51
REPORT OF STRUCTURAL EVALUATION ture Montgomery Hill Observatory, Evergreen Valley College San Jose, California prepared for Observa-Dome Laboratories, Inc. Jackson, Mississippi September 6, 2002 5m Diameter Observatory Dome Struc ADVANCED ENGINEERING RESOURCES, INC. Madison, Mississippi

Download Sample Structural Analysis

Embed Size (px)

Citation preview

Page 1: Download Sample Structural Analysis

REPORT OF STRUCTURAL EVALUATION

ture Montgomery Hill Observatory, Evergreen Valley

College San Jose, California

prepared for

Observa-Dome Laboratories, Inc. Jackson, Mississippi

September 6, 2002

5m Diameter Observatory Dome Struc

ADVANCED ENGINEERING RESOURCES, INC. Madison, Mississippi

Page 2: Download Sample Structural Analysis

TABLE

OF CONTENTS

.....SECTION I

SUMMARY ......... .....................................................................................SECTION II

............ ....................................................................................SECTION III DOME RENDER ELEMENT MODELS .....................SECTION IV Figure 1 Rendering of Closed Observatory Dome

Response Spectrum 4 Dome e 5 ome STR ............................SECTION V ation 2 Combination 3 Combination 5 Figure 8a Slitframe Element Stress Contours, Load Combination 2 mbination 3 mbination 5 Figure 9a Outside Shutter Sheet Stress Contours, Load Combination 2

n 3 Figure 9c Outside Shutter Sheet Stress Contours, Load Combination 5 Figure 10a Shutter Side Element Stress Contours, Load Combination 2 Figure 10b Shutter Side Element Stress Contours, Load Combination 3 Figure 10c Shutter Side Element Stress Contours, Load Combination 4 APPENDIX A - CALCULATIONS ...........................................................SECTION VI

CERTIFICATION .................................................................................

REPORT

INGS AND FINITE

Figure 2 Rendering of Open Observatory Dome Figure 3 CBC

Figure Finite Element Model of Closed ObservatoryFigur Finite Element Model of Open Observatory D

ESS CONTOUR GRAPHICS ......................................

Figure 7a Outside Dome Sheet Stress Contours, Load CombinFigure 7b Outside Dome Sheet Stress Contours, Load Figure 7c Outside Dome Sheet Stress Contours, Load

Figure 8b Slitframe Element Stress Contours, Load CoFigure 8c Slitframe Element Stress Contours, Load Co

Figure 9b Outside Shutter Sheet Stress Contours, Load Combinatio

Page 3: Download Sample Structural Analysis

SECTION I

CERTIFICATION

Page 4: Download Sample Structural Analysis

CERTIFICATION

This report and the supporting analysis have

been prepared by or under the direct

supervision of Gary J. Rogers, P.E., California

Professional Engineering License No. 44469

whose seal and signature appear below.

Page 5: Download Sample Structural Analysis

SECTION II

SUMMARY

Page 6: Download Sample Structural Analysis

EXECUTIVE SUMMARY

f Jackson,

e structure

een Valley

described

ary, a finite

element model of the structure was prepared and subjected to

ied for the

ing up the

mpared to

nationally recognized

authoritative standards for aluminum and steel structures. It is the

conclusion of this evaluation that the design of the structure is

adequate to withstand the expected loading conditions.

At the request of Observa-Dome Laboratories, Inc. o

Mississippi, an evaluation of the observatory dom

proposed Montgomery Hill Observatory at Evergr

College in San Jose, California has been conducted. As

in the detailed report which follows this Executive Summ

various extreme environmental loading conditions specif

facility. The stresses in the various components mak

structure have been computed in this manner and co

allowable stresses as prescribed by

Page 7: Download Sample Structural Analysis

SECTION III

REPORT

Page 8: Download Sample Structural Analysis

REPORT OF STRUCTURAL EVALUATION - Observatory Dome Structure Montgomery Hill Observatory, Evergreen Valley College – San Jose, California Page 1

INTRODUCTION This report presents the findings of a structural evaluation of the 5 meter diameter observatory dome structure to be constructed by Observa-Dome Laboratories, Inc. and located at Montgomery Hill Observatory at Evergreen Valley College located at 3095 Yerba Buena Road in San Jose, California. This evaluation has been undertaken at the request of Mr. Randy Clark of Observa-Dome Laboratories, Inc., Jackson, Mississippi.

STRUCTURE DESCRIPTION The dome structure has a nominal outside diameter of 5 meters (196.5 inches) and an aperture approximately 55” wide extending from the bottom to about 27.5” beyond the zenith with a pair of horizontally actuated shutters. The dome is made up of aluminum 45° radial sections assembled on site and a structural frame consisting of a steel tension ring at the base and parallel steel arches on each side of the aperture. The 45° radial sections are a shop assembly of five 9° radial sections (gores). The surface of the dome is made up of 0.063 inch thick aluminum sheet joined together by bending the edges up 90° and welding adjacent sections along the top edge. A 1/4 inch by 3 9/16 inch aluminum plate is fastened to the edges of the shop assemblies to form a flange for bolted assembly on site. The dome includes a 12” high cylindrical section below the springline. The aperture is reinforced on three sides by a 0.1875 inch by 10 inch aluminum plate (slitframe) standing vertically relative to the curvature of the dome. The shutters are made up of 0.08 inch thick aluminum sheet attached to 0.1875 inch thick aluminum sidewalls. The shutter halves are attached to the dome structure by 2”x2”x3/16” rectangular tube steel runners which engage track members attached to the dome structural frame. Two “I” shaped track members, one located at the bottom of the aperture and the other positioned near the zenith, permit the horizontal operation of the shutter. The dome is supported on 8 spring loaded vertical casters and prevented from uplift and horizontal translation by 8 horizontal caster/hold-down assemblies. The vertical and horizontal casters permit a full 360° rotation of the entire structure. Figure 1 and Figure 2 display a rendering of the complete dome in both the closed and open configurations.

STRUCTURE LOADINGS The loadings to which the structure will be subjected are its own weight, the force of the wind, the weight of snow accumulation, seismic acceleration and operational loads. The shape and configuration of the dome structure render it inaccessible to personnel; therefore, live loads of this nature have not been applied in this evaluation. Experience with these observatory dome structures has shown that when proportioned adequately for all other environmental loads, the structures perform adequately under the wide variety of operational loads that may be expected to occur. Because of such experience and due to the difficulty in application of such loads to the dome’s peculiar shape, operational loads have not been specifically considered in this study.

