28
Diviner PDS Level 3 Data Products Benjamin T. Greenhagen JHU Applied Physics Laboratory [email protected] Joshua L. Bandfield Space Science InsFtute joshua.bandfi[email protected] LRO Data User’s Workshop, The Woodlands, TX 3/15/15

Diviner PDS Level 3 Data Products

Embed Size (px)

Citation preview

Page 1: Diviner PDS Level 3 Data Products

Diviner  PDS  Level  3  Data  Products  

Benjamin  T.  Greenhagen  JHU  Applied  Physics  Laboratory  

[email protected]    

Joshua  L.  Bandfield  Space  Science  InsFtute  

[email protected]    

         

LRO  Data  User’s  Workshop,  The  Woodlands,  TX  3/15/15  

Page 2: Diviner PDS Level 3 Data Products

•  What  are  the  Diviner  Level  3  Data  Products?  –  Standard  ChrisFansen  Feature  Value  (STD_CF)  

•  CumulaFve  Map  – Normalized  to  Equatorial  Noon  CF  Value  (NEN_CF)  

•  CumulaFve  Map  –  Rock  Abundance  (RA)  

•  CumulaFve  Map,  Individual  Map  Cycles  –  Soil  Temperature  (ST)  

•  CumulaFve  Map,  Individual  Map  Cycles  – Normalized  Soil  Temperature  (STN)  

•  CumulaFve  Map  –  Root  Means  Square  (RMS)  

•  Individual  Map  Cycles    

•  These  data  products  are  available  at  128  ppd  – NEN_CF  is  available  at  32  ppd  

Page 3: Diviner PDS Level 3 Data Products

Plagioclase  (7.86  µm)  

Pyroxene  (8.25  µm)  

 Olivine  (8.67  µm)  

 

16  

11  

12  

14   15  17  

CF  vs.  ComposiFon  •  CF  shics  to  shorter  wavelengths  

with  increasing  silicate  polymerizaFon  

•  CF  posiFon  is  most  sensiFve  to  plagioclase/olivine  abundance  

•  Pyroxene  composiFons  are  not  unique  

Low/Mid  LaFtude  CF  DistribuFon  Highland  Mean  =  8.15  μm  

Mare  Mean  =  8.30  μm  

Wavelength  (μm)  

Histogram  Bin  Frac=on

 

Q  

Plagioclase  Feldspar   Pyroxene   Olivine  

A   F  

0.000  

0.005  

0.010  

0.015  

0.020  

0.025  

0.030  

0.035  

0.040  

0.045  

0.050  

7.2   7.3   7.4   7.5   7.6   7.7   7.8   7.9   8.0   8.1   8.2   8.3   8.4   8.5   8.6   8.7   8.8   8.9   9.0  

Greenhagen  et  al.,  2010;  Science  

Page 4: Diviner PDS Level 3 Data Products

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6 7 8 9 10 11

Effective  Em

issivity  (0

.1  offs

ets)

Wavelength  (μm)

8-­‐μm  Channel  ComposiFonal  Data  

•  CF  of  lunar  soils  in  lunar  environment  is  nearly  parabolic  

•  Simultaneously  solve  three  quadraFc  equaFons  

•  In  brightness  temperature  space  •  TbMax  =  C  –  B2  /  (4*A)  

•  Use  Tbmax  to  calculate  effecFve  emissivity  (unit  emissivity  at  CF)  

•  In  emissivity  space  •  CFVal  =  -­‐B  /  (2*A)  

•  CF  value  is  defined  as  the  modeled  approximaFon  of  the  CF  

Emission  in  a  Simulated  Lunar  Environment  

67711  

61501  

14259  

15301  

10084  

62241  

Spectra  digiFzed  from  Salisbury  et  al.,  1973  

Page 5: Diviner PDS Level 3 Data Products

Standard  CF  Value  Maps  (STD_CF)  

8.55  

8.40  

8.25  

8.10  

7.95  

7.80  

CF  PosiFon

 

Map  Cycle  11  Map  Cycle  12  Map  Cycle  13  

+  

+  43  others  

+  

Solar  Incidence  (i)  WeighFng  

0  

0.2  

0.4  

0.6  

0.8  

1  

0   10   20   30   40   50   60   70  

Weight  

Solar  incidence  (degrees)  

2

1718cos +⎟

⎞⎜⎝

=i

wt

Tb  <  250  &  i  >  70  are  not  used  

Page 6: Diviner PDS Level 3 Data Products

Equatorial    DayFme  Coverage  

Green  Crater  133  E  /  3.5  N  

400  

360  

320  

280  

240  

200  

Ch  7  Brig

htne

ss  Tem

perature  (K

)  

Science  Mission  +  Extended  Mission  

Page 7: Diviner PDS Level 3 Data Products

60  E   120  E  0  E  60  W  120  W  

Standard  CF  Value  Maps  (STD_CF)  

180  W   180  E  

30  N  

60  N  

30  S  

60  S  

8.55  

8.40  

8.25  

8.10  

7.95  

7.80  

CF  Value

 

