35
ACFI-FRIB M. Horoi CMU Double-beta decay and BSM physics: shell model nuclear matrix elements for competing mechanisms Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Support from NSF grant PHY-1404442 and DOE/SciDAC grants DE-SC0008529/SC0008641 is acknowledged

Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

ACFI-FRIB M. Horoi CMU

Double-beta decay and BSM physics: shell model nuclear matrix elements for

competing mechanisms

Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

Ø Support from NSF grant PHY-1404442 and DOE/SciDAC grants DE-SC0008529/SC0008641 is acknowledged

Page 2: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

Overview •  Neutrino physics within and beyond the

Standard Model (BSM) •  DBD mechanisms: light Majorana neutrino

exchange, right-handed currents, heavy neutrinos, SUSY R-parity violation,…

•  48Ca: 2v and 0v shell-model matrix elements – Beyond closure approximation

•  76Ge, 82Se, 130Te, and 136Xe results

ACFI-FRIB M. Horoi CMU

Page 3: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

Classical Double Beta Decay Problem

ACFI-FRIB M. Horoi CMU

Adapted from Avignone, Elliot, Engel, Rev. Mod. Phys. 80, 481 (2008) -> RMP08

Qββ

A.S. Barabash, PRC 81 (2010)

136Xe 2.23 ×1021 0.020€

T1/ 2−1(2ν) =G2ν (Qββ ) MGT

2v (0+)[ ] 2

T1/ 2−1(0v) =G0ν (Qββ ) M

0v (0+)[ ] 2 < mββ >

me

%

& '

(

) *

2

mββ = mkUek2

k∑

2-neutrino double beta decay

neutrinoless double beta decay

Page 4: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

Neutrino Masses

ACFI-FRIB M. Horoi CMU

-  Tritium decay:

-  Cosmology: CMB power spectrum, BAO, etc,

Δm212 ≈ 7.5 ×10−5 eV 2 (solar)

Δm322 ≈ 2.4 ×10−3 eV 2 (atmospheric)

c12 ≡ cosθ12 , s12 = sinθ12 , etc

Two neutrino mass hierarchies

3H → 3He + e− +ν e

mν e= Uei

2mi2

i∑ < 2.2eV (Mainz exp.)

KATRIN (to takedata): goal mν e< 0.3eV

mii=1

3

∑ < 0.23eV

Goal : 0.01eV (5 −10 y)

PMNS −matrix

m02 = ?

Neutrino oscillations :− NH or IH ?− δCP = ?−Unitarity of UPMNS ?− Are there m ~ 1eV sterile neutrinos?

− Dirac or Majorana?− Majorana CPV α i = ?− Leptogenesis?→Baryogenesis

Page 5: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

Neutrino ββ effective mass

ACFI-FRIB M. Horoi CMU

T1/ 2−1(0v) =G0ν (Qββ ) M

0v (0+)[ ] 2 < mββ >

me

%

& '

(

) *

2€

mββ = mkUek2

k=1

3

= c122 c13

2m1 + c132 s12

2m2eiφ 2 + s13

2m3eiφ 3

Cosmology constraint

φ2 = α2 −α1 φ3 = −α1 − 2δ

76Ge Klapdor claim 2006

Page 6: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

The Minimal Standard Model

ACFI-FRIB M. Horoi CMU

?

Local Gauge invariance of Lagrangian density L :

Dµ = I∂µ − igAµa (x)T a

T a ∈GA SM group : SU(3)c × SU(2)L ×U(1)Y

SM fermion masses :

ψ iLYijψ jRφ →Yij < φ >ψ iLψ jR = mD( )ijψ iLψ jR

→neutrino is sterile: Dµ = I∂µ

SU(2)Ldoublet

SU(2)Lsinglet

SU(2)Ldoublet

mν l

SM = 0 l = e, µ, τlepton flavor conserved

φ

Page 7: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

Too Small Yukawa Couplings?

