DNA AS A POLYELECTROLYTE

  • Upload
    dung

  • View
    89

  • Download
    5

Embed Size (px)

DESCRIPTION

Cargèse, 2002 - 1. DNA AS A POLYELECTROLYTE. Eric Raspaud Laboratoire de Physique des Solides Bât. 510, Université Paris –Sud 91405 Orsay, France Email : [email protected]. Cargèse, 2002 - 2. - PowerPoint PPT Presentation

Citation preview

  • DNA AS A POLYELECTROLYTEEric Raspaud

    Laboratoire de Physique des SolidesBt. 510,Universit Paris Sud91405 Orsay, FranceEmail : [email protected], 2002 - *

  • Cargse, 2002 - *Unlike proteins, each of the DNA basic units (the base pair) is composed of two identical ionisable groups, the phosphate groups.Projection of the two phosphates on the double-helix axis :(B-DNA)

    Linear charge density :2 e / 3.4 ~ 6 e / nm

    equivalently,1 e / 1.7

    One of the most highly charged systems

  • Cargse, 2002 - *Amino-acid size ~ 4

    Typical Linear Charge density ~ 1 /( 4 4 ) ~ 0.6 e / nmFor proteins,5 / 20 basic units may be ionized :

    basic : lysine, arginine, histidine (-NH2+)

    acidic : aspartic, glutamic (-COO-)For the Cell membrane,

    Typical Surface Charge Density ~ 0.1- 1 e / nm2

  • Proteins + (RNA or DNA) complexes :Cargse, 2002 - *Nucleosome Core ParticleSurface Charge Density ~ 6 e / nm2Linear Charge densityTMV ~ 2 e / nmfd-virus ~ 5 e / nmTobacco Mosaic Virus

  • Cargse, 2002 - *(Bloomfield, 1999)

  • Cargse, 2002 - * 3

  • Cargse, 2002 - *1_ Brief Introduction on the Ionic dissociation and hydration1_a) simple salt1_b) DNA

    2_ Simple salts : the Debye-Hckel model2_a) spatial distribution2_b) thermodynamic consequences

    3_ Polyelectrolyte and the counterions distribution3_a) the Poisson-Boltzmann equation3_b) the Manning model

    4_ Thermodynamic coefficients and the free counterions4_a) the radius effect4_b) the length effect

    5_ Conformation and Interaction5_a) Thermal denaturation5_b) Interaction and chain conformation

    6_ Multivalent Counterions6_a) collapse and phase diagram6_b) ionic correlation Menu

  • Cargse, 2002 - *Coulombs law (1780)

    Attraction force between two elemantary charges e separated by a distance dand its associated energy :For a typical ionic crystal,Thermal Energy,kT 10-21 Joules (0.6 kcal/mol)In water,The salt dissociatesin water1_ Brief Introduction on the Ionic dissociation and hydration1_a) simple saltRoughly

  • In general, one defines a characteristic lengthof the ions dissociation/association :The Bjerrum length lB Cargse, 2002 - *In water, lB = 7.14 For a multivalent salt zi : zj

    |zizj | lB

    if d < lB thenion pairing occurs

  • d(Oosawa, 1971; Bloomfield, 2000)Similar notionfor the coupleIon - charged monomerSite bound :ion immobilizedand dehydratedpKa and weak electrolytesEx. : acrylate group - COO- and Mg2+ Cargse, 2002 - *(Sabbagh & Delsanti, 2000)strong electrolytesEx. : sulfonate group SO3-

  • Cargse, 2002 - *18 23 water molecules per nucleotide(from IRSpectroscopy)(Bloomfield, 2000)NMR relaxation :

    Na+ associated with DNAare not dehydrated orimmobilized(Bleam et al., 1980)

    Lost of Mn2+ hydrationupon binding to DNA(Granot & Kearns, 1982)1_b) DNA

  • Cargse, 2002 - *For the phosphate group,For the bases,

    Neutral at pH 7

  • Cargse, 2002 - *Solution of strong electrolytes (McQuarrie, 1976) :Positive and negative charges in a continuum medium of dielectric constant ee0rijri

    rj

    The Coulombic potential acting upon the ith ion located at rior at the arbritary point r :with r (r) the total charge density at r2_ Simple salts : the Debye-Hckel model (1923)How does the charges distribution r(r) change with respect tothe distance r from a central ion ?

