PLASMA ARCTorchElectric Power SupplyGas SourceMotion Control

Fast Controlled CuttingManual or Remote OperationCuts Thick PlatesCuts Carbon & Stainless SteelIn Air & UnderwaterLow Reaction Forces

Off-gas & FumesVery Murky WaterDebris ControlLimited Geometries

OXY – FUEL TORCHTorchElectric StarterGas SourceMotion Control

Fast Controlled CuttingManual or Remote OperationCuts Thick PlatesCuts Carbon SteelIn Air & UnderwaterLow Reaction Forces

Off-gas & FumesVery Murky WaterDebris ControlLimited GeometriesDoes not Cut Stainless Steel

CONTROLLED EXPLOSIVESShaped Explosive ChargeIgnition System

Fast Cutting Remote ApplicationCuts Thick SectionsCuts Any MetalIn Air & Underwater

Off-gas & FumesDust ControlDebris ControlShock & VibrationPlacing Charges

70

Page 71: Dismantlement Technologies

ELECTRICAL METAL CUTTING TECHNOLOGIESPROCESS ADVANTAGES DISADVANTAGES

MDMElectrodeCutting HeadElectric Power SupplyFlush SystemMotion Control

Cuts Various ShapesCuts Very Thick ObjectsRemote OperationControlled CuttingIn Air & UnderwaterLow Reaction Forces

Off-gas & FumesVery Murky WaterDebris Control Slow CuttingFlush Discharge

EDMElectrodeCutting HeadElectric Power SupplyFlush SystemMotion Control

Cuts Various ShapesCuts Intricate GeometriesControlled CuttingIn Air & UnderwaterLow Reaction ForcesSample Cutting

Some Off-gas & FumesVery Slow CuttingFlush Discharge

ARC SAWCircular Blade ElectrodeCutting HeadElectric Power SupplyMotion Control

Cuts Various ShapesControlled CuttingIn Air & UnderwaterLow Reaction Forces

Off-gas & FumesSlow CuttingDebris ControlFlush System in Air

ELECTRIC ARC GOUGINGConsumable ElectrodeGas or Water Source

Manual OperationIn Air & UnderwaterLow Reaction Force

Off-gas & FumesDebris Control

71

Page 72: Dismantlement Technologies

OTHER METAL CUTTING TECHNOLOGIES

PROCESS ADVANTAGES DISADVANTAGES

ABRASIVE WATER JETFocusing NozzleWater SourceAbrasive SourceHigh Pressure Generator

Cuts Thick PlateRemote OperationControlled CuttingIn Air & UnderwaterLow Reaction Forces

Abrasive WasteDebris Control

LASERLaser Beam GeneratorBeam & Focus OpticsGas SourceCutting NozzleMotion Control

Remote OperationControlled CuttingLow Reaction Forces

In Air OnlyDebris ControlExpensive EquipmentUsually Thin PlatesSlow cutting – but improving

72

Page 73: Dismantlement Technologies

MECHANICAL CONCRETE CUTTING TECHNOLOGIES

PROCESS ADVANTAGES DISADVANTAGES

DIAMOND WIREWirePulley SystemWater Lube SystemElectric, Hydraulic Powered

Cut Various ShapesCuts Very Thick ObjectsCuts Through RebarRemote Operation

Requires 360 Degree AccessWater DischargeWire Sticking & BreakingSlow Cutting

SAWSCircular BladeElectric Hydraulic Powered

Controlled CuttingLow Waste Generation No Off-gas or FumesManual or Remote OperationIn Air

Limited Thickness CutReaction ForcesSlow cuttingBlade StickingBlade WearDifficult Rebar cutting

HAMMERSChisel/Spade BitHammer DeviceHydraulic or Pneumatic Powered

No Off-gas or FumesManual or Remote OperationIn Air

Uncontrolled CuttingDust & Debris ControlSlow & Labor IntensiveWorker FatigueVibrationRebar Not Cut

73

Page 74: Dismantlement Technologies

MECHANICAL CONCRETE CUTTING TECHNOLOGIES

PROCESS ADVANTAGES DISADVANTAGES

CRUSHERS / SHEARSJawsHydraulic PoweredDelivery Device

No Off-gas or FumesRemote OperationIn Air

Non ExplosiveLow Tech Solution

Semi-Controlled CuttingDust & Debris ControlReaction ForcesVibration & Shock

SPLITTERSRock SplitterHydraulic CylinderHydraulic Powered

Non ExplosiveVibration ForceNo Reaction ForcesRemote OperationLow Tech Solution

Semi-Controlled CuttingRebar Not CutSlow MethodHole Drilling

WRECKING BALLBallCrane or Boom

Non ExplosiveInexpensiveLow Tech Solution

Uncontrolled CuttingRebar Not CutReaction ForcesVibration & Shock

74

Page 75: Dismantlement Technologies

THERMAL CONCRETE CUTTING TECHNOLOGIES

PROCESS ADVANTAGES DISADVANTAGESFLAME CUTTINGTorchOxygen SourcePowdered Iron/AluminumElectric Ignitor

Remote OperationConcrete & Rebar CutNo Reaction Forces

Off-gas, Fumes, SmokeSemi-Controlled Cutting

OXYGEN LANCEConsumable Lance (Pipe with Rods)Oxygen SourceElectric Ignitor

Cuts AnythingManual Operation

Off-gas, Fumes, SmokeSemi-controlled Cutting

CONTROLLED EXPLOSIVESExplosive ChargesIgnition System

Fast CuttingRemote ApplicationCuts Thick SectionsIn Air & Underwater

Off-gas & FumesDebris ControlShock & VibrationCharge PlacementDrill HolesRebar Not out

75

Page 76: Dismantlement Technologies

OTHER CONCRETE CUTTING TECHNOLOGIES

PROCESS ADVANTAGES DISADVANTAGESABRASIVE WATER JETFocusing NozzleWater SourceAbrasive SourceHigh Pressure Generator

Cuts Thick PlateRemote OperationControlled CuttingIn Air & UnderwaterLow Reaction Forces

Abrasive WasteDebris Control

LASERLaser Beam GeneratorBeam & Focus OpticsGas SourceCutting NozzleMotion Control

Remote OperationControlled CuttingLow Reaction Forces

In Air OnlyDebris ControlExpensive EquipmentUsually Thin PlatesSlow cutting – but improving

EXPANSIVE GROUTGrout MixtureConcrete Drill

Low tech processEasy to UseInexpensive

Slow processLabor intensive

76