ACFI-FRIB M. Horoi CMU

arXiv:1406.5503 Standard Model fermion masses

-L ⊃12ψ iLYijψ jRφ →

12mDijψ iLψ jR mDij =Yij v( )

-L ⊃12mLR # ν R

c # ν Lc

Majorana

Yν ≈10−10 −10−9Yt

Page 8: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

arXiv:0710.4947v3

φ

φ

< φ >

< φ >

The origin of Majorana neutrino masses

ACFI-FRIB M. Horoi CMU

-L ⊃

Type I see-saw

mLLν ≈

(100 GeV )2

1014GeV= 0.1eV

mLLν ≈

(300keV )2

1TeV= 0.1eV

$

% & &

' & &

12 " ν L " ν R

c( )0 mLR

mLRT 0

$

% &

'

( ) " ν Lc

" ν R

$

% &

'

( ) + h.c.

12 " ν L " ν R

c( )0 mLR

mLRT MRR

$

% &

'

( ) " ν Lc

" ν R

$

% &

'

( ) + h.c.

mLLν = −mLR

ν MRR−1mLR

ν

Aββ ∝Uei2mi

q2i∑ −

Sej2

M jj∑

mi <1eV <<1GeV <<Mi

-  ΣU2eimi term dominates in

most cases

-  TeV collider Majorana tests not relevant

T1/2−1(0v)∝ Aββ

2

mi, M1 <1eV <<1GeV <<Mi

Page 9: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

arXiv:0710.4947v3

φ

φ

< φ >

< φ >

The origin of Majorana neutrino masses

ACFI-FRIB M. Horoi CMU

-L ⊃

See-saw mechanisms

mLLν ≈

(100 GeV )2

1014GeV= 0.1eV

mLLν ≈

(300keV )2

1TeV= 0.1eV

$

% & &

' & &

12 " ν L " ν R

c( )0 mLR

mLRT 0

$

% &

'

( ) " ν Lc

" ν R

$

% &

'

( ) + h.c.

12 " ν L " ν R

c( )mLL mLR

mLRT MRR

$

% &

'

( ) " ν Lc

" ν R

$

% &

'

( ) + h.c.

< φ >

< φ >

φ

φ€

12 " ν L " ν R

c( )0 mLR

mLRT MRR

$

% &

'

( ) " ν Lc

" ν R

$

% &

'

( ) + h.c.

mLLν = −mLR

ν MRR−1mLR

ν

Left-Right Symmetric model

WR search at CMS arXiv:1407.3683

SU(2)L × SU(2)R ×U(1)B −L WR

Page 10: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

Majorana neutrino masses

ACFI-FRIB M. Horoi CMU

-L ⊃

12 " ν L " ν R

c( )mLL mLR

mLRT MRR

$

% &

'

( ) " ν Lc

" ν R

$

% &

'

( ) + h.c.

ʹ′ ν L

ʹ′ ν Rc

⎝ ⎜

⎠ ⎟ =W

νLNR

c

⎝ ⎜

⎠ ⎟ ≡

U ST V⎛

⎝ ⎜

⎠ ⎟ νLNR

c

⎝ ⎜

⎠ ⎟

WW + =1 UU + ≈1 VV + ≈1

S , T <<1 U ≈UPMNS

W + diag m1,m2,m3,M1,M2,…( )W

!νL → active flavor neutrinos!νRc = !ν sL → sterile neutrino combinations

ν, N→ mass eigenstates

Page 11: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

Low-energy contributions to 0vββ decay

ACFI-FRIB M. Horoi CMU

-L ⊃12

hαβT ν βL e α L( ) Δ

− − Δ0

Δ−− Δ−

⎝ ⎜

⎠ ⎟

eRc

−νRc

⎝ ⎜

⎠ ⎟ + hc

No neutrino exchange

η

λ

H W =GF

2jL

µ JLµ+ +κJRµ

+( ) + jRµ ηJLµ

+ + λJRµ+( )[ ] + h.c.

Left − right symmetric model

H W =GF

2jL

µJLµ+ + h.c.

jL /Rµ = e γ µ 1∓ γ 5( )ν e

Low-energy effective Hamiltonian

Page 12: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

Contributions to 0vββ decay: no neutrinos

ACFI-FRIB M. Horoi CMU

See-saw type III

GUT/SUSY R-parity violation

Squark exchange Gluino exchange

Hadronization /w R-parity v.

