14
Jan 2005 Liang Li, WXZJ Slide 1 doc.: IEEE 802.15-05-0103-00- 004b Submission Project: IEEE P802.15 Working Group for Wireless Personal Area Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Networks (WPANs) Submission Title: [Enhanced DSSS Code Sequence with Offset QPSK for 802.15.4b High Rate Alt-PHY] Date Submitted: [13 Jan, 2004] Source: [Liang Zhang, Hongyu Gu, Liang Li, Yafei Tian, Chenyang Yang, Zhijian Hu, Yong Gu] Company: [WXZJ] Address: [2 Xinxi St, Building D, Haidian District, Beijing, China 100085 ] Voice:[86-10-139-11895301], E-Mail:[[email protected]] Re: [Response to the call for proposal of IEEE 802.15.4b] Abstract: [This presentation compares all proposals for the IEEE802.15.4b PHY standard.] Purpose: [Proposal to IEEE 802.15.4b Task Group] Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Doc.: IEEE 802.15-05-0103-00-004b Submission Jan 2005 Liang Li, WXZJ Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Embed Size (px)

Citation preview

Page 1: Doc.: IEEE 802.15-05-0103-00-004b Submission Jan 2005 Liang Li, WXZJ Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Jan 2005

Liang Li, WXZJSlide 1

doc.: IEEE 802.15-05-0103-00-004b

Submission

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)(WPANs)

Submission Title: [Enhanced DSSS Code Sequence with Offset QPSK for 802.15.4b High Rate Alt-PHY]

Date Submitted: [13 Jan, 2004]

Source: [Liang Zhang, Hongyu Gu, Liang Li, Yafei Tian, Chenyang Yang, Zhijian Hu, Yong Gu] Company: [WXZJ]

Address: [2 Xinxi St, Building D, Haidian District, Beijing, China 100085 ]Voice:[86-10-139-11895301], E-Mail:[[email protected]]

Re: [Response to the call for proposal of IEEE 802.15.4b]

Abstract: [This presentation compares all proposals for the IEEE802.15.4b PHY standard.]

Purpose: [Proposal to IEEE 802.15.4b Task Group]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Page 2: Doc.: IEEE 802.15-05-0103-00-004b Submission Jan 2005 Liang Li, WXZJ Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Jan 2005

Liang Li, WXZJSlide 2

doc.: IEEE 802.15-05-0103-00-004b

Submission

It is desirable choose a code sequences that will lead to efficient transmission and low implementation complexity. In particular, it should:

1. Avoid spikes in frequency spectrum

2. Simplify correlation operations

3. Enable simple frequency offset and DC compensation

Motivation

Page 3: Doc.: IEEE 802.15-05-0103-00-004b Submission Jan 2005 Liang Li, WXZJ Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Jan 2005

Liang Li, WXZJSlide 3

doc.: IEEE 802.15-05-0103-00-004b

Submission

Current DSSS Sequence E16

has non-zero DC value …. Decimal Symbol

Binary Symbol Chip Values

0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0

1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1

2 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1

3 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0

4 0 0 1 0 0 0 1 1 1 0 1 1 0 1 0 0 1 0 1 1

5 1 0 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 1 0

6 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0

7 0 1 1 1 0 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1

8 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 0 1 1

9 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0

10 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0

11 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 1 0 1

12 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0

13 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 1

14 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1

15 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 0 1 0

Source doc.: IEEE 802.15-04-0314-02-004b

DC values

Total DC values = -16

Page 4: Doc.: IEEE 802.15-05-0103-00-004b Submission Jan 2005 Liang Li, WXZJ Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Jan 2005

Liang Li, WXZJSlide 4

doc.: IEEE 802.15-05-0103-00-004b

Submission

As such, it is desirable that the code sequences have the following properties:

1. All sequences contain an equal number of ones and zeros in total

2. All sequences contain an equal number of ones and zeros in the even numbered chips (I phase)

3. All sequences contain an equal number of ones and zeros in the odd numbered chips (Q phase)

4. Total phase rotation in I / Q plane accumulates to 0 degree over the complete symbol

5. The first 8 symbols are shifted versions of each other

6. The last 8 symbols have inverted odd numbered chips (Q phase); when compared to the 8 first symbols, have the exact inverted baseband phase

Motivation

Page 5: Doc.: IEEE 802.15-05-0103-00-004b Submission Jan 2005 Liang Li, WXZJ Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Jan 2005

Liang Li, WXZJSlide 5

doc.: IEEE 802.15-05-0103-00-004b

Submission

Proposed Symbol-to-Chip Mapping (Enhanced 16-chip Code Set W16)

Decimal Value Binary Symbol Chip Value DC Value

0 0000 0 0 1 1 1 1 1 0 0 0 1 0 0 1 0 1 0

1 1000 1 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1 0

2 0100 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 0 -4

3 1100 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 -4

4 0010 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 4i

5 1010 1 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 –4i

6 0110 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 -4 –4i

7 1110 1 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 4 -4i

8 0001 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 -4

9 1001 0 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 4

10 0101 1 1 1 1 0 0 1 0 0 0 0 1 0 1 1 0 0

11 1101 0 1 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0

12 0011 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 0 4 -4i

13 1011 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 4+4i

14 0111 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 1 4i

15 1111 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1 4i

Total DC Value 0 +0i

Page 6: Doc.: IEEE 802.15-05-0103-00-004b Submission Jan 2005 Liang Li, WXZJ Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Jan 2005

