76
56800E 16-bit Digital Signal Controllers freescale.com Design of an ACIM Vector Control Drive using the 56F8013 Device DRM075 Rev 1 11/2005 Designer Reference Manual

DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

  • Upload
    vanphuc

  • View
    227

  • Download
    1

Embed Size (px)

Citation preview

Page 1: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

56800E16-bit Digital Signal Controllers

freescale.com

Design of an ACIM Vector Control Drive using the 56F8013 Device

DRM075Rev 111/2005

Designer Reference Manual

Page 2: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Design of an ACIM Vector Control Drive using the 56F8013 DeviceDesigner Reference Manual

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify that you have the latest information available, refer to http://www.freescale.com

The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location.

Revision History

Date RevisionLevel Description Page

Number(s)

10/2005 0 Initial release N/A

11/2005 1 Corrected term “Intelligent Power Module” to “Integrated Power Module” xi, 3-3

Page 3: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

TABLE OF CONTENTS

Chapter 1 Introduction1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

Chapter 2 Benefits and Features of the 56F8013 Controller2.1 56F8013 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12.2 56800E Core Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12.3 Memory Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22.4 56F8013 Peripheral Circuit Reatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22.5 AWARD-WINNING DEVELOPMENT ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Chapter 3 Motor Drive System3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13.2 Features of a Motor Drive System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13.3 Introduction to System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23.3.1 Hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23.3.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-53.4 Specification and Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6

Chapter 4 ACIM Theory4.1 AC Induction Motor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14.2 Induction Motor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24.3 Digital Control of an AC Induction Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

Chapter 5 Design Concept of an ACIM Vector Control Drive5.1 Vector Control of AC Induction Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15.2 Relationship between Rotor Flux Orientation and Stator Flux Orientation Induction

Motor Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-35.3 Block diagram of Stator Flux Oriented (SFO) Control . . . . . . . . . . . . . . . . . . . . . . . . . 5-35.4 Forward and Inverse Clarke Transformation (a, b, c to áa , b and backwards) . . . . . . 5-4

Table of Contents, Rev. 1

Freescale Semiconductor i Preliminary

Page 4: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

5.5 Forward and Inverse Park Transformation (a, b to d-q and backwards) . . . . . . . . . . . 5-55.6 Rotor Speed Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-55.7 Speed Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-65.8 PFC Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-75.8.1 Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-75.8.2 Output Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-85.8.3 Main Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-85.8.4 Output Diode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-85.8.5 Inductor Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9

Chapter 6 Hardware Implementation6.1 56F8013 Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16.2 High-Voltage Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-36.3 Sensor Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-46.4 PFC Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-66.4.1 Drive Circuit Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-76.4.2 Sample Circuit Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-76.5 Detailed Motherboard Configurations for ACIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8

Chapter 7 Software Design7.1 Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-17.2 Stator Flux Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-27.3 Electromagnetic Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37.4 Rotor Speed Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37.5 Stator Flux Determination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37.6 Space Vector Pulse Width Modulation (SVPWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-47.7 Fault Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-47.8 PFC Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4

Chapter 8 JTAG Simulation and SCI Communication8.1 JTAG Simulation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-18.2 SCI Communication Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

ii Freescale Semiconductor Preliminary

Page 5: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Chapter 9 Operation9.1 Switch-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19.2 During Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19.3 Switch-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19.4 Cautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1