Page 9: Download Sample Structural Analysis

REPORT OF STRUCTURAL EVALUATION - Observatory Dome Structure Montgomery Hill Observatory, Evergreen Valley College – San Jose, California Page 2 Wind Loading The ability to open the shutter thereby creating a single, large opening leads to the necessity to consider two wind loading scenarios. It is reasonable to expect the shutter to be closed during the extreme wind event ordinarily used for structure design, however, it is clearly possible for wind load to occur during normal operation with the shutter open creating a load which is not insignificant and must be considered. This dome has been designed for wind speeds up to 120 mph. Reference 1 provides procedures for the determination of forces on structures due to wind speeds expressed in 3 second gusts. These procedures have been used to determine the magnitude of forces exerted on the dome by the specified wind velocity. The external pressures resulting from this wind velocity can be exerted on the closed dome in any horizontal direction and would be coupled with internal pressures associated with an enclosed structure. It is reasonable to assume that a wind gust in advance of a severe storm might occur while the shutter is open and with insufficient warning to complete a closing operation. A 3 second gust wind velocity of 60 miles per hour is considered appropriate for such a scenario. In this case, more severe internal pressures are created on the partially enclosed structure which may produce higher component stresses than would be created by the higher wind velocity with the shutter closed. Clearly, the wind can come from any direction relative to the orientation of the dome. The symmetry of the structure allows the variety of directions to be reduced to three for the purpose of structural evaluation. Wind directions into the face of the shutter as well as 90 degrees and 180 degrees to this direction are considered adequate to envelope the maximum component stresses which would be produced by wind loads. Snow Loading This dome is designed to function after exposure to a ground snow load of up to 30 pounds per square foot. Reference 1 provides procedures for determining the magnitude and distribution of snow loads on structures and roofs based on ground snow loads. While it is unlikely that the observatory dome will be open and in use during a snowstorm, it is possible that it might be opened and used after an accumulation of snow. This possibility has been considered in this study. Seismic Loading The dome is designed for operation in Seismic Zone 4 as defined by the California Building Code (CBC, Reference 3). To comply with this requirement, a dynamic analysis has been performed utilizing a response spectrum constructed in accordance with Figure 16-3 in Reference 3. Lacking site specific information, Soil Profile Type SD (Reference 3, Table 16-J), Seismic Source Type A (Reference 3, Table 16-U) and a distance to a known seismic source less than 5 kilometers was used in the construction of the design response spectrum. This response spectrum is reproduced in this report as Figure 3. The possibility that the design seismic event might occur while the shutters are in either of the open or closed positions has been considered in this evaluation.

Page 10: Download Sample Structural Analysis

REPORT OF STRUCTURAL EVALUATION - Observatory Dome Structure Montgomery Hill Observatory, Evergreen Valley College – San Jose, California Page 3 The manner of supporting the dome on vertical and horizontal casters introduces a degree of isolation from ground acceleration forces. While this isolation has not been considered due to the complexity of quantifying it, isolation would have the effect of reducing the stresses experienced by the structure, therefore this approach is considered conservative. Load Combinations The structure was evaluated for the combined effects of the above described loads using the basic load combinations prescribed in article 1612.3.1 of Reference 2 as follows:

1. D 2. D + S 3. D + W 4. D + E/1.4 5. 0.9D ± E/1.4 6. D + 0.75[S + W] Where: D = Dead load S = Snow load W = Wind load (3 horizontal directions) E = Seismic load (2 horizontal directions)

EVALUATION APPROACH

Analysis Procedure In order to ascertain the expected maximum stresses in the various components of the dome structure, a finite element model was developed. In the model, the aluminum sheet and plate materials were modeled as plate elements and the dome tension ring, arches, shutter tracks and track tubes were modeled as line elements or members. The stiffness of plate elements is represented only by their thickness while conventional strengths of materials techniques have been employed to compute the stiffness of the members. Vertical only supports were provided at the approximate locations of the vertical casters and horizontal casters were modeled as supports capable of resisting only horizontal forces. The supports were arranged so as to produce the maximum stresses in materials. It was necessary to create two separate models, one representing the dome in the closed configuration and another representing the dome with the shutter opened. The structure finite element model has been developed using STAADPro® computer software as published by Research Engineers International. of Yorba Linda, California. A graphical representation of each finite element model produced directly by the computer program is shown on Figures 4 and 5 respectively. The analysis software has the capability of computing a wide range of stresses and forces within elements and members and also provides tools for the extraction and sorting of the great number of stresses calculated by the program. This feature was used to extract the critical values identified and discussed herein. In addition, color

Page 11: Download Sample Structural Analysis

REPORT OF STRUCTURAL EVALUATION - Observatory Dome Structure Montgomery Hill Observatory, Evergreen Valley College – San Jose, California Page 4 stress contours can be developed and printed out for review. All of these features were used extensively to review the results of the analysis. Allowable Stresses All aluminum components of the dome structure are alloy 3003-H14. Allowable stresses for the aluminum materials have been calculated in accordance with Reference 4. The allowable tensile stress for alloy 3003-H14 is 10,500 pounds per square inch (psi). For material within 1 inch of a weld, the allowable tensile stress is reduced to 4,200 psi. Allowable compressive stress varies significantly for thin elements depending on whether the element is stiffened or unstiffened and the width of unstiffened elements in relation to their thickness. Because the mode of failure in compression is most often buckling, allowable compressive stresses are generally considerably lower than allowable tensile stress. The critical allowable compressive stresses are given in Tables 1 to 3. Table 1 shows the allowable compressive stresses in all of the aluminum elements except the sheet elements that make up the surface of the dome. Tables 2 and 3 show the allowable compressive stresses in the sheet elements that make up the surface of the dome which increase as the distance above the springline increases. This is due to the configuration of the shop seams and field splices which stiffen the skin and become closer together above the springline thus reducing the width-to-thickness ratio (b/t) which increases the allowable stress. All steel components of the dome structure are mild steel with a yield stress of 36,000 pounds per square inch. Allowable stresses for the steel materials have been calculated in accordance with Reference 5. The critical allowable stresses are given in Table 4.

