22
Geophysics for LUST sites Dale Werkema, Ph.D. Research Geophysicist US EPA, ORD [email protected] 0 100 200 300 400 0 5 10 15 20 WT W E Approximate plume boundary

Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

Geophysics for LUST sitesDale Werkema, Ph.D.Research Geophysicist

US EPA, [email protected]

0

100

200

300

400

100

200

300

400

0

100

200

300

400

0

0

5

10

15

20

WT

0

5

10

15

20

0

5

10

15

20

W E

Distance (m)

Approximate plume boundary

WT

WT

100 3002000

Tim

e (

ns

)

Dep

th (

m)

Page 2: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

Why geophysics?

• Prior to expensive and invasive surgery we utilize medical imaging.

• Each medical imaging method is used for specific purposes.

2

• Prior to expensive earth intrusive investigations (e.g., drilling, excavating,

etc.) we can utilize geophysical imaging.

• Each geophysical method is used for specific purposes

x-ray of knee MRI of knee

Landfill plume mapping Abandoned well mapping

images credit: Lee Slater

Page 3: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

Outline

1. Finding Underground Storage Tanks (USTs)

and underground infrastructure

2. Mapping contaminant plumes

3. Monitoring active or passive remediation

4. High resolution characterization and Conceptual

Site Model (CSM) development

5. Online resources – under development

•Online Environmental Geophysics Textbook

•Decision Support Tools

3

Geophysical methods include a set of tools

in the site investigator’s tool box.

Page 4: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

Geometrics G-858 Cesium vapor magnetometer

• What are the physical properties of the target, i.e. UST and associated infrastructure?➢ metal?, ferrous metal? fiberglass?

• Any potential interference?

1. Finding USTs & subsurface infrastructure

Likely applicable geophysical methods:1. Magnetic 2. Electromagnetic3. Ground Penetrating Radar (GPR)

Geonics EM-61Mala GPR system

Net

Ambient

BodyAnomaly Anomaly

Body

NORTH

Geophex GEM2

Geonics EM-31

Page 5: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

1. Finding USTs & subsurface infrastructure

Total MagneticField Intensity (nT)

Page 6: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

1. Finding USTs & subsurface infrastructure

EM 31 Quadrature

Geonics EM-31

Page 7: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

1. Finding USTs & subsurface infrastructure

Ground Penetration Radar (GPR) UST and utility examples

Note: Hyperbolic Reflections

500 MHz antenna

• pipes oriented perpendicular to the profile.

• Darker reflections show higher amplitude due to greater electrical property impedance.

• Faint reflections show muted or low amplitude reflections due to the attenuation of the GPR energy from electrically conductive material.

400 MHz antenna

telephonecable

2 steelpipes

steelpipe

PVCpipe

A)

B)

GSSI antenna

GPR sections from Bill Sauck

Page 8: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

Archie's Law for Porous Media w/o clay

re = a f-m S-n rw

re = resistivity of the earth

f = fractional pore volume (porosity)

S = fraction of the pores containing fluid

rw = the resistivity of the fluid

n, a and m are empirical constants

Direct Current (DC) Resistivity

2. Mapping contaminant plumes

Current flowlines

Lines ofequal potential

MeasuredpotentialCurrent

source v

Resistivity Surveying

Page 9: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

Resistivity (Ohm m)10 100

2 4 6 8 10 12 14

Distance (m)

-4

-2

De

pth

(m

)

saltwater-saturated sands

Approximate location of ~0.3 m thick oil layer

SENW Offshore

Zone of immature oil contamination imaged as resistive layer

thinning of oil layer?InlandOil layer

Oil impact thins away from the shoreline

Oil

layer

Heenan, J., Slater, L.D., Ntarlagiannis, D., Atekwana, E.A., Fathepure, B.Z., Dalvai, S., Ross, C., Werkema, D.D., and Atekwana, E.A., Geophysics, 2014

2. Mapping contaminant plumesDeep Water Horizon Oil Spill Barrier Island Impact

DC Resistivity Results

Page 10: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

DWH Barrier Island Time-Lapse

10Heenan, J., Slater, L.D., Ntarlagiannis, D., Atekwana, E.A., Fathepure, B.Z., Dalvai, S., Ross, C., Werkema, D.D., and Atekwana, E.A., Geophysics, 2014