Liang Li, WXZJSlide 6

doc.: IEEE 802.15-05-0103-00-004b

Submission

The Features of W16 Sequences

    Have the same features of the Code sequence in 802.15.4 – 1.     Same 0 and 1 in preamble sequence;– 2.         The first chip is not always 0 or 1;– 3.         Total DC value is 0, though not always 0 in every sequences;– 4.         The phase comes back to 0 after one symbol period;

  Maintained characteristic from E16 orthogonal sequences:– 1.        Orthogonal characteristic introduced by Walsh conversion;– 2.      More familiar performance to that of E16 orthogonal sequences;– 3.         The low complex correlation decoder can also be implemented;

•  

Page 7: Doc.: IEEE 802.15-05-0103-00-004b Submission Jan 2005 Liang Li, WXZJ Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Jan 2005

Liang Li, WXZJSlide 7

doc.: IEEE 802.15-05-0103-00-004b

Submission

PSD of TX signal with W16 code before and after Tx filter

Left: PSD of Tx signal before TX filterRight: PSD of Tx Signal After TX filter.

r=0.6 FIR filter for 2x over sampling rate

Page 8: Doc.: IEEE 802.15-05-0103-00-004b Submission Jan 2005 Liang Li, WXZJ Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Jan 2005

Liang Li, WXZJSlide 8

doc.: IEEE 802.15-05-0103-00-004b

Submission

The Auto-Correlation of W16 (Left) and En- Cobi 16 (Right)

Page 9: Doc.: IEEE 802.15-05-0103-00-004b Submission Jan 2005 Liang Li, WXZJ Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Jan 2005

Liang Li, WXZJSlide 9

doc.: IEEE 802.15-05-0103-00-004b

Submission

Cross-correlation of received Signal (2x Over Sampling Rate) with W16 (left) and En-Cobi16 (Right)

Page 10: Doc.: IEEE 802.15-05-0103-00-004b Submission Jan 2005 Liang Li, WXZJ Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Jan 2005

Liang Li, WXZJSlide 10

doc.: IEEE 802.15-05-0103-00-004b

Submission

AWGN (Non-coherent)

Left: PER without TX filter, Right: PER with TX filter.2x Tx/Rx Over Sampling Rate, 4x Channel Over Sampling Rate, No Sync

Error ,No Frame Detection, 20 Octets per PPDUs, 1e4 Monte Carlo Simulation,

Without Filter and Power Amplifier

Page 11: Doc.: IEEE 802.15-05-0103-00-004b Submission Jan 2005 Liang Li, WXZJ Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Jan 2005

Liang Li, WXZJSlide 11

doc.: IEEE 802.15-05-0103-00-004b

Submission

AWGN: Ideal Sync. vs. Correlation Sync.

PER in AWGN Channel with a 7-tap FIR filter:2x Tx/Rx Over Sampling Rate, 4x Channel Over Sampling Rate, Correlation Sync., No Frame Detection, 20 Octets per PPDUs, 1e4 Monte Carlo Simulation, Without Power Amplifier

Page 12: Doc.: IEEE 802.15-05-0103-00-004b Submission Jan 2005 Liang Li, WXZJ Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Jan 2005

Liang Li, WXZJSlide 12

doc.: IEEE 802.15-05-0103-00-004b

Submission

Performance Comparison in Multipath Channel

4x Tx/Rx Over Sampling Rate, 4x Channel Over Sampling Rate,No Sync Error, No Frame Detection,20 Octets per PPDUS, 1e4 Monte Carlo Simulation, Without Filter and Power Amplifier[Result]There is about 0.5dB difference between the two PER performances.

Page 13: Doc.: IEEE 802.15-05-0103-00-004b Submission Jan 2005 Liang Li, WXZJ Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Jan 2005

Liang Li, WXZJSlide 13

doc.: IEEE 802.15-05-0103-00-004b

Submission

The PER in Multiple Channel and Delay Condition

4x Tx/Rx Over Sampling Rate, 4x Channel Over Sampling Rate,

With the practical Sync method. 20 Octets per PPDUS, 1e4 Monte Carlo Simulation, With the mentioned FIR filter (R=0.6)

for 4x over sample rate and a Power Amplifier

Page 14: Doc.: IEEE 802.15-05-0103-00-004b Submission Jan 2005 Liang Li, WXZJ Slide 1 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Jan 2005

Liang Li, WXZJSlide 14

doc.: IEEE 802.15-05-0103-00-004b

Submission

• Enhanced W16 can satisfy the stated 6 criteria that will• Avoid spikes in frequency spectrum

• Simplify correlation operations

• Enable simple frequency offset and DC compensation

• The performance is the same as the DSSS (E16)

Summary