RESULTS

The results of the stress analysis have been reviewed in detail and the maximum stresses have been extracted and are tabulated in Tables 1 to 4. The distribution of some of these stresses is shown through the use of color coded stress contours on Figures 6 through 12. An initial review of the element stresses was conducted considering the absolute value of the stress level without consideration of the direction of stress. Elements whose absolute stress exceeded the allowable for compression were then examined to determine the direction of the maximum absolute stress, that is, whether the stress was a tensile stress or a compressive stress. In this manner, tensile stresses could be considered separately from all other stresses and compared to the higher allowable stress of 4,200 psi.

Page 12: Download Sample Structural Analysis

REPORT OF STRUCTURAL EVALUATION - Observatory Dome Structure Montgomery Hill Observatory, Evergreen Valley College – San Jose, California Page 5 In Tables 1, 2 and 3 it is demonstrated that all aluminum element stresses reported are less than the applicable allowable stress. Two sets of elements, the dome elements below the springline and the dome sheet elements, contained elements whose absolute value applied stress exceeded the compression allowable stress requiring determination of the direction of stress. These elements were examined more closely and the determination was made that the maximum stresses were tensile stresses for which the higher allowable stress is applicable. Table 4 demonstrates that all steel component stresses produced by the loads are within the allowable stresses dictated by Reference 5.

TABLE 1 - Aluminum Element Stresses

ALUMINUM ELEMENT STRESSESAllowables per Specification for Aluminum Structures

Stresses (psi)WIND SNOW SEISMIC

Element Description Allowable Applied Allowable Applied Allowable AppliedOuter membrane - cylindrical elements below springline 1521 1122* 1141 520 1521 266

Field splice plates 3233 536 2425 298 3233 155Shop splice standing seams 5600 3332 4200 453 5600 304Slit frame 6529 2429 4897 471 6529 253Shutter outer membrane elements 1085 736 814 324 1085 123Shutter sidewalls 6915 2058 5186 870 6915 908* Excludes element numbers 1 and 38 singled out for consideration of direction of stress, see Table 3

Page 13: Download Sample Structural Analysis

REPORT OF STRUCTURAL EVALUATION - Observatory Dome Structure Montgomery Hill Observatory, Evergreen Valley College – San Jose, California Page 6

TABLE 2 – Dome Sheet Stresses

OUTER MEMBRANE STRESSESAllowables per Specification for Aluminum Structures

Alloy: 3003-H14 Specification No. 9THICKNESS = 0.063 inches STRESSES (psi)

Elevation Above Diameter "b" "b/t" WIND SNOW SEISMICSpringline (in) (in) (in) Allowable Applied Allowable Applied Allowable Applied

0.00 196.90 15.46 245 1521 928* 1141 306 1521 14715.40 194.48 15.27 242 1540 606* 1155 186 1540 8730.42 187.26 14.71 233 1599 1162 1199 115 1599 6744.70 175.44 13.78 219 1707 451 1280 102 1707 3457.87 159.30 12.51 199 1880 455 1410 123 1880 4369.61 139.23 10.94 174 2151 694 1613 160 2151 7079.65 115.73 9.09 144 2588 732 1941 343 2588 15687.72 89.39 7.02 111 3350 2151 2513 792 3350 36993.63 60.85 4.78 76 4922 952 3691 265 4922 127

* Excludes element numbers 57, 58, 95, and 96 singled out for consideration of direction of stress, see Table 3

TABLE 3 – Highly Stressed Elements

Max. Applied Allowable* Net Applied Allowable*1 2475 1420 5600 1055 7333 0.40

38 2440 1385 5600 1055 7333 0.3957 2226 1223 5600 1003 7333 0.3658 2252 1223 5600 1029 7333 0.3695 1617 334 5600 1283 7333 0.2396 1631 336 5600 1295 7333 0.24

* Applied stresses are derived from load case 3 which includes wind therefore allowables are increased by one third

Stresses (psi)Stress RatioElement

Number

HIGHLY STRESSED ELEMENTSAllowables per Specification for Aluminum Structures

Maximum Absolute

Axial Tension Plate Bending

TABLE 4 - Steel Component Stresses

STEEL COMPONENT STRESSESAllowables per American Institute for Steel Construction

Allowable Stress (psi) MaximumElement Description Strong axis Weak axis Stress Ratio

Dome tension ring 21522 21522 0.21Lower shutter track 11612 21600 0.32Upper shutter track 18404 21600 0.71Shutter track tubes 21600 21600 0.66Front Arch 9288 9288 0.93Back Arch 24000 21600 0.10

Page 14: Download Sample Structural Analysis

REPORT OF STRUCTURAL EVALUATION - Observatory Dome Structure Montgomery Hill Observatory, Evergreen Valley College – San Jose, California Page 7 CONCLUSIONS

Stress levels in all components produced by all of the loading configurations considered fall below the appropriate allowable stress and therefore all portions of the dome are considered acceptable and meeting the requirements of Reference 1.

Page 15: Download Sample Structural Analysis

REPORT OF STRUCTURAL EVALUATION - Observatory Dome Structure Montgomery Hill Observatory, Evergreen Valley College – San Jose, California Page 8

REFERENCES

1. Minimum Design Loads for Buildings and Other Structures; ASCE 7-98; American Society of Civil Engineers

2. Uniform Building Code; 1997 Edition; International Conference of Building

Officials 3. California Building Code; 1998 Edition; California Building Standards

Commission 4. Specifications for Aluminum Structures; 5th Edition; December, 1996; The

Aluminum Association, Inc. 5. Specification for Structural Steel Buildings, Allowable Stress Design and Plastic

Design; June 1, 1989, American Institute of Steel Construction

Page 16: Download Sample Structural Analysis

SECTION IV

DOME RENDERINGS AND FINITE ELEMENT MODELS

Page 17: Download Sample Structural Analysis

FIGURE 1 – Rendering of Closed Observatory Dome

Page 18: Download Sample Structural Analysis

FIGURE 2 – Rendering of Open Observatory Dome

Page 19: Download Sample Structural Analysis

Use

r ID

: Adv

ance

d En

gine

erin

g R

eso

FIGURE 3 – CBC Response Spectrum

Page 20: Download Sample Structural Analysis

Use

r ID

: Adv

ance

d En

gine

erin

g R

eso

FIGURE 4 - Finite Element Model of Closed Observatory Dome

Page 21: Download Sample Structural Analysis

Use

r ID

: Adv

ance

d En

gine

erin

g R

eso

FIGURE 5 - Finite Element Model of Open Observatory Dome

Page 22: Download Sample Structural Analysis

SECTION V

STRESS CONTOUR GRAPHICS

Page 23: Download Sample Structural Analysis

Use

r ID

: Adv

ance

d En

gine

erin

g R

eso

FIGURE 7a – Outside Dome Sheet Stress Contours

(Load Combination 2)