  • Cargse, 2002 - *r

    r(r) is related to the electrostatic potential y(r) by the Poissons law and by the Boltzmanns distribution :- Ionic size : s- cations and anions charges : z+e and z- e- concentration of the bulk solution : C+0, C-0 z+ e C+0 + z- e C-0 = 0 (Electroneutrality)r (r ) = z+e C+0 e-z+ey(r)/kT + z-e C-0 e-z-ey(r)/kT with Fi = ziey(r) the energy of the charge zie located at the distance r from the central ion or equivalently the electrostatic work required to bring the charge from the reference state to the distance r.Dy(r) = -r(r )/ee02_a) spatial distribution

  • Solving the Poisson-Boltzmann equation :ziey(r)
  • Cargse, 2002 - *for a 1:1 salt (NaCl,)s = 5 1/k s = 6 1/k s

    Csalt (mM)1/k ()11001030100101033

  • Cargse, 2002 - *Knowing the ion spatial distribution and the electrostatic potential and charging the ions, one can calculate the electrostatic free energies of the system :

    electrostatic energy

    Felec / V kT= - (k3/12p) t(k s)

    Felec < 0 due to the ionic atmospherePredict then the thermodynamic coefficients2_b) thermodynamic consequences

  • Cargse, 2002 - *3_ Polyelectrolyte and the counterions distributionrSimple saltrA polyelectrolyteinto an ionic solutionApplysimilarcalculation ?Yes, we can start from the Poisson-Boltzmann equation No, the approximation ziey(r)
  • 3_a) the Poisson-Boltzmann equationCargse, 2002 - *The central ion becomes the polyelectrolyte :

    y(r) its electrostatic potential at a distance r r (r) the charge density of the surrounded ionsa non-linear differential equation

  • Neglected : * the finite size and spatial correlations of the small ions* the non-uniformity of the dielectric constant (water) Cargse, 2002 - * a exact solution if there is no added salt :(Fuoss et al., 1951); (Zimm & Le Bret, 1983); (Deserno et al., 2000)The chain :an infinitely long cylinder of radius r02r0The monomeric unit : Size b and valence zmFor B DNA,r0 = 10 a dinucleotideb = 3.4 and zm = -2-2e /3.4Or equivalently :-1e /1.7with b = 1.7 and zm = -1The linear charge density : zme/b

  • Cargse, 2002 - *Number of charges per Bjerrum length lB :xM = lB / b the Manning parameterFor B DNA, b = 1.7 :xM = 4.22r0bWithout added salt :Only the counterions are presentzc e Cctotal + zm e Cmtotal = 0Counterions

    zc = + 1monovalent (Na+, K+,)Monomers

    zm = - 1a nucleotide(Phosphate-)

  • Cargse, 2002 - *The Cell model : each chain enclosed in a coaxial cylindric cell2r02R- ionic distribution :

    the whole solution = a single cylindric cell- concentration effect :

    DNA dilution= R increase

    Cmtotal = Cctotal = 1/pbR2

  • Cargse, 2002 - *Returning to the Poisson-Boltzmann equation,

    Dy(r) = - r(r) /ee0 with r(r) the counterions charge density at a radial distance r from the chainr(r) = zce C(R) e-zce y(r) /kT 0r0RrAssumption : y(r = R)=0 f(r)= k2 ef(r) with f(r)= - zcey(r) / kTThe screening length 1/k becomes :k2 = 4plB zc2C(R)[ for the simple salt, k2 = 4p lB (z-2C-0 + z+2C+0 ) ]