Adaptation of field resistivity system to remote solar power acquisition

15 months resistivityave. resistance of anomaly vs. time

2. Mapping contaminant plumes

Page 11: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

Dep

th (

m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.00 1.00 2.00 3.00 4.00 5.00 6.00

0L

100L

200L

343L

L of Injected Kerosene

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.00 1.00 2.00 3.00 4.00 5.00 6.00

Conductivity (mS/m)

0L

100

200L

0L

100L

200L

343L

Decreasing conductivity

De Ryck et a l., 1993

Monitoring or measuring passive or

active remediation using geophysics

3. Remediation monitoring

Maturity of plume should be considered

zone of hydrocarbon impact

Controlled Kerosene Spill

However…

Page 12: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

-100 0 100 200 300 400

10

20

30

40

50

60

70

L a b

-100 0 100 200 300 400

224.0

224.5

225.0

225.5

226.0

226.5

227.0

F i e l d

wt

rang

e

% change conductivity contaminated - clean

Residual LNAPL

No LNAPL

Aquitard –

Clay Unit

Dissolv ed LNAPL

Free LNAPL

Dep

th (

cm)

Ele

vatio

n (m

)% change of Ca2+ and DIC

Ca2

+m

g/L

Lab Ca2+ Field Ca2+0

40

80

120

160

200 N o L N A P L

F r e e L N A P L

Lab DIC Field DIC 0

40

80

120

160

200

D

IC m

g C

/L

↑ 175%

↑ 142%

↑ 120%

↑ 250%

Lab Field Lab Field

Direct Current Resistivity of mature LNAPL plume

Geophysical response is coincident with microbiology and geochemical changes

Werkema Jr., D.D., Atekwana. E.A., Endres, A., Sauck, W.A. and Cassidy. D.P., Geophysical Research Letters, 2003

16S rRNA gene community composition

Contaminated

Column

Control

Column

Bacteroidetes

Bacilli

Clostridia

Bacilli

-proteobacteria

Contaminated

Column

Control

Column

Bacteroidetes

Bacilli

Clostridia

Bacilli

-proteobacteria

clean contaminated

3. Remediation monitoring

Page 13: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

13

Soil Vapor Extraction (SVE) monitoring using Self-Potential (SP)

Vukenkeng C.A., Atekwana Estella.A., Atekwana, Eliot, A., Sauck, W.A., Werkema Jr., D.D., Geophysics, vol. 74, 2009

0 50 100 150 200 250 300

0

50

100

150

200

250

300

350

300250200100500 1500

50

100

150

200

250

300

350

0 50 100 150 200 250 3000

50

100

150

200

250

300

350

0 50 100 150 200 250 3000

50

100

150

200

250

300

350

-30 -24 -18 -12 -6 0 6 12 18 24

SP

(mV)

Approximate plume boundary

Groundwater flow

Approximate plume boundary

Groundwater flow

Soil vapor extraction

system

1996 pre-SVE 2007 post-SVE

easting (m)

no

rth

ing

(m

)

Former fire training facility, Oscoda, Michigan

Large quantities of fuel were burned.

1990s, the free product 0.3 m thick and > 200 m down gradient

3. Remediation monitoring

Page 14: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

1996

2003

2007

DC Resistivity response to SVE systemGPR Response

to SVE System

Vukenkeng C.A., Atekwana Estella.A., Atekwana, Eliot, A., Sauck, W.A., Werkema Jr., D.D., Geophysics, vol. 74, 2009

3. Remediation monitoring

Page 15: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

15

Magnetic Susceptibility (MS)

Atekwana, Mewafy, Abdel Aal, Werkema, Revil, and Slater, Journal of Geophysical Research, 2014

MS measurements of the

accumulation of magnetite can be adopted as a non-invasive technology for

monitoring long-term natural attenuation of

crude oil in the subsurface

C1010

C1006

North Pool

South Pool

Rupture

534

310

3. Remediation monitoring

Y Y0 100 200 300

10-4

G0906

418

420

422

424

426

428

430

432

0 100 200 300

Ele

va

tio

n i

n m

ete

r (m

as

l)

10-4

G0905

0 100 200 300

10-4

G0903

418

420

422

424

426

428

430

432

0 100 200 300

Ele

va

tio

n i

n m

ete

r (m

as

l)

10-4

9014

0 100 200 300

10-4

G0907

HWT

LWT

HWT

LWT

HWT

LWT

HWT

LWT

HOL

LOL

HWT

LWT

free phase

plume

(FPP)

dissolved

phase plume

(DPP)

Page 16: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

4. High Resolution CSM development

Groundhog burrow

GPR image depicting

the entrance shaft,

tunnel, ramp, and

chamber imaged with

the 400 MHz antenna

and the 900 MHz

antenna.