Table of Contents, Rev. 1

Freescale Semiconductor iii Preliminary

Page 6: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

iv Freescale Semiconductor Preliminary

Page 7: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

LIST OF FIGURES

3-1 Washing Machine Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13-2 Washing Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23-3 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33-4 IRAMS10UP60A Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-44-1 Induction Motor Speed-Torque Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14-2 Hardware System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-34-3 Pulse Width Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-45-1 Block Diagram of the Stator Flux Oriented (SFO) System . . . . . . . . . . . . . . . . . . . 5-25-2 Stator Reference Voltage ref. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25-3 Clark Transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-45-4 Park Tranformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-55-5 Speed Regulator Channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-65-6 PFC Configuration Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-76-1 Demonstration System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16-2 Hierarchy Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-26-3 Motor Control System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-36-4 DCBus Sampling Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-46-5 Bus Link Current Sample Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-56-6 Methods to Detect Phase Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-56-7 Protection Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-66-8 Main PFC Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-76-9 PFC Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-76-10 PFC Sampling Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-86-11 ACIM Jumper Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-87-1 Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-17-2 Stator Reference Voltage ref. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-27-3 Improved Stator Flux Estimation Channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37-4 Simple PFC Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-57-5 Discrete Voltage Loop Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-58-1 Communication Board’s Frame Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-18-2 System Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-28-3 Connections for JTAG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-28-4 CodeWarrior Development Tool Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-38-5 SCI Communication Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4

List of Figures, Rev. 1

Freescale Semiconductor v Preliminary

Page 8: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

vi Freescale Semiconductor Preliminary

Page 9: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

LIST OF TABLES

5-1 Nameplate Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-66-1 Configuration of the 56F8013’s Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9

List of Tables, Rev. 1

Freescale Semiconductor vii Preliminary

Page 10: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

viii Freescale Semiconductor Preliminary

Page 11: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

About This DocumentThis manual describes the use of a 56F8013 device in an ACIM Vector Control Drive application.

AudienceThis manual targets design engineers interested in developing an ACIM Vector Control Drive application.

OrganizationThis User’s Manual consists of the following sections:

• Chapter 1, Introduction, explains how an AC Induction Motor and a 56F8013 device facilitate a vector control drive design.

• Chapter 2, Benefits and Features of the 56F8013 Controller, highlights the advantages in using a 56F8013 controller.

• Chapter 3, Motor Drive System, details the features and design of a motor drive system.• Chapter 4, ACIM Theory, describes software, control and configuration of an AC Induction Motor.• Chapter 5, Design Concept of an ACIM Vector Control Drive, details the design concept of an

AC Induction Motor vector control drive.• Chapter 6, Hardware Implementation, describes how to set up the hardware needed for a

vector control drive application.• Chapter 7, Software Design, explains the software system design.• Chapter 8, JTAG Simulation and SCI Communication, describes the application’s debugging

and communications functions.• Chapter 9, Operation, explains how to use the application.• Appendix A, Schematics, contains schematics for the ACIM vector control drive application.• Appendix B, ACIM Bill of Materials, lists all parts used in the application.

Preface, Rev. 1

Freescale Semiconductor ix Preliminary

Page 12: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

ConventionsThis document uses the following notational conventions:

Typeface, Symbol or Term Meaning Examples

Courier Monospaced Type

Code examples //Process command for line flash

Italic Directory names, project names, calls, functions, statements, procedures, routines, arguments, file names, applications, variables, directives, code snippets in text

...and contains these core directories:applications contains applications software...

...CodeWarrior project, 3des.mcp is...

...the pConfig argument....

...defined in the C header file, aec.h....

Bold Reference sources, paths, emphasis

...refer to the Targeting DSP56F83xx Platform manual.......see: C:\Program Files\Freescale\help\tutorials

Blue Text Linkable on-line ...refer to Chapter 7, License....

Number Any number is considered a positive value, unless pre-ceded by a minus symbol to signify a negative value

3V-10DES-1

ALL CAPITAL LETTERS

# defines/ defined constants

# define INCLUDE_STACK_CHECK

Brackets [...] Function keys ...by pressing function key [F7]

Quotation marks, “...”

Returned messages ...the message, “Test Passed” is displayed....

...if unsuccessful for any reason, it will return “NULL”...

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

x Freescale Semiconductor Preliminary

Page 13: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Definitions, Acronyms, and AbbreviationsThe following list defines the acronyms and abbreviations used in this document. As this template develops, this list will be generated from the document. As we develop more group resources, these acronyms will be easily defined from a common acronym dictionary. Please note that while the acronyms are in solid caps, terms in the definition should be initial capped ONLY IF they are trademarked names or proper nouns.