0  N  

Map  Cycle  11  Map  Cycle  12  Map  Cycle  13  

+  

+  43  others  

+  

Solar  Incidence  (i)  WeighFng  

Page 8: Diviner PDS Level 3 Data Products

60  E   120  E  0  E  60  W  120  W  

Standard  CF  Value  Maps  (STD_CF)  

180  W   180  E  

30  N  

60  N  

30  S  

60  S  

0  N  

Map  Cycle  11  Map  Cycle  12  Map  Cycle  13  

+  

+  43  others  

+  

Solar  Incidence  (i)  WeighFng  

*  Previous  STD_CF  map  for  comparison  *  

8.55  

8.40  

8.25  

8.10  

7.95  

7.80  

CF  Value

 

Page 9: Diviner PDS Level 3 Data Products

60  E   120  E  0  E  60  W  120  W  

CorrecFng  Standard  CF  Value  Maps  

180  W   180  E  

30  N  

60  N  

30  S  

60  S  

0  N  

Standard  CF  Values  

Map  Cycle  12  

Map  Cycle  13  

15:00  

17:00  

13:00  

15:00  

VariaFons  with    both  laFtude    and  local  Fme  

CF  shics  to  shorter  wavelengths  with  increasing  solar  incidence  

8.55  

8.40  

8.25  

8.10  

7.95  

7.80  

CF  Value

 

Page 10: Diviner PDS Level 3 Data Products

60  E   120  E  0  E  60  W  120  W  

Corrected  CF  Value  Maps  (NEN_CF)  

180  W   180  E  

30  N  

60  N  

30  S  

60  S  

0  N  

Corrected  CF  Values  

•  March  2011  release  includes  corrected  CF  values  from  Greenhagen  et  al.  2010,  (Science)  –  Corrects  laFtude  and  local  Fme  but  NOT  topography  

•  Development  conFnues  on  an  empirical  correcFon  incorporaFng  topography  and  illuminaFon  and  emission  geometry  

8.55  

8.40  

8.25  

8.10  

7.95  

7.80  

CF  Value

 

Page 11: Diviner PDS Level 3 Data Products

60  E   120  E  0  E  60  W  120  W  

Corrected  CF  Value  Maps  (NEN_CF)  

180  W   180  E  

30  N  

60  N  

30  S  

60  S  

0  N  

30  N  

60  N  

30  S  

60  S  

0  N  

Standard  CF  Values  

Corrected  CF  Values  

8.55  

8.40  

8.25  

8.10  

7.95  

7.80  

CF  Value

 

Page 12: Diviner PDS Level 3 Data Products

Caveats  for  using  Diviner  CF  Maps  •  The  quality  of  a  CF  value  is  dependent  on  the  solar  incidence  angle  /  viewing  geometry  –  Topographic  effects  can  be  large  –  Generally  OK  for  incidence  angles  less  than  30  degrees  –  Plan  to  include  a  measure  of  confidence  /  uncertainty  in  future  release  

•  Abnormal  pixels  are  given  fixed  CF  values  –  Caused  by  out  of  band  composiFons  and/or  poor  data  quality  –  SIS  will  be  updated  to  include  details  –  CF  values  outside  7  to  9.5  are  not  included  –  InvesFgaFng  ways  to  report  “good”  abnormal  pixels  

•  Effects  of  space  weathering  are  not  corrected  –  Generally  ~0.1  µm  for  immature  to  mature  –  Plan  to  include  space  weathering  correcFon  in  future  release  

Page 13: Diviner PDS Level 3 Data Products

Lunar  Thermophysics  •  Nighyme  temperatures  are  very  sensiFve  to  the  physical  nature  of  the  surface  –  Rocks  will  stay  ~100K  warmer  than  the  regolith  throughout  the  night  

–  Layering,  slopes,  etc.  also  affect  surface  temperatures  

100

150

200

250

300

350

400

24 18 12 6 Hours Past Noon

Rock

Unlayered Regolith

Layered Regolith

Surface Tem

perature (K)

Page 14: Diviner PDS Level 3 Data Products

Equatorial    Nighyme  Coverage  

140  

130  

120  

110  

100  

90  

Ch  7  Brig

htne

ss  Tem

perature  (K

)  

Science  Mission  +  Extended  Mission  

Green  Crater  133  E  /  3.5  N  

Page 15: Diviner PDS Level 3 Data Products

0  N  

30  N  

60  N  

30  S  

60  S  0  E   60  E   120  E   180  E  60  W  120  W  180  W  

Rock  Abundance  (RA)  

15  

5%  

2.5%  

0%  

Areal  Rock  Ab

undance  

Acer  Bandfield  et  al.,  2011  

•  Model  Uses  Diviner  chs  6-­‐8  centered  near  18,  35,  and  75  mm  •  Model  temperature  of  rocks  with  laFtude/local  Fme  and  

opFmize  modeled  radiance  by  varying  Soil  Temperature  (ST)  and  areal  Rock  Abundance  (RA)  

