23
Wei Yang Hyperbolic cooling of graphene Zener-Klein transistors Drain Source Gate W. Yang, S. Berthou, X. Lu 2 , Q. Wilmart, A. Denis, M. Rosticher , T. Taniguchi 3 , K. Watanabe 3 , G. Fève, J.M. Berroir , G. Zhang 2 , C. Voisin, E. Baudin, Bernard Placais 1) LPA – ENS, Meso-Group + Optics-group + Engineers, Paris, France, 2) Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, China, 3) Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan

Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

Wei Yang

Hyperbolic cooling of graphene Zener-Klein transistors

Drain

Source

Gate

W. Yang, S. Berthou, X. Lu2, Q. Wilmart, A. Denis, M. Rosticher, T. Taniguchi3, K. Watanabe3, G. Fève, J.M. Berroir, G. Zhang2, C. Voisin, E. Baudin, Bernard Placais

1) LPA – ENS, Meso-Group + Optics-group + Engineers, Paris, France, 2) Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, China, 3) Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan

Page 2: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

G/BN Zener-Klein Transistor (GoBN-ZKT)

OUTLINE

What is a G/hBN Zener-Klein transistor?

Scattering: Current saturation in high mobility bilayer Graphene on BN

Relaxation and Cooling : Emission of Hyperbolic Phonon Polaritons

2

Page 3: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

G/BN Zener-Klein Transistor (GoBN-ZKT)

3

OUTLINE

What is a G/hBN Zener-Klein transistor?

Scattering: Current saturation in high mobility bilayer Graphene on BN

Relaxation and Cooling : Emission of Hyperbolic Phonon Polaritons

Page 4: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

Zener Tunneling at a high electrical field

4

large electrical field

Page 5: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

Sharp Klein p-n junction

Klein tunneling

𝜎𝑝𝑛 =4𝑒2

ℎ×

𝑘𝐹𝑙𝑝𝑛

4𝜋

𝑛 𝑒−ℎ𝑝𝑛

=𝑒 𝑘𝐹𝜋2 ℏ

𝐸𝑝𝑛

SLG BLG

5

Katsnelson, Novoselov, Geim, Nat. Phys.2, 620 (2006)

Smooth Klein p-n junction

𝜎𝑝𝑛 = 𝛼4𝑒2

ℎ×

𝑘𝐹𝑙𝑝𝑛

4𝜋 ; (𝛼~0.2)

Page 6: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

Zener-Klein tunneling

Zener-Klein Tunneling, Pauli blocking:

𝜎𝑍𝐾 = 𝛼4𝑒2

𝑘𝐹𝑙𝑍𝐾

4𝜋= 𝐶𝑜𝑛𝑠𝑡. ; 𝑛 𝑒−ℎ

𝑍𝐾 =𝑒 𝑘𝐹

𝜋2 ℏ (𝐸 − 𝐸𝑍𝐾)

𝑬𝒛𝒌 =𝟐𝑬𝑭

𝒆𝒍𝒛𝒌 (dashed line)

S D

lZK

2EF

6

GoBN ZKT is a graphene/hBN transistor operating at a high electrical field

where interband Zener-Klein tunneling dominating the transport

high electrical field

Page 7: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

G/BN Zener-Klein Transistor (GoBN-ZKT)

7

OUTLINE

What is a G/hBN Zener-Klein transistor?

Scattering: Current saturation in high mobility bilayer Graphene on BN

Relaxation and Cooling : Emission of Hyperbolic Phonon Polaritons

Page 8: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

Characteristic of the GoBN ZKT device

-6 -4 -2 0 2 4 6

0

5

10

R (

k

)

Vg (V)

T = 4.2K

Drain

Source

Gate

Bias is gating

BL-Graphene

Gate

8

CQ

Cgeo

30 000 cm2V-1s-1

m* ~ 0.03me

E

DOS

e

h

2 2

2

kE

m

CQ ~ 40 mF/m2

Page 9: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

Comparison with GaN or Si transistors

GoBN Zener-Klein transistor Panasonic : X-GaN Power transistor

GoBN Lg=4µm

𝑔𝑚 = 250µ𝑆/𝑚𝑚 𝐺𝑎𝑖𝑛 = 10

9

Page 10: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

I-V characteristics

Constant gate

Constant carrier density

Impurity scattering

Optical phonon scattering

Zener-Klein tunneling

10

Page 11: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

Focus on current saturation at low field

11

𝜎 =𝑛𝑒µ

1 + 𝐸/𝐸𝑠𝑎𝑡2

Saturation energy ɛsat

EF at a low doping

100meV at a high doping

Page 12: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

G/BN Zener-Klein Transistor (GoBN-ZKT)

12

OUTLINE

What is a G/hBN Zener-Klein transistor?