Sherrod, L., Sauck, W., Simpson, E., Werkema, D., Swiontek, J., Case histories of GPR for animal burrows mapping and geometry, Journal of Environmental and Engineering Geophysics, In press, 2018

40

0 M

Hz

90

0 M

Hz

Manual picks chosen for

the identification of the

groundhog burrow system

through hyperbolic

reflections in the 400 MHz

data.

GPR detection and mapping of animal burrows

Page 17: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

Environmental Geophysics web

presence: tech transfer, assistance, guidance, and

decision support tools

17

ONLINE RESOURCES

Once finalized this will be found at:

www.epa.gov/environmental-geophysics

Beta version: https://clu-in.org/characterization/technologies/geophysics/

5. Models & Decision Support

Page 18: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

18

5. Models & Decision Support ONLINE RESOURCES

Page 19: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

https://clu-in.org/characterization/technologies/geophysics/ Werkema Jr., D.D., Jackson, M., and Glaser, D., EPA/600/C-10/004, 2010

Geophysical Decision Support System (GDSS – Beta Version)

5. Models & Decision Support ONLINE RESOURCES

Page 20: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

SEER – Scenario Evaluator for Electrical Resistivity

(a) hypothetic target consisting of a mature LNAPL

plume on the water table, and electrodes with 1-m

spacing at land surface

(b) the resultant electrical resistivity tomogram,

assuming normally distributed random standard

errors of 3%.

Terry, N., Day-Lewis, F., Robinson, J., Slater, L., Halford, K., Binley, A., Lane Jr., J., Werkema, D., 2017

5. Models & Decision Support ONLINE RESOURCES

Page 21: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

21

Concluding Thoughts

We can use, and are learning to use, geophysics to:

1. Find Underground Storage Tanks2. Direct detection of some contaminants3. Biological breakdown of contaminants and remediation4. CSM development5. Forward models and decision support systems help reduce uncertainty of

results and inform stakeholders

The geophysical response is a function of the geology, hydrogeology, biology, and chemistry of the subsurface.

➢ Look for physical property contrasts, understand the mechanism of that contrast and if geophysical methods have the requisite resolution to detect the contrast.

What are the physical property contrasts?

Are these contrasts geophysically detectable?

Mass removal (e.g., SVE)

Biodegradation

Initiation of

contamination

peak conductivity

? ? ? 0

decre

ase

0 Time

Mea

sure

d p

ara

met

er

Bulk

conduct

ivity

Conta

min

ant m

ass

incre

ase

Atekwana et. al., 2006

Page 22: Distance (m) - NEIWPCCneiwpcc.org/wp-content/uploads/2018/10/Werkema-Jr..pdfResistivity (Ohm m) 10 100 2 4 6 8 10 12 14 Distance (m)-4-2 D e p t h (m) saltwater-saturated sands Approximate

Acknowledgement & Collaborators

• John Lane, Fred Day-Lewis, Marty Briggs, Carole Johnson, Eric White, Terry Neal: USGS and University of Connecticut

• Lee Slater, Dimitris Ntgarlantis, Judy Robinson, Rutgers University

• Estella Atekwana & Eliot Atekwana: University of Delaware formerly OSU

• Gamal Abdel Aal: Assiut University, Egypt

• Andre Revil: Colorado School of Mines

• Barbara Luke: University Nevada-Las Vegas

• Bill Sauck & Silvia Rossbach: Western Michigan University

• Yuri Gorby: J. Craig Venter Institute

• Students:

• UConn: Emily Voyteck, John Ong, Rory Henderson

• UNLV: Meghan Magill, Nihad Rajabdeen, Lisa Hancock

• Rutgers: Jeff Heenan, Yves Robert-Personna, Sina Saneiyan, Sundeep Sharma, Angelo Lamousis,

• Oklahoma State U: Farag Mawafy, Ryan Joyce, Dalton Hawkins, Brooke Braind, Cameron Ross, Carrie Davis, Che-Alota Vukenkeng,

• Colorado School of Mines: Marios Karaoulis

22

Disclaimer: Any use of equipment or trade names does not constitute endorsement by the USEPA