Page 24: Download Sample Structural Analysis

Use

r ID

: Adv

ance

d En

gine

erin

g R

eso

FIGURE 7b – Outside Dome Sheet Stress Contours (Load Combination 3, Wind in +X Direction)

Page 25: Download Sample Structural Analysis

Use

r ID

: Adv

ance

d En

gine

erin

g R

eso

FIGURE 7c – Outside Dome Sheet Stress Contours (Load Combination 5, Seismic in Z Direction)

Page 26: Download Sample Structural Analysis

Use

r ID

: Adv

ance

d En

gine

erin

g R

eso

FIGURE 8a – Slitframe Element Stress Contours(Load Combination 2)

Page 27: Download Sample Structural Analysis

Use

r ID

: Adv

ance

d En

gine

erin

g R

eso

FIGURE 8b – Slitframe Element Stress Contours (Load Combination 3, Wind in -X (right to left) Direction)

Page 28: Download Sample Structural Analysis

Use

r ID

: Adv

ance

d En

gine

erin

g R

eso

FIGURE 8c – Slitframe Element Stress Contours (Load Combination 5, Seismic in Z Direction)

Page 29: Download Sample Structural Analysis

Use

r ID

: Adv

ance

d En

gine

erin

g R

eso

FIGURE 9a – Outside Shutter Sheet Stress Contours (Load Combination 2)

Page 30: Download Sample Structural Analysis

Use

r ID

: Adv

ance

d En

gine

erin

g R

eso

FIGURE 9b – Outside Shutter Sheet Stress Contours (Load Combination 3, Wind Load in -X (right to left) direction)

Page 31: Download Sample Structural Analysis

Use

r ID

: Adv

ance

d En

gine

erin

g R

eso

FIGURE 9c – Outside Shutter Sheet Stress Contours (Load Combination 5, Seismic in Z Direction)

Page 32: Download Sample Structural Analysis

Use

r ID

: Adv

ance

d En

gine

erin

g R

eso

FIGURE 10a –Shutter Side Element Stress Contours (Load Combination 2)

Page 33: Download Sample Structural Analysis

Use

r ID

: Adv

ance

d En

gine

erin

g R

eso

FIGURE 10b –Shutter Side Element Stress Contours(Load Combination 3, Wind Load in +X (left to right) direction)

Page 34: Download Sample Structural Analysis

Use

r ID

: Adv

ance

d En

gine

erin

g R

eso

FIGURE 10c –Shutter Side Element Stress Contours (Load Combination 4, Seismic in Z Direction)

Page 35: Download Sample Structural Analysis

SECTION VI

APPENDIX A – MANUAL CALCULATIONS

Page 36: Download Sample Structural Analysis

Oo"5ER.V ~ ME 5 ~ S,t.1(.)U:::. St\~ «3- 8 - ZOOZ-

~ _~",IIIoJO L!?~

~ '2.~OVI~I\IIENT 1'SO "SU..(V)VI\\.. D,C /20 MPH l..v,AoI;Q

-g ASS\,JMe:.. ~,~~ \~ ,).\~ N-.~)(.~u~ Lo(1.I2-E:~Po)..)~'Qb Ta~ A 3.'Sec. (,~~T ~~t) ~~()'-"( A~c..e; 7-98.Q

~-:;,

~ Vc. 11.0 M~"t J CATe;~Oi..'t" '":K: .°.. 't -= 1.0U.J 0.,-0

00 -~ I"J":. Co 'O~ (T~'~e.. 1,.- '- ') ~\1.. J\..Q..c..H~ ~~ ~ ~V\

~ .~ u~ A F~(..ToQ... o~ 1.0 To a~ 'o~~L"A.l'~e. OJ

0 c::Z U.J - ~ v- \ 0)QPo(.,MP~~ \~ U~\<"~o~,..J .) v~e. ~;:" .

@

~ ,g 'S,~~ ~EI~""T A8ollle.. ~be; 'So \.,)1\.)~~cWItJ ) \.>\c:: Hc 30 .-.

w "-:e ~ o,~8

~~ E1tJ,",",o~vrl.t Y~("IF'ltAT'OftJ:

~ \.A.)~T"- '5.ot\.)1TC:;oIl.~ GI.,.O.\.(!;~ J c.L..A~1FI c.AilOIoJ f~ ~N(.""O3e~~"'---I

~\\~ So\~\'r"'e:.oIl..s 0'P4::""; c..'-~~~IF'c."'T\~ to\. ~4Q ,..\~~~E~("'\"Q~O. t-to~~"~1'\.. '~MoP,"" W\.--J'D ~e;:~ APPc...II!:~

f 10 c.'--o~e.~ ~oMe:. ~ ~~ ,--" ~~ C7.Jw o~ "'° "'~...~<'l. o~e.~ ~~ M~ ~, ~ '-0 Aob I ~ (.,p.

G~os..~ DOMC .'

~e = ~,oo2.~(, (OfqBjC Iloj( (.oXI"Z.O)~[/IO) = 3<o.'3?~F

CJ ?E..~ ~I"".E.

1c't o.ooZ'5<.o LO"~8x. \ .0)( l'O)'~D1..) ((to) = q~oa ~

"~;

,

"-/

I

Page 37: Download Sample Structural Analysis

5~ ,&,~~,"IZ: -'t,~ 8> - ~-~o2.

Fo<1- ~fl..J.:. s~~ ~ r:~, ""~ ~T~ .l.. (.O~"'1~ Ii ~Me:~ AI\)I\~~Ov~ 'O AI\J ~~~~~ T4o~

/

~. W~c~ ~~e: 10 S~"~ ~"~..) r:.,:2. .. O. ~

-g (~~ ~ \'yHSLI'AL ~MG)C-

~ ~I ftJ ~ W~~ ~vA.A...T\i."coi r ~ =- Lz.,;~) (Ol~) - o~; :. O,t.7S

WO -,~()

00 ~ '-'EN,.e,!\. ~A~Ft"- Q)cryQ)0> .S:d g> C~ ';. - ~ II - 0\ S '=0.;-' ~ "-zw ,..

~ L e:E.wA~b QvA,~-r~

~ Cp L - 0 I~~ . it~ l/z..