ACIM Alternating Current Induction MotorADC Analog-to-Digital ConversionCOP Computer Operating ProperlyDCM Discontinuous Current ModeEMF Electro-Magnetic ForceEVM Evaluation ModuleGPIO General Purpose Input/OutputHMI Human Machine InterfaceI2C or I2C Inter-Integrated CircuitIC Integrated CircuitIM Induction MotorIPM Integrated Power ModuleISR Interrupt Service RoutineLPF Low-Pass FilterPFC Power Factor CorrectionPI Proportional-IntegralPLL Phase Locked LoopPWM Pulse Width Modulation or ModulatorRMS Root Mean SquareSCI Serial Communication InterfaceSFOC Stator-Flux-Oriented ControlSPI Serial Peripheral InterfaceSV Space VectorSVPWM Space Vector Pulse Width Modulation

Preface, Rev. 1

Freescale Semiconductor xi Preliminary

Page 14: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

ReferencesThe following sources were used to produce this book; we recommend that you have a copy of these references:

1. DSP56800E Reference Manual, DSP56800ERM, Freescale Semiconductor, Inc.

2. 56F8000 Peripheral User Manual, MC56F8000RM, Freescale Semiconductor, Inc.3. 56F8013 Data Sheet, MC56F8013, Freescale Semiconductor, Inc.4. Inside Code Warrior5. X.Xu, R.De Donker, and D.W.Novonty, “A Stator Flux Oriented Induction Machine Drive”,

in PESC 1988 Conf.Rec. pp.870-876. 6. C.J.Francis,H.Z.de la Parra, and K.W.E.Cheng, “Practical Implementation of a Stator Flux

Oriented Control Scheme for an Induction Machine,” in Power Electronics and Variable-speed Drives, October 1994, pp.54-59

7. J.O.Pinto,B.K.Bose, and L.E.B.da Silva, “A Stator-Flux-Oriented Vector-Controlled Induction Motor Drive with Space-Vector PWM and Flux-Vector Synthesis by Neural Networks,” IEEE Trans. Ind. Appli.,vol.37, no.5,pp.1308-1318. Sep. 2001.

8. M.H.Shin, D.S.Hyun, and S.B.Cho, “Maximum Torque Control of Stator-Flux-Oriented Induction Machine Drive in the Field-Weakening Region,” IEEE Trans Ind. Appli. vol.38,no.1,pp.117-122,Jan.2002.

9. Y.Ruan, X.H.Zhang, J.Xu and etc. “Stator Flux Oriented Control of Induction Motors,” Tans. Of China Electro.Society, vol.18, no.2, pp.1-4, Apr.2003.

10. Yonghong Xue, Xingyi Xu, and T.G.Habelter, “A Stator Flux-Oriented Voltage Source Variable-Speed Drive Based on DC Link Measurement,” IEEE Tran. Ind.Appl. vol.27, no.5, pp.962-969, Sep.1991.

11. Jie Chen,Yongdong Li, and Wei Dong, “A Novel Stator-Flux-Oriented Speed Sensorless Induction Motor Control System using Flux Tracking Strategy,” in Inter.Conf. On Power Elec. And Drive System, PEDS’99, Hong Kong, pp.609-614.

12. Ju-Suk.Lee, T.Takeshita, and N.Matsui, “Stator-Flux-Oriented Sensorless Induction Motor Drive for Optimum Low-Speed Performance,” IEEE Tran. Ind. Appli. vol.33,no.5,pp.1170-1176, Sep.1997.

13. L.Ben-Brahim and A.Kawamura, “A Fully Digitized Field-Oriented Controlled Induction Motor Drive using Only Current Sensors,” IEEE Trans. Ind. Electro.,vol.39,pp.241-249, June 1992.

14. Jun Hu, and Bin Wu, “New Integration Algorithms for Estimating Motor Flux over a Wide Speed Range,” IEEE Trans. on Power Electronics, vol.13, no.5, pp.969-977, Sep.1998.