Scattering: Current saturation in high mobility bilayer Graphene on BN

Relaxation and Cooling : Emission of Hyperbolic Phonon Polaritons

Page 13: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

Relaxation in Graphene

1. e-e interactions → electron multiplication and thermalisation

(𝜏~20 𝑓𝑠) + heat conduction : div −κ𝛻𝑇 = −𝐸. 𝐽 , κ =𝜋2𝑘𝐵

3

3𝑒2𝜎 𝑇

2. e-AC-imp supercollisions → prominent in diffusive G but suppressed in G/BN

3. e-OP interaction → deformation potential coupling (𝜏 ≥ 2 𝑝𝑠 )

4. e-HPP interaction → fast (𝜏 ≈ 200 𝑓𝑠)!!

Impurity T T3

Ordinary electron-phonon collision 3-body electron-phonon-impurity supercollisions

A. Betz et al. / Phys. Rev. Lett. 109 (2012) 056805; A. Betz et al. / Nat. Phys. 9 (2013) 109

13

Page 14: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

Noise in graphene transistor

Alexander A. Balandin, Nat. Nano. 8, 549 (2013).

thermal noise

Stotal = αH V2/ N f + SV

A. Betz et al. PRL.109,056805 (2012).

The bandwidth of Noise spectra in GHz range 14

Page 15: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

Bath temperature 𝑇0 = 4.2 𝐾 Noise temperature 𝑘𝐵𝑇𝑁 ≡ 𝑆𝐼 4𝐺𝑑𝑖𝑓𝑓

Hot electrons, heat equation, Wiedemann-Frantz

𝑘𝐵𝑇𝑁 ≡ 𝑘𝐵𝑇𝑒 =3

8 × 𝐿𝑒𝑛𝑔𝑡𝑕 × 𝑃

𝜎

Hot Fermi sea + holes

𝑘𝐵𝑇𝑁 = 𝑓 1 − 𝑓 𝑑𝐸∞

−∞≈ 𝑘𝐵𝑇𝑒 +

𝒏𝒉

𝐷𝑂𝑆

RF noise thermometry principles

E

f

𝑘𝐵𝑇𝑒

15

Page 16: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

What do we learn from noise ?

Discontinuity in 𝑘𝐵𝑇𝑁 𝐸 at 𝐸 ≈ 𝐸𝑧𝑘

Superlinear 𝑘𝐵𝑇𝑁 𝐸 for 𝐸 ≤ 𝐸𝑧𝑘

Quasi-plateaus 𝑘𝐵𝑇𝑁 𝐸 for 𝐸 ≥ 𝐸𝑧𝑘

16

Page 17: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

Hot electron analysis of noise

« hot » electron dashed line : 𝑘𝐵𝑇𝑁 𝐸 ≤ 𝐸𝑧𝑘 ≈𝑭

𝟐𝐿 𝑃/𝜎

« cold » electron dashed line : 𝑘𝐵𝑇𝑁 𝐸 ≥ 𝐸𝑧𝑘 ≈ 𝑘𝐵𝑇𝑒 𝐸𝑧𝑘 +𝑭

𝟏𝟒 𝐿 𝑃/𝜎

17

Page 18: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

Hyperbolic Phonon Polaritons of h-BN ?