~""I~ ,-~e;;~~~ / ~~ "./ ~

W\N~~...:;;~ ---'-L---

"'-.-J b'~

PL..A~ t!"L..S:;V PIr\Ofo1- -lNre(t..N~\ 'i=i.E~\v~ GOeFF\U~".),,"~ ':

(,~O'So~ ~.t.l\e ) ~ c.~: :. of. O. , 8

OPEN "bc)~e ~ (pi .: ~ 0- SS

~

i -t-j-t---i~ i -I tI +-+~ -.-+-- -.1-1 ; i I ! ;, , I '" ~

I

Page 38: Download Sample Structural Analysis

OBse~v~OI"/t..;.. ~ M ~If\lb~ 't;~I...) 8- 8-2.002-

~x\~~N~'- '?f2.t:=;s.svLE; o~ ~EO ~tE:

! ~ ~ ~ ~ 1/ ~ ~ ~:... ('3<. 1 , '3 J L o. 8?) (01 <- is) = ,z, o. 7 Ps~

c--eNTe.~ 1/2,.."'" P c (~"",'1)lOIS~)(-IJz.).: - ~,9 ~F"C

~ Lwo I.I~ ~.p.. (ac..I'l) (0185) (-Ol~)': -1 ~1 ~ P~p..Q

~-:J

~ t~\<=(lN~t ~t.&vf...e o~ C-J..Os.c,sb ~~:WO.,-0

00 -~ p a. (, "3 (.p I I s) (:!O, , B)'=' :t <0. ~ p~~"'"<I>cry c:0) .-. 0>0 c:zw

~ £:'.)c:\E.P:..NAL 7~.s..v~e ON ~ i)c;.)ME

~ Ww,b y~ ~ P ':.(~.O~)(O) 8~J(O.~i ~) -:. ~I"Z,. '~FW

~ Gc"-'Tc~ Y2,. --, p= (q.O"it)(D~~~)(-I\2.):' -~~'2.. ~~P~ L..w~ 1.1", ~ p= ('t.O1XO~8~)( -Ol~) =- - ~,B ~t=

~ f ~rc('lN~L. ?(2..c's..~U~ ~ c>,C:p.) .D~~e;