  • Cargse, 2002 - *

    Boundary conditions :

    a whole cell is neutral,for r = R f(r)/r = 0

    the chain is charged with xM = lB / b = 4.2,for r = r0 f(r)/r = - 2 xM /r0

    f(r) = -2 ln( [kr /g2] cos (g ln[r/RM])) !!!with g and RM two numerical constantsdependent on xM , r0 , Rr0Rrf(r)r0 = 10 R = 50 (40 g/l DNA)1/ k 25 xM =4.21.50.8

  • Cargse, 2002 - *Fraction of counterions within a cylinder of radius r0r0Rrr/r0R = 50 xM =4.21.50.8Counterions accumulationMonotonic increase for xM < 1

  • Cargse, 2002 - *R = 250 (1.7 g/l DNA)Counterions accumulationsimilar variationSimilar to simple salt;Debye Hckel or linearised Poisson-Boltzmann equationzey(r)
  • Cargse, 2002 - *Using the linearised equation,f(r)= k2f(r)

    f(r)= - [2 xM / kr0 K1(kr0) ] K0(kr)

    with f(kr 1, a strong counterion condensation occurs near the chain; only the counterions far from the chain are submitted to a low electrostatic potential and may be treated like simple salts.

  • Cargse, 2002 - *C (r) (M)

    local concentrationof countreions

    0r0Rr regular spacing ofthe phosphate chargeon a cylinder

    charges set along thedouble-helixMonte-Carlo simulation (Le Bret & Zimm, 1984) :

  • Cargse, 2002 - *Experimentally :X-Ray scattering (Chang et al., 1990)

    Heavy counterions (Thallium+)Neutron scattering (van der Maarel et al., 1992)

    Contrast matching

  • 3_b) the Manning model and the limiting lawsAn infinite line charge with a charge density xM Simple salt is present in excess over polyelectrolyteTwo-states model for xM > 1: Cargse, 2002 - *free ions treated in theDebye-Hckel approximationcondensed ions reducing the monomer chargeto an effective charge qeff. (Manning, 1969; 1978)

  • Cargse, 2002 - *Calculation of the effective charge qeff. :The condensed ions decrease the repulsions between the chain charges :gel. = (q eff. 2 /4pee0) e-krij/ rij

    By summing over all pairs of effective charges of the chain, the electrostatic contribution to the free energy per monomer becomes for kb

  • Cargse, 2002 - *- The mixing entropy decreases the number of condensed ions :Volume of the region where ions are said to be condensed : VpThe ionic local concentration : Clocal = 103 q /VpConcentration of the free salt : CsAs q ions are confined in Vp,the lost of mixing energy is

    gmix../ kT = q ln (Clocal/Cs)

  • Cargse, 2002 - *Minimization of the free energy g el. + g mix. with respect to q :

    1 - ln(Vp Cs/103) - zczm [1+ (zc/zm)q ] xM ln (kb)2 =0

    Focus on the salt concentration Cs dependence with k2 ~ Cs

    - ln Cs ~ zczm [1+ (zc/zm)q ] xM ln Cs

    The only solution to cancel the Cs dependence (in particular when Cs 0) :-1 = zczm [1+ (zc/zm)q ] xM For zm = zc = 1q = 1- 1/ xM

  • Cargse, 2002 - *radial extension of thecondensation region76 % of the phosphateshave a condensed counterion or the effective charge is reduced by 1/4 For a long DNA chain (of size L) in a monovalent salt,its structural charge is proportional to L/band its effective charge to (L/b) (1-q) = (L/b)/xM = L/lB !