15. N.R.N.Idris, and A.H.M Yatim, “An Improved Stator Flux Estimation in Steady-State Operation for Direct Torque Control of Induction Machines,” IEEE Trans. Ind.Appl., vol.38, no.1, pp.110-116, Jan.2002.

16. 3-Phase AC Induction Motor Vector Control using a 56F80x, 56F8100 or 56F8300 Device Design of Motor Control Application, Freescale Semiconductor, Inc., 2004

17. 3-Phase AC Motor Control with VHz Speed Close Loop using the 56F80x, Freescale Semiconductor, Inc., 2001

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

xii Freescale Semiconductor Preliminary

Page 15: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Introduction

Chapter 1 Introduction

1.1 IntroductionThis drive application allows vector control of an AC Induction Motor (ACIM) running in a closed-speed loop without a speed/position sensor coupled to the shaft. The application serves as an example of AC induction vector control drive design using a Freescale 56F8013 with Processor ExpertTM (PE) software support.

AC induction motors, which contain a cage, are very popular in variable-speed drives. They are simple, rugged, inexpensive, and available at all power ratings. Progress in the field of power electronics and microelectronics enables the application of induction motors for high-performance drives, where traditionally only DC motors were applied. Thanks to sophisticated control methods, AC induction drives offer the same control capabilities as high-performance four-quadrant DC drives.

ACIM is an excellent choice for appliance and industrial applications. This design will employ sensorless Field-Oriented Control (FOC) to control an ACIM using the 56F8013 device, which can accommodate the sensorless FOC algorithm. A motor control system is flexible enough to implement a washing machine protocol while it drives a variable load. The system illustrates the features of the 56F8013 in motor control. The flexible Human Machine Interface (HMI) allows the control board to communicate with a PC and supports a simplified HMI using push buttons on the processor board, making the system easy to use.

This document describes the Freescale 56F8013 controller’s features, basic AC induction motor theory, the system design concept, and hardware implementation and software design, including the PC master software visualization tool.

Introduction, Rev. 1

Freescale Semiconductor 1-1 Preliminary

Page 16: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

1-2 Freescale Semiconductor Preliminary

Page 17: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

56800E Core Features

Chapter 2 Benefits and Features of the 56F8013 Controller

2.1 56F8013 Benefits• Hybrid architecture facilitates implementation of both control and signal processing functions in a

single device• High-performance, secured Flash memory eliminates the need for external storage devices• Extended temperature range allows for operation of nonvolatile memory in harsh environments• Flash memory emulation of EEPROM eliminates the need for external non-volatile memory• High performance with 16-bit code density • On-chip voltage regulator and power management reduces overall system cost• Diversity of peripheral configuration facilitates the elimination of external components, improving

system integration and reliability• This device boots directly from Flash, providing additional application flexibility• High-performance Pulse Width Modulation (PWM) with programmable fault capability simplifies

design and promotes compliance with safety regulations• PWM and Analog-to-Digital (ADC) modules are tightly coupled, reducing processing overhead• Low-voltage interrupts protect the system from brownout or power failure • Simple in-application Flash memory programming via Enhanced OnCETM or serial

communication

2.2 56800E Core Features• Up to 32 MIPS at 32MHz execution frequency• DSP and MCU functionality in a unified, C-efficient architecture• JTAG/Enhanced On-Chip Emulation (EOnCE) for unobtrusive, real-time debugging• Four 36-bit accumulators• 16- and 32-bit bidirectional barrel shifter• Parallel instruction set with unique addressing modes• Hardware DO and REP loops available• Three internal address buses• Four internal data buses• Architectural support for 8-, 16-, and 32-bit single-cycle data fetches• MCU-style software stack support• Controller-style addressing modes and instructions• Single-cycle 16 x 16-bit parallel Multiplier-Accumulator (MAC)• Proven to deliver more control functionality with a smaller memory footprint than competing

architectures

Benefits and Features of the 56F8013 Controller, Rev. 1

Freescale Semiconductor 2-1 Preliminary

Page 18: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

2.3 Memory Features• Architecture permits as many as three simultaneous accesses to program and data memory• On-chip memory includes high-speed volatile and nonvolatile components:

— 16KB of Program Flash — 4KB of Unified Data/Program RAM

• All memories operate at 32MHz (zero wait-states) over temperature range (-40° to +125°C), with no software tricks or hardware accelerators required

• Flash security feature prevents unauthorized accesses to its content

2.4 56F8013 Peripheral Circuit Reatures• Pulse Width Modulator (PWM) module• Serial Peripheral Interface (SPI)• Serial Communication Interface (SCI)• Four 16-bit Timers• Software-programmable Phase Lock Loop (PLL)• Two 12-bit Analog-to-Digital Converters (ADC) with six inputs at rates up to 1.1µs per sequential

or simultaneous conversion • Up to 26 General Purpose I/O (GPIO) pins• Computer Operating Properly (COP)• Integrated Power-On Reset and Low-Voltage Interrupt module• I2C Communication Module supporting Slave, Master and MultiMaster Mode

2.5 AWARD-WINNING DEVELOPMENT ENVIRONMENT Processor Expert (PE) provides a Rapid Application Design (RAD) tool that combines creation of an easy-to-use, component-based software application with an expert knowledge system.

The CodeWarrior Integrated Development Environment (IDE) is a sophisticated tool for code navigation, compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards will support concurrent engineering. Together, PE, CodeWarrior, and EVMs create a complete, scalable tools solution for easy, fast, and efficient development.

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

2-2 Freescale Semiconductor Preliminary

Page 19: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Features of a Motor Drive System

Chapter 3 Motor Drive System

3.1 IntroductionAn AC Induction Motor (ACIM), which is simple, rugged, inexpensive, and available at all power ratings, is often used in products targeting the consumer and industrial market. This application employs sensorless Field-Oriented Control (FOC) to control an ACIM using the 56F8013 device, which can support the complicated sensorless FOC algorithm. By using this algorithm, the motor drive system achieves excellent torque control performance and supports the driving of variable loads.

3.2 Features of a Motor Drive System• The design implements the washing machine protocol, shown in Figure 3-1

Figure 3-1. Washing Machine Protocol

• The design also fulfills the requirements of the washing cycle, shown in Figure 3-2

Motor Drive System, Rev. 1

Freescale Semiconductor 3-1 Preliminary

Page 20: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Figure 3-2. Washing Cycle

• The motor control algorithm employs Stator-Flux-Oriented Control (SFOC); Power stage switches are controlled by Space Vector Pulse Width Modulation (SVPWM)

• No position information devices or stator flux measurement are used, so a speed sensorless method is employed

• The motor is capable of forward and reverse rotation and has a speed range from 50rpm to 3000rpm; the tumble wash has a speed of 40rpm and the spin cycle obtains a maximum drum speed of 1600rpm. The drum can be driven directly or by a belt that connects to the motor shaft. To acheive the wash and spin cycles, the speed-transfer ratio can be set at 1:2.

• The user controls motion profiles, rotation direction, and speed. The RS-232 communication supports further R&D by enabling the easy tuning of control parameters.

• The motor drive system is designed to create minimal acoustic noise

3.3 Introduction to System Design

3.3.1 Hardware This application uses a 56F8013 device to drive a 3-phase motor with a complicated motion protocol. The resistor uses phase current sensors and no optocoupler, so the system is cost-sensitive.

PC master software communicates with the PC through the RS-232 and senses the mid-variables and modifies the control-variables during the debug process.

The system comprises a 56F8013 board and an ACIM board. The ACIM board includes a 3-phase power stage, Power Factor Correction (PFC), a communication module which links the PC with the 56F8013 demonstration, simplified Human Machine Interface (HMI) and a protection module, as well as effective electrical isolation.