'9.:;. ("i.O4)(:tw 0, ~~) -:. ~ 5, 0' ~~'F

~~~~~~~~\.V ~e:; -;:SO PSF c.,~\J~~ S~~ L.a~

0 N HtA11;:b <;-Sl2.vcrvi.£ .-. CT:..,. Z-

C-',e~o4.."" -X r:.. ,. D

~~os.w4.£ 1'5 u ~ '~O\.AI~ J A~~\JH\-=.. FUL'-- ~ O~c~EO J ~~~'\lC

Tfole:: (~E L.INe:; 'A.) l,...))A.J~SI..,..lE".ptT N.D""~T.-.\N~ ~C(.,\O~ .-.L-c, -=-0.7

~ ~ :. 0 ~ -, Cc, C-r .t p ~; ~ 11 ... o."'(O,")(l.2..)("O)(~O) -=.. fl~~'-fr Ps.~

;

..~II I

Page 39: Download Sample Structural Analysis

065EIZ.-\l4~D""E S~ S.~~L,£ S'~".J 8- 2.1 -~'2-

! ~s~ ~~~ (u~ ,Q97 .) C"\S(" L9'tB),I " AS'SUM~ <;:e;\SM\<- '?:o~~ "-1 o~, 'l, 0.4 CS-ArJ 'S"Q~E;)~

',--,

J

A ~ \) \VI. E. ~ \ (.. ?Cl..U (= \ L'=. ~"0

~ M\'5<.. - <;1"l.\)(..Tv/l.e;. .c:- I, DDc0

~ R== 2. ~ FoJt:. ~ All... O\~(l ~L.F- C;~'POn."""~b ~Tl..AJa\lI1.-~~.

a.E

~8 : C",,=: Oo<\~ ~~ t\\o,..= \,2- j N\I ~ \,~ W\\~.~ S~'" o~

co -~ ~A~Wl'.lI.b ~\)\...,. A.~b

~ .~ Cv -=. C"~ NV \~\c.~ 0(: S'..~ ~~t)~E'A,~ \..T

. 0>0 C

zw

~ Ca.=- 0.44. NA= O.4~ (10'2..) ~ o.S28

g C" .: d. <04 N \I: 0, <04 (1-10) ':. \, 0"2..4

w

~~

, \",-,-,"

--- -

i' ., 1

: ,-~ '--+---i-""" ,-- '-"T"-:--'

..f"

: :" -;

~

!

~ f=:~~'J~~]--,-,~

i

t~ d,:-.r---t--1-t-.= .L-L-L--'"--.' .I:

i

Page 40: Download Sample Structural Analysis

yr FIGURE 16A-3 1998 CALIFORNIA BUILDING CODE ,:

"-'

.i

CONTROL PERIODS"U)' Ts = Cvl2.5Ca~ To = O.2Tsz0

~a:w..JW004(

:i \.O2.~a: rt-O c.,/Twa..(/)

o.~'l..8 ~ q,I

I O.,~\I

ITo" 0.\.. Ts -:'0.'8 I 2.. 3

PERIOD (SECONDS)

FIGURE 16A-3-DESIGN RESPONSE SPECTRA

~IVeN; <SE.\SM\<'" ZONE:: '"

f\~S\)"e. . ~,~ "'rll-U~'L.E ~ J ~~:::. \.2..) N V = t. ~ (~~\o'w4P-~ r::AV'\.T 1 ~~,,~ . t~.. ~ C~ =- O. ~~8 ) Gv':\' ot-+ \.U,~,~ ~ ~M Le~)J

Z . ~ c. ...'" '2.. . ~ ( o. ~ '2..8)': ,. ~ 4-

T So =. Cv . , . o'") ~--- ..-~ ~ 0./82.SC 2.~(D.C;7 ~)

'"To ~ <::>, '2.. T ~ -=. <:>. '2..[0. I 2> J -=- 0 . \ fo

Ij

2-38.44 -~

- .~::-. i., ---

I

Page 41: Download Sample Structural Analysis

-

, ~%P-.'Jl\00ME. 51'-' <;'~(,.E" ~..,.;) <0- "e,.. ~"2...

, U PPt:~ C:;-HV"TrC,,"- ~A(..~ :[;. 11

~ 1--1__1

1\::. 2.(~)(),'8'~) +(8.q'2..XO'lg;~)"C

~ A.:. 3.';\ I~~c: 'I.Q 0.1875 8,~1z..~ ~, :- ( 8. c::a. \ 1. )( 0 I , 6' ~):. II ,. " ,~- ~ ~

E~ ~ Ai, :. ['2...)( 4)( ", 18'~):' l.~ ,~""co -l-I"- (!)(") (!)0) ,S

. 0>0 c:zw

~ ,""If" ~)L 8,~1~)3 - (~!~~l~~~)3 ~ Z~\ ~ 1~4

~ 1'2- ~'l..

W T =- ~~~~L~) 3. + (.§,~"L)(O~t~1~)~ :.' ~ I~ ~ \~ 'f \"2- \"2-

~ . ~""':I: -=- 'I c::> l ~

"--" y ~ ~ 8,~, '1- " ~o':" ~ "

-+---t-+-I ; i i

~~-I rfJ--

L ,+++=t~~ ..It-11~:-I : : J , : i ;

1--t- -; -.,..;'--j.- --; '-+~i iI : Ii;, I ' ,+-+ t. +--+~ rt:'- --+---++--~-+ I , ; , , i ' i

: l'-~.l- -+=1j~-"' :, ;;'! i

;.l~:-I~-E ~fEIJr--rr-I : ' +-+-.~ : '. ,

'+-+1{~- i

",--,'

Page 42: Download Sample Structural Analysis

Ob~.a..vAaOMG: 5~ '7'~(".L.C S~I.,.J 8.8 -2.002-

; \-ow..;{\,... "S""'~ffEt- -rti:~c..~: I D? l[ A<.:!2~'~'! ~,j~*cf~ ~.r--l

1:) A:. ("3'tO,'8~) -+~(O\lB/s.) ..~s,i.q~J(P.'8'S)) .co

c...§ A'" 3. 'B q I"" ~ o~3

"'i6 n~ It"S ,"'" 14.1 z. ~~ A\i= (\~,'2~)LO,\8;S) = 2,~S ,~t. 0,\'675" ~~---

WO I "f"A...,-0

(~ -~ A-: = ~ ~"-\)(O. (B'S) = I ~1\ ;~'" ~C')Q>0) oS

0 0)0 c:zw

1 ~I@ ~"~

~ y.:- ~to,'8;S 04.xOI'87\)('~. 'aw \

~ "\i '=' 7 d D \\~ 1 /1

'V = (~XC..\~.,~""--"

I'~ -=-- 1.93

~ ~ O}l'O'S(".2.."'~Js. -+ o~~J~-~~~~'1 ~~~~2-SJ3+- ~-- 3 l 'Z...

I... ~~(O\'~"~X 7.'3CCoS)~ -4- ("-1-~O,' 8,S )(~I~-ZO$) -f S)

12-. of~ :.. Jo 3.8_3 IoN

\01 ':. ~_~~~~~3).3..,. O~(e."7s(I.O')..s +- O\,e,~(/, ~~)3+ ot181S, ~ -~--- -3-- .3

r ,~_."'~(ott'O7sf + ('~.j1' )Lo_tS1-SX:o,o"'7)'L.t'2-

""':!:"yo:. I,~~,~~

'\ -= \"'--" -)(,..

y ~ ':. \ 3, 4 ~d:.::$:. Cf

.-

I

Page 43: Download Sample Structural Analysis

O1.7Sc;,.t.VA~OI\l\~ ?N\. ?IN{,L.CS <)fC,I.,) B~/1-~~

t ~(.o;tL '" ~r" ~

I. \'~ ..

, ,,) !--~-I"f i Y,.tt_-E[ t"

-::ICo

~ 8 A,»<.,=: (~)L2.){O,2.S) ~ (Z,~)(O,2.~J Co z. I Z5>I,~..- (/)co ---~.~ A.1;' ('3.JlO"~) ~ 0,70 /tI)"'&..

. C)0 c:Z w A~ :;. ~'3..:x.2-x.O.2...~J ... II~ ,~"""

@~~ ---:r: J( ~ ID 3 3 .

~ 'T:y ':: ~~.Th~ 3) + (~X~I!$) : J, tz8 1~1U; ~ 'Z.. f 2-

~ 3 ) :3'.~ -= ~ ) - '2~:1"::"--'-~ ~ ~ :S. I b 1 } N f

l2- 1:2--

Lr "'--" Y b =-.3 -z!ci'=' S

;,.!..

;

: I

j i l__~t~P !! ' },

-i-l-- t--Ll~~t-l~j., I~ ! Ill! i

; j j j,--,.--+--,- . -+l.--t tj--'

1:~, , I' i r ', --t-it---~.-+-+--+-

I ' ,, '

~

I

I

Page 44: Download Sample Structural Analysis

CJ 8S6 M AbC>~ 'Go, '3 ~ S'" t. 4..£ r:;'...,.J B - J ? .. 'ZD" z l :~~~--~:~~ . '

I~ .. ~o.2.~ I\..

~ ~. 1>17c..c,2"iU

~ (-?/I \E ;:>

U.J 0,-0

00 -~ ~:;:5 lO,~~) -+- 8. '6~1(O. '~J:' 2,~~ IV""r-.. (l)Mc~ g ~~ ~ (q,o'JiX:-O.-z..S) - "2.2."'1 .~&.

~ A. ... Slo,z!>J'" o~; S

~ Y : ~]-~.'t~~(.o.\'2..~\~8.~7('O.'tCS_)(4~)~ '2 q~

~ -y s 3.S2...I,..,I

~ "---' T ~ ":. ( C? I 2- ~ \ ( S I 'S 7 ?) 3 -4- (~~'-g~ ,f ~ C~.~QJ:~)~ +- (:!.:to,lSlJ,1 ~t..

:3 ~ 12-

~" Z'tf.7C'f ;... f

.J '\3 .-::I: ~ O,2SC: 3J + 8 .S~i (0, "2..~J .. o. CSt 7 ~ t~~7 -- -t '2...,.-

12-

-::CJc.-- ,

Yd "Sc ?o~ 'ad:' 3

~

",

I

Page 45: Download Sample Structural Analysis

OS~E;R.vAboME SM.- "S'~b~ <;~.IIJ 8-'z.-z~o2..

I ~~~ - A I..,",O~~'l.e ~~~:~ft;.. ,,,~ .I 1ifc';::, U~1l. C' ~~'7'TC'" ~.~ ..! :;fs'i "'"~;;) -- ,~-~ .

-g b/, = l..::!£9 :: lo.I~7 <.. 10.83 =- ~%~ t o.,~,s. ~0:;: -~ ~~~ r-\...A~~6 IS ~P~crCoE

I;:' 8 A.I :.. ~ , q I 2... e 41, ~ '$ ~ / 0 ~ . ; =- ~ ~ 0.- (/) 7". -~' . ; . --~ -~ 'f:: oI18'~ -.rF:itV) c:0) .-

d g> .'~ ~G:& ,~ ~PACC"zw@

~ b ., 1- I ~ ) 1\~ Lb ~ S4.814 7<0 'o.-t ':.. t~~~ = ~O, ~b"

~ ~ fi:c;;-g .;2.coe- - z.~c - 4'- Q.h[n -.~ - - - ~'O

~ d~ ~ (. ~'Z. \f~ '7 l(~)to.'8'7.\)) ~Io

L-I- 0;. ~.tt, ozS'~ ~ \-",,:" 4~1 B~'~ ~

~ -" t-k = \ ~oo "= ) "Z...oe 0

Id~ ('5<t.~;~) (8,1'Y \A-t ~)C.O)'8"7~))

r=~... J 8'V .q 0 ~ k '61, =-! ~"'to 1~--r~~ ~ o. ~ F; :. ~..~o ~,

1-0 ~G.oI'-,.. ~~\J"it"C (~c.."-:

b;: = (~~~ a lo~'(.,"" to~8:.t-=-. (PS~b o."B1~ /~7

0 ~A.~Coe:' \:5> W\'\I\.P,J'..<"-'

'dj;.: 11:.!~- -=- 7~. 3 ~ <.. )o~.' =- <c<to1. t; O,IB7:S. ~

~ Q~' ~E".b ,~ (OMP~

I

Page 46: Download Sample Structural Analysis

[ O.sS&~v.A.DOJ\I1E S Nt, 'S.t..aw~ S.,.J 8- 'z.-~'Z L .. C;q,87C\'

! ~ lJ£.~ =- -2~-L:§.) -=- .3' 8 I ,

I ~ ~ fi"(:-,: ~.Q; £oS' 'Co ~Q~~ .:. z..2.. I % S

"C c:l h ) '~I '! \~ ( A-G 1=; (3:J.o,\~~) \... (Q J

°I L.." :. St. ~;~ ~ 2..2..1'25 \\ .:. 1- <..

EWO..-0"-00 -co -05 1-\- ':. I ?o~ 0' - I ).tp t 2 K- ~ f'" Q) ~~ 7-~-~ -~.!: l ~,f>'7~/ ~~ Jd ~ L(Uo,"~\zw ~ = II (p' 2... ?s I@~ --- ~--~ ~ .: O,~ ~ ... LL{,oo PSI -w '-J I ~,,---~ -~