    The DNA chain behaves like a chain where the distance between charged monomers is equal to lB

    b () xM saltzc : 1zcqClocal (M)Dx ()B-DNA1.74.210.761.177.420.880.3911.240.940.1216.9Single-stranded DNA41.810.440.2112.540.860.02132.2

  • Cargse, 2002 - *4_ Thermodynamic coefficients and the free counterionsfree in the Manning sense :

    For xM < 1, all the counterions are freeFor xM > 1, only 1/ xM counterions are free

    But they are submitted to the electrostatic potential created by the DNA chains;Similar to the ionic atmosphere of the Debye-Hckel interations for simple salts

    thermodynamically free : where ions are only submitted to the thermal agitation

  • C(R)y(r = R) = 0 Cargse, 2002 - *- For the Poisson-Boltzmann cell model without added salt,Only the counterions far from the chainor located at r = Rare thermodynamically free- For DNA in excess of salt, only the ions far from the chain are thermodynamically free For xM > 1 and the limiting law,

    Only 1/ 2xM counterions are thermodynamically free

  • Cargse, 2002 - *Na-DNA +Salt CsSalt Cs0Cs0 = C Na+0 = C Cl-0Cs = C Cl-C Na+ = Cs + Cc Na+

    Counterionscoming from Na-DNASemi-permeable membraneAt the thermodynamical equilibrium,the ions chemical potentialsfrom both sides are equal :

    m(Cc Na+ , Cs ) = m( Cs0 )

    The Donnan effect :(NaCl)reservoir

  • 4_a) the radius effectCargse, 2002 - *In an excess of salt (NaCl) with diluted Na-DNA,Cs0 - Cs ( 1/ 2xM ) Cc Na+ /2 and2G 1/ 2xM The salt exclusion factor : G = lim (Cs0 - Cs )/ CDNA for Cc Na+ or CDNA 0

    Information on the fraction of thermodynamically free counterions

  • Cargse, 2002 - *Theoretically,by solving the P-B equation and averaging C Na+ (r) and C Cl-(r)

    2G = (1/ 2xM ) f( kr0 ) withf(kr0 0) = 1 the limiting law2Gkr01/ 2xMCs010 mM0.1 M1 M(Strauss et al., 1966-67; Shack et al., 1952)Simple salt limit 2G =1Experimentally,the salt concentration in the DNA compartment Cs is determined by selective electrodes

  • Cargse, 2002 - *with fosm the osmotic coefficientThe osmotic pressure p :Na-DNA +Salt CsSalt Cs0hp = r g hUsed by T. Odijk for the free energy of DNA in bacteriophage (1998)In excess of Na-DNA compared to NaCl,Cs 0 the salt is excludedp / kT = fosm Cc Na+Returning to the P-B equation in salt-free conditions,fosm = C(R) / Cc Na+ ;fosm = ( 1+g(kr0 ) ) / 2xMwith g(kr0 ) 0

  • Cargse, 2002 - *2Gfosm1/ 2xMkr0100 g/l1 g/lCDNA(Auer & Alexandrowicz, 1969); (Raspaud et al., 2000) Strong deviation from the limiting law due to the finite radius r0

    Theories and Experiments arequalitatively in good agreement.Quantitatively..

  • Cargse, 2002 - *(Stigter, 1978)(Nicolai & Mandel, 1989)(Liu et al., 1998) q/qeff= 5.9(Griffey, unpublished) 4.2(Padmanabhan et al., 1988) 2.1(Braulin et al., 1987) 2.5 To be compared with xM = 4.2 Permeability of the double-helix Specific interactions different sensibilities ofthe different technicsq/qeff

  • Cargse, 2002 - *End effectsL1/kCounterions evaporation4_b) the length effect

  • 1/k1/kCargse, 2002 - *fraction of condensed counterions(Gonzalez-Mozuelos & Olvera de la Cruz, 1995)dilutionqeff ~ - ln C

  • Cargse, 2002 - *Returning to DNA, Importance of end effects

    for short oligonucleotide helices : Simulations of Olmsted et al. (1991)