Page 13: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

The Black Box Theorem

ACFI-FRIB M. Horoi CMU

J. Schechter and J.W.F Valle, PRD 25, 2951 (1982) E. Takasugi, PLB 149, 372 (1984) J.F. Nieves, PLB 145, 375 (1984)

M. Hirsch, S. Kovalenko, I. Schmidt, PLB 646, 106 (2006)

0νββ observed ó

at some level

(i) Neutrinos are Majorana fermions.

(ii) Lepton number conservation is violated by 2 units

(iii) mββ = mkUek2

k=1

3

∑ = c122 c13

2m1 + c132 s12

2m2eiφ 2 + s13

2m3eiφ 3 > 0

Regardless of the dominant 0νββ mechanism!

Page 14: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

DBD signals from different mechanisms

ACFI-FRIB M. Horoi CMU

arXiv:1005.1241

2β0ν rhc(η)

< λ >

t = εe1 −εe12

Page 15: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

η

λ

The 0vDBD half-life

ACFI-FRIB M. Horoi CMU

T1/ 20ν[ ]−1

= G0ν M jη jj∑

2

= G0ν M (0ν )ηνL + M (0 N ) ηNL +ηNR( ) + ˜ X λ < λ > + ˜ X η <η > +M (0 ' λ )η ' λ + M (0 ˜ q )η ˜ q +2

PRD 83, 113003 (2011)

T1/ 20ν[ ]−1 ≅G0ν M (0ν )ηνL + M (0N )ηNR

2≈G0ν M (0ν ) 2ηνL

2+ M (0N ) 2ηNR

2[ ] No interference terms!€

(i) ηNL neglijible in most models; (ii) η & λ ruled in /out by energy or angular distributions

" ν e L = UekνkLk

light

∑ + SekNkLk

heavy

" ν e R = Tek*νkR

k

light

∑ + Vek*NkR

k

heavy

%

&

' '

(

' '

+

λ =MWL

MWR

#

$ %

&

' (

2

UekTek*

k

light

∑ η = ζ UekTek*

k

light

∑ WR ≈ ζW1 +W2

ην L =mββ

me

ηNL = Sek2 mp

Mkk

heavy

ηNR =MWL

MWR

#

$ %

&

' (

4

Vek2 mp

Mkk

heavy

ν jL

Page 16: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

Two Non-Interfering Mechanisms

ACFI-FRIB M. Horoi CMU

ην =mββ

me

≈10−6

ηNR =MWL

MWR

#

$ %

&

' (

4

Vek2 mp

Mkk

heavy

∑ ≈10−8

Assume T1/2(76Ge)=22.3x1024 y

ην , ηNR ⇐GGe0νT1/ 2Ge

0ν[ ]−1

= MGe(0ν ) 2ην

2+ MGe

(0N ) 2ηNR2

GXe0νT1/ 2Xe

0ν[ ]−1

= MXe(0ν ) 2ην

2+ MXe

(0N ) 2ηNR2

&

' (

) (

Page 17: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

Is there a more general description?

ACFI-FRIB M. Horoi CMU

Long-range terms: (a) - (c )

Aββ ∝ T[L (t1)L (t2)]∝ jV −AJV −A+( ) jαJβ+( )

α, β :V − A, V + A, S + P, S − P, TL , TR

G010ν , G06

0ν , G090ν

Doi, Kotani, Takasugi 1983

Short-range terms: (d)

Jµν = u i2γ µ ,γν[ ] 1± γ 5( )d

Aββ ∝ L

Page 18: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

Summary of 0vDBD mechanisms

•  The mass mechanism (a.k.a. light-neutrino exchange) is likely, and the simplest BSM scenario.

•  Low mass sterile neutrino would complicate analysis •  Right-handed heavy-neutrino exchange is possible, and

requires knowledge of half-lives for more isotopes. •  η- and λ- mechanisms are possible, but could be ruled

in/out by energy and angular distributions. •  Left-right symmetric model may be also (un)validated

at LHC/colliders. •  SUSY/R-parity, KK, GUT, etc, scenarios need to be

checked, but validated by other means. ACFI-FRIB M. Horoi CMU

Page 19: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

ACFI-FRIB M. Horoi CMU

2v Double Beta Decay (DBD) of 48Ca

f7 / 2€

p1/ 2

f5 / 2

p3 / 2

G

T1/ 2−1 =G2v (Qββ ) MGT

2v (0+)[ ] 2

48Ca 2v ββ# → # # 48Ti

Ikeda sum rule(ISR) = B(GT;Z →Z +1)∑ − B(GT;Z →Z −1)∑ = 3(N − Z)

Ikeda satisfied in pf !