(Courtesy of F. Koppens, Kaprun School 2015) 18

Reststrahlen band

Type-II « in-plane »

~170-200meV

Type-I « out-of-plane »

~90-100meV

Page 19: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

Graphene/HPP impedance matching

HPPs are propagative modes

Superplanck HPP cooling of Graphene

𝑃 =𝑛

4𝜋2ђ𝜔∆𝜔

e𝑥𝑝 ђ𝜔 𝑘𝐵𝑇 − 1× 𝑀

𝑀 =𝟒 ℜ𝒀𝟎 𝝎, 𝒒 ℜ𝝈 𝝎, 𝒒

𝒀𝟎 + 𝝈 𝟐

Semi-infinite h-BN : 𝒀𝟎~𝟒𝟎µ𝑺 (M~0.01)

Confined HPPs :𝒀𝟎 𝝎, 𝒒 ~ 𝑸 × 𝟒𝟎µ𝑺 ( 𝑀 ~0.1)

19

Page 20: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

HPP relaxation time

e-h pumping : 𝑛 𝑒−ℎ𝑍𝐾 =

𝑒 𝑘𝐹

𝜋2 ℏ(𝐸 − 𝐸𝑍𝐾) =

𝑛𝑒−ℎ

𝜏𝐻𝑃𝑃 ⇒ 𝜏𝐻𝑃𝑃 =

𝜋2 ℏ

𝑒 𝑘𝐹 𝑑𝑛𝑒−ℎ

𝑑𝐸

Noise temperature « Cold electron regime » 𝑛𝑒−ℎ ≤ 𝐷𝑂𝑆 × 𝑘𝐵∆𝑇𝑁/2

𝜏𝐻𝑃𝑃 ≤𝜋2 ℏ

𝑒 𝑘𝐹 𝐷𝑂𝑆

𝑑𝑘𝐵𝑇𝑁𝑑𝐸

= 0.46 𝑝𝑠 (𝑛 = 1. 1012)

𝑛𝑒−ℎ ≤ 𝐷𝑂𝑆 × 𝑘𝐵∆𝑇𝑁/2

E

f 1 0

ZK+HPP at charge neutrality

20

Page 21: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

HPP cooling in the ZK regime

ZK current : 𝐽𝑧𝑘 = 𝛼4𝑒2

𝑘𝐹𝑙𝑧𝑘

4𝜋𝐸 − 𝐸𝑧𝑘 ZK pumping : 𝑛 𝑒−ℎ

𝑍𝐾 =𝑒 𝑘𝐹

𝜋2 ℏ(𝐸 − 𝐸𝑍𝐾)

HPP cooling : 𝑃𝐻𝑃𝑃 = ℏΩ 𝑛 𝑒−ℎ𝐻𝑃𝑃 = ℏΩ 𝑛 𝑒−ℎ

𝑍𝐾 = ℏΩ𝑒 𝑘𝐹

𝜋2 ℏ𝐸 − 𝐸𝑧𝑘

Joule Heating : ∆𝑃𝐽𝑜𝑢𝑙𝑒 = 𝐽𝑠𝑎𝑡 𝐸 − 𝐸𝑧𝑘 = 𝟐𝜺𝒔𝒂𝒕𝑒 𝑘𝐹

𝜋2 ℏ𝐸 − 𝐸𝑧𝑘

in GoBN,where ℏ𝛺𝐼𝐼 ≈ 2ℏ𝛺𝐼 ≈ 200 𝑚𝑒𝑉 ⇒ 𝑷𝑯𝑷𝑷 ≈ 𝑷𝑱𝒐𝒖𝒍𝒆

21

E

f

2EF

HPP cooling doped regime

Page 22: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

HPP cooling of hot electrons

E

f 1 0

HPP thermal emission

Super-Planck HPP thermal emission (𝜎ℎ𝑜𝑡(𝜔, 𝑞) by Polini at al. )

𝑃𝐽 = 0.5𝐺𝑊

𝑚2 , 𝑘𝑇 = 0,4𝑒𝑉, 𝑛𝑒= 4 1012

𝑃𝐻𝑃𝑃𝑡ℎ = 2.4 × 𝑀

𝐺𝑊

𝑚2 = 0,24 𝐺𝑊

𝑚2 = 𝑃𝐽 2 = 𝑃𝑊𝐹 𝑏𝑦 𝑡𝑎𝑘𝑖𝑛𝑔 𝑀𝑡ℎ ≈ 0.1

22

Page 23: Drain Source Gate · 2016. 12. 10. · Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 ℎ Þ ß𝑍𝐾 4𝜋 = . ; −ℎ= Þ𝐹 𝜋2 ℏ ( − ) 𝒛

Conclusions

G/BN ZKT-Transistors are performant

HPP-I is responsible for current saturation

HPP-II s give rise to hyper-Plank cooling in the ZKT regime

23

Thanks very much for your attention