    Cs = 1.8 mM1/k = 73 2G = (1/ 2xM ) f( kr0 )1/kCs (mM)k Lend effects

  • Cargse, 2002 - *(Olmsted et al., 1989)The localconcentrationat the DNA surfaceN = 12N = 24N 72Ends effectbecomes negligeable on averagebut evaporation stilloccurs at the ends.1/k

  • Cargse, 2002 - *5_ Conformation and Interaction5_a) Thermal denaturationCalculation of the free energy using the charge renormalisation (Manning, 1972)Non-electrostatic term+L/lB or np/xM charged phosphateIonic atmosphere (ns salt + np/xM free ions)(salt in excess but at low concentration)Interaction energyof the chain with its ionic atmosphere+Entropic termof the salt, of the free ions- (np/xM ) kT ln k+ (np/xM ) kT ln CsDestabilizesStabilizesthe double-helixAdditionof salt(np/xM ) denaturated > (np/xM )native DNA +

  • Cargse, 2002 - *+ (np/2xM ) kT ln Cs- (np/xM ) kT ln k+ (np/xM ) kT ln Csk ~ Cs 1/2The dominant term is entropicFinally, the electrostatic free energy Gele= H TS > 0and dominated by the entropy S

    Entropic cost to condense or confine the counterions

    Gain in electrostatic free energy to denaturate DNAD Gele = Gelesingle-stranded Geledouble-stranded < 0

  • Cargse, 2002 - *At the melting temperature Tm, D Gnon-ele + D Gele = 0 After manipulation :

    d Tm /d log Cs A [ (1/2xM )denaturated-(1/2xM )native]

    with A = k Tm2/DHmT4 DNA (Record, 1975)

  • From experimental Tm and calculated D GeleGnon-elepernucleotide* Tm = k log Cs + 0.41 XGC + 81.5(Korolev et al., 1998; see also Rouzina & Bloomfield, 1999)(Schildkraut & Lifson, 1965)* d Tm /d log Cs ~ D (1/2xM ) ~ D (2G )(Olmsted et al., 1991)Cargse, 2002 - *

  • Cargse, 2002 - *5_b) Interaction and chain conformationIntermolecular interactions :

    between short DNA L = Lp = 50 nm (150 bp)For neutral rods,excluded volume v0 L2 dd = 2r0

    For DNA rods,v L2deff

    with an effective diameterdeff = 2r0 + (1/k) f( xM , k r0 )At low salt , deff >> d and v >> v0 In the high salt limit, deff = d and v = v0 e-kr(Brenner & Parsegian, 1972)

  • Cargse, 2002 - *vv0CNaCl (M)(Nicolai & Mandel, 1989)50 v0v L2deffisotropicanisotropicC i - afi-a ~ deff / LCi a ~ 1 / v CDNA increases with Cs

  • Cargse, 2002 - *Intramolecular interactions :The persistence length Lp : the bending flexibility

    Bending makes the phosphate charges lie closerfrom one another : electrostatic contribution to Lp

    Lp = l0 + lele Using the Debye-Hckel approximation and the limiting law (k Lp >>1),lele = lOSF = lB / 4 (kb)2withblB

    (Odijk, 1977; Skolnick & Fixman, 1977) Using the P-B equation, lele = lOSF f(k r0 ) (Fixman, 1982; Le Bret, 1982)

  • Cargse, 2002 - *Lp (nm)k r01 M0.10.01CNaCllinear Col E1 plasmid(Borochov et al., 1981) Lp = l0 + lOSF