E0 =12Qββ + ΔM Z +1

AT−ZAX( )

The choice of valence space is important!

B(GT) =f ||σ⋅ τ || i

2

(2Ji +1)

Horoi, Stoica, Brown,

PRC 75, 034303 (2007) €

gAστquenched$ → $ $ $ 0.77gAστ

ISR 48Ca 48Ti pf 24.0 12.0

f7 p3 10.3 5.2

Page 20: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

ACFI-FRIB M. Horoi CMU

Double Beta Decay NME for 48Ca M. Horoi, PRC 87, 014320 (2013)

T1/ 22ν( )exp = 4.4−0.5

+0.6(stat) ± 0.4(syst)[ ] ×1019 yr

f7 / 2€

p1/ 2

f5 / 2

p3 / 2

G

Page 21: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

Closure Approximation and Beyond in Shell Model

ACFI-FRIB M. Horoi CMU

MS0v = ˜ Γ ( ) 0 f

+ ap+ ˜ a n( )

JJk Jk a # p

+ ˜ a # n ( )J

0i+

p # p n # n J k J

∑ p # p ;J q2dq ˆ S h(q) jκ (qr)GFS

2 fSRC2

q q + EkJ( )

τ1−τ2−

(

) * *

+

, - -

∫ n # n ;J − beyond

Challenge: there are about 100,000 Jk states in the sum for 48Ca

Much more intermediate states for heavier nuclei, such as 76Ge!!!

No-closure may need states out of the model space (not considered).

MS0v = Γ( ) 0 f

+ ap+a # p

+( )J

˜ a # n ˜ a n( )J$ % &

' ( )

0

0i+ p # p ;J q2dq ˆ S

h(q) jκ (qr)GFS2 fSRC

2

q q+ < E >( )τ1−τ2−

$

% &

'

( ) ∫ n # n ;J

as

− closureJ, p< # p n< # n p< n

Minimal model spaces

82Se : 10M states 130Te : 22M states 76Ge : 150M states

M 0v = MGT0v − gV /gA( )2

MF0v + MT

0v

ˆ S =σ1τ1σ2τ 2 Gamow −Teller (GT)τ1τ 2 Fermi (F)

3( ! σ 1⋅ ˆ n )(! σ 2 ⋅ ˆ n ) − (! σ 1⋅! σ 2)[ ]τ1τ 2 Tensor (T)

⎨ ⎪

⎩ ⎪

many − body! " # # # # # # # $ # # # # # # #

two − body! " # # # # # # # # # # # # # $ # # # # # # # # # # # # #

Page 22: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

ACFI-FRIB M. Horoi CMU

1 2 3 4 5 6 7 8 9 10 11 12 13 14Closure energy <E> [MeV]

2.8

3

3.2

3.4

3.6

3.8pure closure, CD-Bonn SRCmixed, CD-Bonn SRCpure closure, AV18 SRCmixed, AV18 SRC

0 50 100 150 200 250N, number-of-states cutoff parameter

3.2

3.3

3.4

3.5

3.6mixed, <E>=1 MeVmixed, <E>=3.4 MeVmixed, <E>=7 MeVmixed, <E>=10 MeV

50 100 150 200 2500

0.5

1

1.5

2Er

ror [

%]

error in mixed NME

J=0 J=1 J=2 J=3 J=4 J=5 J=6 J=7 J=8 J=9Spin of the intermediate states

-0.2

0

0.2

0.4

0.6

0.8

1 GT, positiveGT, negativeFM, positiveFM, negative

82Se: PRC 89, 054304 (2014)

Mmixed (N) = Mno−closure (N) + Mclosure (N = ∞) −Mclosure (N)[ ]

GXPF1A FPD6 KB3G JUN450

0.5

1

1.5

2

2.5

3

3.5

4

Opti

mal

clo

sure

ener

gy [

MeV

]