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

3-2 Freescale Semiconductor Preliminary

Page 21: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Introduction to System Design

Figure 3-3. System Block Diagram

Among the hardware system features are:

• Integrated Power Module (IPM) An IRAMS10UP60A, a 600V, 10-Ampere IR Integrated Power Module, powers the ACIM. Its built-in control circuits provide optimum gate drive and protection for the IGBT. Three bridges are integrated in its body. It reduces the design scale of hardware and software. Figure 3-4 shows the Circuit Diagram.

power

HMI

IM

56F8013Processor

Board

AC Input

L1 D1

C

Ai BidcV

1

DA

JTAG

Oscilloscope

VT0VT1

VT2

VT3

VT4

VT5

VT6

VT0

VT1

VT2

VT3

VT4

VT5

VT6

*rω

LOA

D

driver

Motor Drive System, Rev. 1

Freescale Semiconductor 3-3 Preliminary

Page 22: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Figure 3-4. IRAMS10UP60A Circuit Diagram

• 56F8013 Guaranteeing excellent performance and accurate control of the ACIM requires more complex software, but the powerful 56F8013 is capable of the heavy computation demanded. The controller board includes:— Control system circuit— CPU circuit— ADC circuit— Power supply circuit— DAC circuit— SCI interface— Parallel JTAG interface— LED display circuit— Signals output interface

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

3-4 Freescale Semiconductor Preliminary

Page 23: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Introduction to System Design

• No optocoupler To keep the application’s costs low, optocouplers are not used as an interface between the controller and the IPM. A reliable protection circuit improves system safety.

• Power stage for ACIM, BLDC, and PMSM The power stage can drive ACIM, BLDC, and PMSM motors with only minor adjustments to resistor values

• Signal sample and process board To control hardware costs, rather than using a Hall effect transducer, a simple difference amplier circuit detects the current and voltage signals

• 56F8013 Evaluation Module (EVM) Freescale’s 56F8013 demostration board connects to the main board and highlights the capability of the EVM

3.3.2 SoftwareThis system drives a 3-phase ACIM using stator-flux orientation. The application features:

• Control technique, which includes:— Phase currents and phase voltages reconstruction— Stator-flux observation — Electromagnetic torque estimation, used for the slip frequency calculation— Stator flux orientation to calculate the torque-producing stator current to be used in the speed

regulation channel— Speed closed loop, allowing the motor a good transient response— Compensation for the voltage drops across the stator resistor— SVPWM to generate the desired voltage by the inverter

• Minimum speed of 50rpm• Maximum speed of 3000rpm• Power factor correction which eliminates negative effects on the input electric use of switches• Fault protection against:

— Bus overvoltage — Bus undervoltage— Bus overcurrent — IPM overheating

• PC master software for debug and remote control of the ACIM

Motor Drive System, Rev. 1

Freescale Semiconductor 3-5 Preliminary

Page 24: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

3.4 Specification and PerformanceInput voltage: 85~265VAC

Input frequency: 45~65HZ

Rating bus voltage: 350V

Rating output power: 500W

Switch frequency of PFC switch: 100KHZ

Switch frequency of inverter: 10KHZ

Power factor: >95%

Efficiency: >90%

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

3-6 Freescale Semiconductor Preliminary

Page 25: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

AC Induction Motor

Chapter 4 ACIM Theory

4.1 AC Induction MotorSquirrel-cage AC induction motors are popular for their simple construction, low cost per horsepower, and low maintenance (they contain no brushes, as do DC motors). They are available in a wide range of power ratings. With field-oriented vector control methods, AC induction motors can fully replace standard DC motors, even in high-performance applications. The AC induction motor is a rotating electric machine designed to operate from a 3-phase source of alternating voltage. In variable-speed drives, the source is normally an inverter that uses power switches to produce approximately sinusoidal voltages and currents of controllable magnitude and frequency.