~~~ ~ ~ <.=0 -:;

.. 1h -:. ~ ~ 1<,.. ~ I S. t:> :. '=1%""--" f. 0 , '2. "So ~

~.~ Se-c;.TIO'-.) 1'5.. St,6NocvL.

h ~ ~ ~.::~ ~ :2"3 ~ 7 C> ~ -. ~ =- I~ C.2..~

\q~ ~ 32. S~(,

.cc. G~:" I ~ 2...~ 3 - c.. ~O "!o' (bit) ::r.fY~:C?,.:. l.~~ - O\OD~Oq (ItoXffij

~\.:.. O.q'l(,~

~':. O~'-o ~ Q\ :- 0, ~C3~)(o..q'i(,~) ":. 2.1 I S2.2.. ~ I

U ~~ Z I S 2.2.. ?s I Fof&.. ~ L,- S"t" C'Le 58...s- -- ---,' {~~4t£: .(., ~ C;

GL~M.~1""S,\-,.-/!;;t:r

I

Page 47: Download Sample Structural Analysis

08~G(LvADoJl/le qM S'4J~t..5 5~)...) 8 -/~- '2..co'2-.

i. -i )- .l-o N 'T" A~ "" 6" t=::G1'I t) ..J .-

t ~ ST'~M dh'; ~ . ~~ ,?Z/... 12~! t 0,2. ~ \J 1='1

"0cu~ "5 e;L-i" ",.-J t ~ S "-'6NoO ,.:: ~0

I )7~/r=--:; 2-4 ~:3 ~~ vF;

~()..- U)~ -~ ~s":- _2-0_0 S2.E. = 0 I + 3~ o§, ('310 J ( "3~)2..0 c:zw

~ ~, (o.<.}(-Sc..)(O.15) =- c:r...::z.B~ /"-1 c. t::tl.es-PS1~ ~ ~

w~ ~(..~ ~~~ c;e"'T'IOJ,'~ ..s...,h/, = l.. ~ , ~ ~ ~ ~ S Co. \ 0 I 8 "=' c.~ r=-

-t OI'Z.~ Ur1

~ . -. ~AN be;. IS t.."",'A c-T

~ =-.3~ -=.. 1'2 c (07~ O\2~

. -. we:.13 ',5 (.oM PA",T

.L.:.. "r 8> u :~_.!?-& Co Z~.i.i.) ~ ;3:8 u

~ ~1'"4 ~; ;7 ~ -~ 2-QQ 00 - 2.,.goO""C I 3~"-- - - -- "Co -,

L~ )~ ~t),1.!)) ( 5'-)

" i'4B:?35 .-. ~~ ':. }2:D~9- .. ~~~~ 'a. <oz.,~

\ d (~-)l:~~ (3..xO'~J

.t ~ <,.)~e::. 0\ ~ F, :... Z t t- ~O ps. \- ~i ~ -

1

I'.~",::;:"

I

Page 48: Download Sample Structural Analysis

e;W4&oMe ~M.. s.~t.c..e~".j B - I.J-"l...oo ~

f A,-u MI ~vM I\L..L..OW~I:::\~ <:;fa..e.'5~e:s. ~

I ~ ~ M. e: <s ~ \ .,.J E" e M t!:: t.J\~

I. """cI""",t .,"""',,~ MA'('E..L( AL - AL.VM I~I.I"II\ AL.l.o'r' "300'3 - ~ 14

"0 I

~ ~e~E~eAl("~ AL.VMWVN\ A.~.sO"I~~o.J IA6L-e; 1.3,'c::0:p ,~ ~NSlO~ ~W~1.,..t$: ~ I o~ ~ U\ l" o~ ~ Fft.oM w~a.E0 . II~ U 04. 'l- \('$' ~it""\~ I oP ~..~~