48Ca

46Ca

44Ca

76Ge

82Se

Page 23: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

New Approach to calculate NME: New Tests of Nuclear Structure

ACFI-FRIB M. Horoi CMU I=0 I=1 I=2 I=3 I=4 I=5 I=6 I=7 I=8 I=9Spin of the neutron-neutron (proton-proton) pairs-3

-2

-1

0

1

2

3

4

5

6

7

GT, positiveGT, negativeFM, positiveFM, negative

Brown, Horoi, Senkov

arXiv:1409.7364,

Page 24: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

ACFI-FRIB M. Horoi CMU

136Xe ββ Experimental Results Publication Experiment T2ν

1/2 T0ν1/2(lim) T0ν

1/2(Sens)

PRL 110, 062502 KamLAND-Zen > 1.9x1025 y 1.1x1025 y

PRC 89, 015502 EXO-200 (2.11 0.04 0.21)x1021 y Nature 510, 229 EXO-200 >1.1x1025 y 1.9x1025 y

PRC 85, 045504 KamLAND-Zen (2.38 0.02 0.14)x1021 y €

±

±

±

±

Mexp2ν = 0.0191− 0.0215 MeV −1

EXO-200

arXiv:1402.6956, Nature 510, 229

Page 25: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

ACFI-FRIB M. Horoi CMU

136Xe 2νββ Results

στ →0.74στ quenching

0g7/2 1d5/2 1d3/2 2s5/2 0h11/2 model space

0h11/2

2s5/2

1d3/2

1d5/2

0g7/2

0h9/2

0g9/2

0h11/2

2s5/2

1d3/2

1d5/2

0g7/2

0h9/2

0g9/2

0h11/2

2s5/2

1d3/2

1d5/2

0g7/2

0h9/2

0g9/2

136Xe(0+)

136Cs(1+)

136Ba(0+)

M 2ν = 0.064 MeV −1

Mexp2ν = 0.019 MeV −1

B(GT;Z →Z +1)∑ − B(GT;Z →Z −1)∑ = 52

Ikeda: 3(N − Z) = 84

0g9/2 0g7/21d5/2 1d3/2 2s5/2 0h11/2 0h9/2

B(GT;Z →Z +1)∑ − B(GT;Z →Z −1)∑ = 84

Ikeda: 3(N − Z) = 84

New effective interaction,

0h11/2

2s5/2

1d3/2

1d5/2

0g7/2

0h9/2

0g9/2

np - nh

n (0+) n (1+) M(2v)

0 0 0.062

0 1 0.091

1 1 0.037

1 2 0.020

Page 26: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

ACFI-FRIB M. Horoi CMU

S. Vigdor talk at LRP Town Meeting, Chicago, Sep 28-29, 2014

T1/ 2 >1×1026 y, after ? years

T1/ 2 > 2.4 ×1026 y, after 3 years

T1/ 2 >1×1026 y, after 5 years€

T1/ 2 >1×1026 y, after 5 years

T1/ 2 > 2 ×1026 y, after ? years€

T1/ 2 > 6 ×1027 y, after 5 years! (nEXO)

Goals (DNP14 DBD workshop) :

Page 27: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

IBA-2 J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87, 014315 (2013).

QRPA-En M. T. Mustonen and J. Engel, Phys. Rev. C 87, 064302 (2013).

QRPA-Jy J. Suhonen, O. Civitarese, Phys. NPA 847 207–232 (2010).

QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv:1408.6077

ISM-Men J. Menéndez, A. Poves, E. Caurier, F. Nowacki, NPA 818 139–151 (2009). SM M. Horoi et. al. PRC 88, 064312 (2013), PRC 89, 045502 (2014), PRC 90, PRC 89, 054304 (2014), in preparation, PRL 110, 222502 (2013).

ACFI-FRIB M. Horoi CMU

Page 28: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

IBA-2 J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87, 014315 (2013).

QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv:1408.6077

SM M. Horoi et. al. PRC 88, 064312 (2013), PRC 90, PRC 89, 054304 (2014), in preparation, PRL 110, 222502 (2013).

ACFI-FRIB M. Horoi CMU

CD − Bonn SRC→

AV18 SRC→

Page 29: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

Take-Away Points

ACFI-FRIB M. Horoi CMU

Black box theorem (all flavors + oscillations)

Observation of 0νββ will signal New Physics Beyond the Standard Model.