    Lp = l0 + lOSF f(k r0 )l0 = 50 nm

  • Rg : radius of gyrationRg (nm) of T7 DNA (40 103 bp)Cargse, 2002 - *CNaClExperimental data(Sobel & Harpst, 1991)Including : excluded volumewith deff

    persistence lengthwith lOSF f(k r0 ), l0 = 40 nm

    (Stigter, 1985)Random coil

  • 6_ Multivalent Counterions6_a) collapse and phase diagramCargse, 2002 - *In the Manning approach,The charge fraction zcq of condensed ions increases like zcq = 1- 1/ zcxM the effective charge is reduced by 94 %Experimentally, electrophoretic mobility m (cm2/V.s. 10-4) :mzcLinear plasmid in 50 mM monovalent salt+ 0.2 mM of zc-valent (Ma & Bloomfield, 1994)

    b () xM saltzc : 1zcqClocal (M)Dx ()B-DNA1.74.210.761.177.420.880.3911.240.940.1216.9Single-stranded DNA41.810.440.2112.540.860.02132.2

    1.4711.3120.923

  • Cargse, 2002 - *Low monovalent salt (1 mM) + Cobalt Hexamine zc = 3 on l DNACobalt Hexamine ConcentrationLight scattering (Widom & Baldwin, 1980-83)Toroidal globuleScatteredIntensity

    Diffusion coefficientRH 40 nmwith spermidine (zc = 3),RH 50 nm(Wilson & Bloomfield, 1979)

  • Cargse, 2002 - *For higher DNA concentrations :aggregationMy first clichs !Cryo-electron microscopy

  • Cargse, 2002 - *Phase diagramSpermineConcentration (M)DNA concentration (M)DNA redissolutionIn excess ofspermineDNA precipitation(Raspaud et al., 1998-99)

  • Cargse, 2002 - *Attractive interaction : in violation of the basic P-B theory

    a simple charge (quasi)-neutralization with a non-Coulombic attractive force ?

    doesnt explain the redissolution in excess of multivalent salt

  • Cargse, 2002 - * a salt bridge model : ion-bridging model ?

    Intermolecular interactions in dilute solutions with an excluded volume v :electrostatic repulsionbetween like-charged chainsshort-range attraction----localchargeinversionThe reduced effective charge : - qeff xM11 / zcCmultivalent saltCspermine (mM)CDNA (mM)(Olvera de la Cruz et al., 1995)

  • Cargse, 2002 - *Fraction of counterionswithin a cylinder of radius r(from the P-B equation)Few AngstromsStrong charge accumulationnear the surface ( one layer)6_b) ionic correlation

  • Cargse, 2002 - *Coulomb energy between neighboring ions azWc = (zce)2/4pee0 azCoupling parameter :

    W = Wc / kT For multivalent ions, zc > 1 and W > 1 strong coupling Important longitudinal correlations between ionsstrongly correlated liquid (Rouzina & Bloomfield, 1996; Grosberg et al., 2002 and references therein)

  • Cargse, 2002 - *Two-dimensional lattice ofthe multivalent counterionsaround the surfaceCorrelation Energy ecper ion < 0 (attractive) ec Wc If n : local concentration ofthe correlated liquidec(2n) < ec(n ) Attraction between DNA

  • Cargse, 2002 - * In the dissolved state,Free energy per DNA molecule with qeff

    - In the condensed state, using ec(Nguyen et al., 2000 ; Nguyen & Shklovskii, 2001)

  • Cargse, 2002 - *About the charge inversion,Spermidine concentration (zc = + 3)---+Spermine concentration (zc = + 4)NucleosomeCore Particleszc = + 2+ 3+ 4-+(Yamasaki et al., 2001)(Raspaud et al., 1999; De Frutos et al., 2001)Short DNAfragmentsT4 DNA

  • Cargse, 2002 - * specific effects : polyamine is a polycation

    at long length scale, behaves like a zc-valent ionssimilar shape of the phase diagramat short length scale (az), each of the zc charged groupsmay be considered as a monovalent ionattenuated correlation effect(Lyubartsev & Nordenskild, 1997)

    - the electrophoretic mobility and its associated zeta potentialSlipping surface located at rzduring the electrophoretic migration

    Comparison betweenrz and the ionic size srz rz = s rz = 2s+-r / s(Deserno et al., 2001)

  • Cargse, 2002 - * mixture of mono and zc-valent cations condensed onto the DNAattenuated correlation effect

    - non-ideal behavior of the free multivalent saltDebye-Hckel ionic atmosphere and the ionic size effectreduced and may suppressed the DNA overcharging(Solis & Olvera de la Cruz, 2001)

  • Cargse, 2002 - *DNA IS A POLYELECTROLYTEAs a conclusion,which behaves like others charged systems (for instance, synthetic materials)and which behavior may be understood in a first approach by electrostatics notion.