T-(/)CD r-..Q)

A~.~ GON\rR\::;:.s.s)t).J l.-Lo~AB\..e. ~.0)

0 c::zUJ

~fc("\F'<.,.A,T'otIJ ~(). 9 ApPL-'~ I<=:' L.,:>\1c::Le: [:;'-EA1EIo.1T:$.

k Aa...cc.. SA-n~F\~ ~~ ~"'~ STAtI)~)N~ St.::AMs. G~ F,c.!:t".b~ ~P","l'-~~ ""N~ ~ = C;~I~~ aGiWe.~.I.J ~EAM.s ~'t ~O\~""t oF:

,'-' r~ 'Srt"I'

W~ CS~AM~ "8.c:<...oMI!: C-t-OS~ 1o~~tZ"- ~ T~~ C,~ TA.~","/i.~ ~~'Ove;. i~~ ~~~~~J~~ IN~~4~e.s ~ b 1)e'UAS~

~""""""i't~/." ,~ ~ VAltIA~(...e: A.\..t..~I,.,.J~L.e. ~t'<t.G-.s.s.. -"'5<=.E: -'-~t.(!: \~ Ref~, F~(t.,... 'S~\W ~,"",,"o~-A8~ 9"tt.e;s.s.e;~

\ ~AM(>Le CoM P\J"t:A""T\'D...)

OUT$.IDt=;. ~~I,.;). 4D e..~A\...\..-~ ~PA,~ 5(:.A~-' " J

1\\ SPI'-'A.>l7LIN,,:,.. 4>;.. \~b, '85

b -:.. ~LJ~.!.~,?) ". ~ ~ I "'f ~4D

~l ; ~~~ e '2~S.4b 0,01.3

p~ .: .!::.~.=:. .=. ~~E ':. , . I~ \ t.~, ~ , ,~, PS 1( bib) Z~ s,.q '---~~ -

~o~: F", Ap"'-tIE;~ ~(,~U6~ ~(=" ?~~t"'IT'f'~ ~!:.L..'

~

I

Page 49: Download Sample Structural Analysis

c:nS~VA~Me ~M S'AJi#L.E ~,~ S.. 13 "'2.00'2..

i ~""'A~ ~I~ ~ ~e.o.M~ :

L .II ~ I

m' T o,~\1-g ==::::l j~: ==. to. 0 ... '3.a.

.g <sPS<- NO, -0 AP~u~Scu-:]

~ ~J - O\y - ~~ ~ Ib - '2.',LO\O"'~)-

(X) ~.~ .po ~~ a 4,2. ~~, = ~20C ?$\

. 01 - -0 c -. -zw -~

@~~ F,i!;."-O CS~(..,\ c...1E; :

~ lilJ ~6E~ 6At1(.eT

~ r +- OIIz.S" ftg,~.3h

- II

.I. ~,~~'3~~

t <;p~c..- ~o' B ~fPUcs.

~ =- §~2~ : 2.8, S .:> Z~t o. , '2. ~

~,o-o ':t='"" = 1'110 = I~.J~_:. 2. ~'l.. ~ K.~I

(bIJL (28.~)2.. 2.~ '2.. S P ~ \.. ~

- ~ ,

.. ""'-'1i"~+

I .

Page 50: Download Sample Structural Analysis

03'5~VA.OOME. c,;ttJ'.:-, S"AJt..'-G ~),J 8 - 11-"Z.oo2.. IS

S(..,\ IFp-AM <.:;

.I '"r ~ ./ D.IS-iS fl.J - lo,tJ77" ~

~ ~ F'6\.b SVI..'c.E

c:: ~ ~rA~~,~ b ~~~0:g Ou'T"~. DE Sk' eo)-::)

~ Spec. ~o, '\' AP(>Lle.~WO~U~cn~ -'a) b/.:' lO.(c'y 2. 5'i :>:2..1~.~ of o.'8"7~. 01~~ <.~o

~ r:-,t 9,~ - o~o" (b/~) ';' Cf\~- o.o.,~( ~"J :. 4,B9, t-s

g ':- ~ 8~7 ~,w~ --~- ~

~"S ~ ~ rr"'c ~ 'CS ~I ,oJ

II~ 31S ~ ~ -r~' ~!,j~l7-

or-£.-, ;~t~.

,/ l_~ ,,-t--:

O"8'~.+

?E~ ~~~E J b:- '2~, $-"

b II~ = ?~IS - ... Z'1r3,7 Sf c\o6

~:::. 2--8 ~~ :. .-:q. ~3>,)- t:..s, -=- .f1<3,3/' \">$,zq.3:7~ - - ---

;,.

;tl, ~I. +- S~I~ (J, D.Pb3~f,!r \--;, --;5 "; 27,~~.-/[ ~~ 7e:1'2- ~~ve,r bh .. '1. 7. S.I - 3,~?:;7S ~,'" 28 ~ :. 0.B/4 t.'Sr t: ~~o8 ' ~13,7S

'-0 N£Q OL..'s - ~ 81.4; ?~\

I

Page 51: Download Sample Structural Analysis

"8~e:'V'A~M£ ~~ SJ~(.~ C;~I~ 8-13"2.002-

CS~I.J"'n"'~~ <::;I~e: ~~~s

~ o"8'~" ~

1:J Ica Coo .,c= 10

~ ",ItS""""'":J -a.E

L!J 0.-0

00 -~ ~?e;<.. No, 9' At~ve.$"'"" Q)Mc=0> .-~ ~ ~ ~ ~ I ~ ..:. S '3. '3 "a '3 ~ 2 ~

-6 O\'8"l~~ '<'0

~ ~.a. ~.4 -o.O'i~(~~.!11) ': ~,'8~"-~' =- S'B~PS'w --~ ~-_-=:-

~ ~I~~~ ~Ooa ~\bE.5 "'N~ I~~\OE 'S~\.ITr~4 ~IO~t~~ "'-\\E 'S~A1I.Ie "'~ ~~o\le E'<.<..c.=:P, b.:. ~" ~~a.,

r b=-o"\ , '-.>~E.. 'SAME.. k-a.-OYPta\...\:'s,!.~

rt-~ t-~t--~r-~, ,

f ~L--L ,~~-cf-~l-~.;I , Ir ~ '

lfEliLl+- [ .. : I ' :, I I ' ,;. --+--+ --i-t---i~T-'-t-

Iii .J i ,

r -T-~-I- t '--~1---

I