0νββ observed ó

at some level

(i) Neutrinos are Majorana fermions.

(ii) Lepton number conservation is violated by 2 units

(iii) mββ = mkUek2

k=1

3

∑ = c122 c13

2m1 + c132 s12

2m2eiφ 2 + s13

2m3eiφ 3 > 0

Regardless of the dominant 0νββ mechanism!

Page 30: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

ACFI-FRIB M. Horoi CMU

T1/ 2−1(0v) =G0ν (Qββ ) M

0v (0+)[ ] 2 < mββ >

me

%

& '

(

) *

2

φ2 = α2 −α1 φ3 = −α1 − 2δ

Take-Away Points The analysis and guidance of the experimental efforts need accurate Nuclear Matrix Elements.

mββ ≡ mv = c122 c13

2m1 + c132 s12

2m2eiφ 2 + s13

2m3eiφ 3

Page 31: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

ACFI-FRIB M. Horoi CMU

Σ = m1 +m2 +m3 from cosmology€

mββ = c122 c13

2m1 + c132 s12

2m2eiφ 2 + s13

2m3eiφ 3

Take-Away Points Extracting information about Majorana CP-violation phases may require the mass hierarchy from LBNE, cosmology, etc, but also accurate Nuclear Matrix Elements. €

φ2 = α2 −α1 φ3 = −α1 − 2δ

Page 32: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

ACFI-FRIB M. Horoi CMU

Take-Away Points Alternative mechanisms to 0νββ need to be carefully tested: many isotopes, energy and angular correlations.

These analyses also require accurate Nuclear Matrix Elements.

T1/ 20ν[ ]−1

= G0ν M jη jj∑

2

= G0ν M (0ν )ηνL + M (0 N ) ηNL +ηNR( ) + ˜ X λ < λ > + ˜ X η <η > +M (0 ' λ )η ' λ + M (0 ˜ q )η ˜ q +2

ην , ηNR ⇐GGe0νT1/ 2Ge

0ν[ ]−1

= MGe(0ν ) 2ην

2+ MGe

(0N ) 2ηNR2

GXe0νT1/ 2Xe

0ν[ ]−1

= MXe(0ν ) 2ην

2+ MXe

(0N ) 2ηNR2

&

' (

) (

SuperNEMO; 82Se

Page 33: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

ACFI-FRIB M. Horoi CMU

2 3 4 5 6 7 8 9 10Closure energy <E> [MeV]

3

3.2

3.4

3.6

3.8

4pure closure, CD-Bonn SRCmixed, CD-Bonn SRCpure closure, AV18 SRCmixed, AV18 SRC

76Ge

J=0 J=1 J=2 J=3 J=4 J=5 J=6 J=7 J=8 J=9Spin of the intermediate states

-0.2

0

0.2

0.4

0.6

0.8

1

GT, positiveGT, negativeFM, positiveFM, negative

I=0 I=1 I=2 I=3 I=4 I=5 I=6 I=7 I=8 I=9Spin of the neutron-neutron (proton-proton) pairs-3

-2

-1

0

1

2

3

4

5

6

7

GT, positiveGT, negativeFM, positiveFM, negative

Mmixed (N) = Mno−closure (N) + Mclosure (N = ∞) −Mclosure (N)[ ]

Take-Away Points Accurate shell model NME for different decay mechanisms were recently calculated.

The method provides optimal closure energies for the mass mechanism.

Decomposition of the matrix elements can be used for selective quenching of classes of states, and for testing nuclear structure.

Page 34: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

Experimental info needed

ACFI-FRIB M. Horoi CMU

Σ B(

GT)

0

0.5

1

Energy (KeV)0 500 1,000 1,500 2,000 2,500

B(GT

)

0

0.05

0.1

0.15

Energy (KeV)0 500 1,000 1,500 2,000 2,500

ExperimentalTheoretical

Page 35: Double-beta decay and BSM physics: shell model nuclear ...Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA !Support from NSF grant PHY-1404442

Collaborators:

•  Alex Brown, NSCL@MSU •  Roman Senkov, CMU and CUNY •  Andrei Neacsu, CMU •  Jonathan Engel, UNC •  Jason Holt, TRIUMF

ACFI-FRIB M. Horoi CMU