    Salt may regulate - DNA-DNA interactions and their conformational changeswithout specific effects

    - DNA - charged proteins interactions

    Course limited to Simple Naked DNA study with ions,more complex behavior for Chromatin,

  • Cargse, 2002 - *References S. Alexander, P.M. Chaikin, P. Grant, G.J. Morales, P. Pincus, D. Hone, J.Chem.Phys., 80, p 5776, 1984. P. Atkins, Physical Chemistry, 6th ed., W.H. Freeman and Co., NY, 1998. H.E. Auer, Z. Alexandrowicz, Biopolymers, 8, p 1, 1969. M.L. Bleam, C.F. Anderson, M.T. Jr Record, P.N.A.S., 77, p 3085, 1980. V.A. Bloomfield, in Nucleic Acids structures, properties, and functionsV.A. Bloomfield, D.M. Crothers and I. Tinocco Jr, Eds (University Science Books, Sausalito CA), p 475-528, 2000. N. Borochov, H. Eisenberg, Z. Kam, Biopolymers, 20, p 231, 1981.W.H. Braulin, C.F. Anderson, Record M.T. , Biochemistry, 26, p 7724, 1987. S.L. Brenner and V.A. Parsegian, Biophys. J., 14, p 327, 1974. S.-L. Chang, S.H. Chen, R.L. Rill and J.S. Lin, J.Phys.Chem., 94, p 8025, 1990. M. De Frutos, E. Raspaud, A. Leforestier, F. Livolant, Biophys. J., 81, p 1127, 2001. M. Deserno, C. Holm, and S. May, Macromolecules, 33, p 199, 2000. M. Deserno, F. Jimenez-Angeles, C. Holm, M. Lozada-Cassou, J.Phys.Chem. B, 105, p 10983, 2001. M. Fixman, J. Chem. Phys., 76, p 6346, 1982. R.M. Fuoss, A. Katchalsky, S. Lifson, P.N.A.S., 37, p 579, 1951. P. Gonzales-Mozuelos, M.Olvera de la Cruz, J.Chem.Phys., 103, p 3145, 1995. J. Granot and D.R. Kearns, Biopolymers, 21, p 203, 1982. L.M. Gross, U.P. Strauss, in Chemical Physics of ionic solutions, B.E. Conway and R.G. Barradas, Eds (John Wiley & Sons, Inc., NY), p 361-389, 1966. A.Y. Grosberg, T.T. Nguyen, and B.I. Shklovskii, Rev. Modern Physics, 74, p 329, 2002. P. J. Hagerman, Biopolymers, 20, p 1503, 1981.