•  IniFal  results  provide  realisFc  numbers  and  data  are  well-­‐behaved  

–  Younger  craters  show  higher  Rock  Abundances  (e.g.  Tycho)  

Page 16: Diviner PDS Level 3 Data Products

0  N  

30  N  

60  N  

30  S  

60  S  0  E   60  E   120  E   180  E  60  W  120  W  180  W  

5%  

2.5%  

0%  

Areal  Rock  Ab

undance  

Bullialdus  Crater   Tycho  Crater  

CopernicusCrater  Aristarchus  Crater  

Rock  Abundance  (RA)  

Acer  Bandfield  et  al.,  2011  

Page 17: Diviner PDS Level 3 Data Products

Rima  Bode  Landing  Site  

•  Large  spaFal  variability  in  rock  abundance  

•  Comparisons  with  LROC  NAC  images  show  excellent  qualitaFve  agreement  

LROC – M102193170LC

LS Center Point

More  Rocky  

Less  Rocky  

Page 18: Diviner PDS Level 3 Data Products

Average Rock Abundance – 10%

More  Rocky!  

Page 19: Diviner PDS Level 3 Data Products

Average Rock Abundance – 1.3%

Less  Rocky!  

Page 20: Diviner PDS Level 3 Data Products

0  N  

30  N  

60  N  

30  S  

60  S  0  E   60  E   120  E   180  E  60  W  120  W  180  W  

120  

95  

70  

Nighy

me  Soil  Tempe

rature   •  Nighyme  temperature  of  the  modeled  soil  component  

–  Soil  Temperature  (ST)  –  Soil  Temperature  Normalized  (STN)  to  remove  laFtude  variaFons  

(above)  •  Rocky  areas  have  elevated  temperatures  •  Cold  anomalies  at  higher  laFtudes  driven  by  topography  •  Some  Equatorial  “cold  spots”  

–  Colder  than  average  features  associated  with  some  small  craters  

Nighyme  Soil  Temperature  

Acer  Bandfield  et  al.,  2011  

Page 21: Diviner PDS Level 3 Data Products

New  128  ppd  RA  Products  •  46  separate  rock  abundance,  regolith  temperature,  and  RMS  fiyng  error  maps  –  These  maps  parallel  the  nighyme  Level  2  GDR  products  and  are  constructed  from  Diviner  Ch.  6-­‐8  

•  Local  Fmes  are  restricted  to  19:30  to  05:30  •  Includes  topographic  data  from  LROC  DTM  to  determine  local  Fme  and  laFtude  – Used  to  adjust  apparent  local  Fme  and  laFtude  –  Rock  abundance  model  now  references  the  apparent  local  Fme  and  laFtude  to  reduce  topography  effects.  

•  LaFtude  range  extended  to  +/-­‐80  degrees  – Data  on  steep  slopes  at  higher  laFtudes  masked  

Page 22: Diviner PDS Level 3 Data Products

Old rock abundance – topography influences values at high latitudes

Page 23: Diviner PDS Level 3 Data Products

New rock abundance – pole facing slopes have >80° minimum solar incidence

Page 24: Diviner PDS Level 3 Data Products

Old rock abundance – Tycho Antipode

Page 25: Diviner PDS Level 3 Data Products

New rock abundance – Tycho Antipode

Page 26: Diviner PDS Level 3 Data Products

Improved Calibration and Rock Abundance

•  Correlated noise is present in all Diviner detectors/channels

•  This produces a

“stuttering” effect present in rock abundance and regolith tmeperature maps

Rock abundance 128 ppd - “stuttering” is present at the ~0.5% level

Page 27: Diviner PDS Level 3 Data Products

Data Quality Improvement

•  New rock abundance maps will be produced from improved Diviner Level 2 data products

Rock Abundance 0-2% Original (left) and corrected (right)

Regolith Temperature 88-100 K Original (left) and corrected (right)

Page 28: Diviner PDS Level 3 Data Products

•  Diviner  Level  3  Data  Products  –  Standard  ChrisFansen  Feature  Value  (STD_CF)  

•  CumulaFve  Map  –  128  ppd  /  60S-­‐60N  

– Normalized  to  Equatorial  Noon  CF  Value  (NEN_CF)  •  CumulaFve  Map  –  32  ppd  /  60S-­‐60N  

–  Rock  Abundance  (RA)  •  CumulaFve  Map,  Individual  Map  Cycles  –  128  ppd  /  80S-­‐80N  

–  Soil  Temperature  (ST)  •  CumulaFve  Map,  Individual  Map  Cycles  –  128  ppd  /  80S-­‐80N  

– Normalized  Soil  Temperature  (STN)  •  CumulaFve  Map  –  128  ppd  /  70S-­‐70N  

–  Root  Means  Square  (RMS)  •  Individual  Map  Cycles  –  128  ppd  /  70S-­‐70N  

Summary