  • R.E. Harrington, Biopolymers, 17, p 919, 1978. N.I. Korolev, A.P Lyubartsev, and L. Nordenskild, Biophys. J., 75, p 3041, 1998. M. Le Bret, J. Chem. Phys., 76, p 6243, 1982. M. Le Bret and B. H. Zimm, Biopolymers, 23, p 287, 1984. M. Le Bret and B. H. Zimm, Biopolymers, 23, p 271, 1984. H. Liu, L. Skibinska, J. Gapinski, A. Patkowski, E.W. Fisher, R. Pecora, J.Chem.Phys., 109, p 7556, 1998. A.P. Lyubartsev and L. Nordenskild, J.Phys.Chem. B, 101, p 4335, 1997. T. Odijk, J. Pol. Sci. Phys. Ed., 15, 477, 1977. T. Odijk, Biophys. J., 75, p 1224, 1998. C. Ma and V.A. Bloomfield, Biopolymers, 35, p 211, 1994. D.A. Mac Quarrie, Statistical Mechanics, Harpers chemistry series, Harper Collins, 1976. G. Maret and G. Weill, Biopolymers, 22, p 2727, 1983. G.S. Manning, J. Chem. Phys., 51, 3, p 924, 1969. G.S. Manning, Biopolymers, 11, p 937, 1972. G.S. Manning, Q. Rev. Biophys. II, 2, p 179, 1978. T.T. Nguyen, I. Rouzina, B.I. Shklovskii, J. Chem. Phys., 112, p 2562, 2000. T.T. Nguyen, and B.I. Shklovskii, J.Chem. Phys., 115, p 7298, 2001. T. Nicolai and M. Mandel, Macromolecules, 22, p 438, 1989. M. Olmsted, C.F. Anderson, and M.T. Record Jr., Proc. Natl. Acad.Sci. USA, 86, p 7760, 1989. M. Olmsted, C.F. Anderson, and M.T. Record Jr., Biopolymers, 31, p 1593, 1991. M. Olvera de la Cruz, L. Belloni, M. Delsanti, J.P. Dalbiez, O. Spalla, M. Drifford, J.Chem.Phys., 103, p 5871, 1995. F. Oosawa, Polyelectrolytes, Marcel Dekker, NY, p 160, 1971. S.Padmanabhan, B. Richay, C.F. Anderson, M.T. Record Jr, Biochemistry, 27, p 4367, 1988.Cargse, 2002 - *

  • E. Raspaud, M. Olvera de la Cruz, J.-L. Sikorav, F. Livolant, Biophys. J., 74, p 381, 1998. E. Raspaud, I. Chaperon, A. Leforestier, F. Livolant, Biophys. J., p 1547, 1999. E. Raspaud, M. da Conceiao, F. Livolant, Phys. Rev.Lett., 84, p 2533, 2000. D.C. Rau and V.A. Parsegian, Biophys. J., 61, p 246, 1992. M.T. Record Jr, Biopolymers, 14, p 2137, 1975. I. Rouzina, V.A. Bloomfield, J. Phys. Chem., 100, p 9977, 1996. I. Rouzina, V.A. Bloomfield, Biophys. J., 77, p 3242, 1999. I. Sabbagh and M. Delsanti, Eur. Phys. J. E, 1, p 75, 2000. C. Schildkraut, S. Lifson, Biopolymers, 3, p 195, 1965. J. Shack, R.J. Jenkins, and J.M. Thompsett, J. Biol. Chem., 198, 85, 1952. J. Skolnick and M. Fixman, Macromolecules, 10, p 944, 1977. E.S. Sobel and J.A. Harpst, Biopolymers, 31, p 1559, 1991. F.J. Solis, and M. Olvera de la Cruz, Eur.Phys.J. E, 4, p 143, 2001. D. Stigter, J. Phys. Chem., 82, p 1603, 1978. D. Stigter, Macromolecules, 18, p 1619, 1985. U.P. Strauss, C. Helfgott, and H. Pink , J. Phys. Chem., 71, 8, p 2550, 1967. J.R.C. van der Maarel, L.C.A. Groot, M. Mandel, W. Jesse, G. Jannink and V. Rodriguez, J.Phys.II France, 2, p 109, 1992. J. Widom and R.L. Baldwin, J. Mol. Biol., 144, p 431, 1980. J. Widom and R. Widom, Biopolymers, 22, p 1595, 1983. R.W. Wilson and V.A. Bloomfield, Biochemistry, 18, p 2192, 1979. Y. Yamasaki, Y. Teramoto, K. Yoshikawa, Biophys. J., 80, p 2823, 2001.Cargse, 2002 - *

    For multivalent, dont forget that it also depends on the ionic size via the Born energy (ze/a)