As the sinusoidally-distributed flux density wave produced by the stator magnetizing currents sweeps past the rotor conductors, it generates a voltage in them. The result is a sinusoidally distributed set of currents in the short-circuited rotor bars. Because of the low resistance of these shorted bars, only a small relative angular velocity, ωr, between the angular velocity, ωs, of the flux wave and the mechanical angular velocity, ω, of the two-pole rotor is required to produce the necessary rotor current. The relative angular velocity, ωr, is called the slip velocity. The interaction of the sinusoidally distributed air gap flux density and induced rotor currents produces a torque on the rotor. The typical induction motor speed-torque characteristic is shown in Figure 4-1.

Figure 4-1. Induction Motor Speed-Torque Characteristic

ACIM Theory, Rev. 1

Freescale Semiconductor 4-1 Preliminary

Page 26: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

4.2 Induction Motor Model Stator voltage differential equation:

Eqn. 4-1Rotor voltage differential equation:

Eqn. 4-2Stator and rotor flux linkages expressed in terms of the stator and rotor current space vectors:

Eqn. 4-3

Eqn. 4-4Electromagnetic torque expressed by utilizing space vector quantities:

Eqn. 4-5

Where:

Stator voltage vector

Stator flux vector

Rotor flux vector

Stator current vector

Rotor current vector

Stator equivalent inductance

Rotor equivalent inductance

Mutual equivalent inductance

Pole pairs

Electormagnetic torque

ω1 Synchronous speed frequency

ωs Synchronous slip frequency

1s s s s sU R i p jω= + Ψ + Ψv v vv

0 r r r s rR i p jω= + Ψ + Ψv vv

s s s m rL i L iΨ = +v v v

r r r m sL i L iΨ = +v v v

( )e p s sT n i= Ψ ×v v

sUv

sΨv

rΨv

siv

riv

sL

rL

mL

pn

eT

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

4-2 Freescale Semiconductor Preliminary

Page 27: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Digital Control of an AC Induction Motor

4.3 Digital Control of an AC Induction MotorIn adjustable-speed applications, AC motors are powered by inverters, which convert DC power to AC power at the required frequency and amplitude. Figure 4-2 shows the hardware system configuration.

Figure 4-2. Hardware System Configuration

The inverter consists of three half-bridge units in which the upper and lower switch are controlled complementarily, meaning when the upper one is turned on, the lower one must be turned off, and vice versa. Some dead time must be inserted between the time one transistor of the half-bridge is turned off and its complementary device is turned on.

The output voltage is mostly created by a Pulse Width Modulation (PWM) technique, where an isosceles triangle carrier wave is compared with a fundamental-frequency sine modulating wave. This technique is shown in Figure 4-3. The 3-phase voltage waves are shifted 120° to one another and thus a 3-phase motor can be supplied.

power

HMI

IM

56F8013Processor

Board

AC Input

L1 D1

C

Ai BidcV

1

DA

JTAG

Oscilloscope

VT0VT1

VT2

VT3

VT4

VT5

VT6

VT0

VT1

VT2

VT3

VT4

VT5

VT6

*rω

LOA

D

driver

ACIM Theory, Rev. 1

Freescale Semiconductor 4-3 Preliminary

Page 28: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Figure 4-3. Pulse Width Modulation

In this document, the Space Vector Pulse Width Modulation (SVPWM) is employed to reduce the harmonic distortion and improves the efficient use of the bus voltage. Two basic neighboring voltage vectors are used to compose the arbitary voltage vector in the control period.

The most popular power devices for motor control applications are Power MOSFETs and IGBTs. A Power MOSFET is a voltage-controlled transistor. It is designed for high-frequency operation and has a low-voltage drop, so it has low power losses. An Insulated-Gate Bipolar Transistor (IGBT) is controlled by a MOSFET on its base. A built-in temperature monitor and overtemperature/overcurrent protection, along with the short-circuit rated IGBTs and integrated under-voltage lockout function, make the Integrated Power Module (IPM) more convenient for engineers to develop their systems and make IPMs widely used in today’s home appliances. This application also incorporates an IPM.

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

4-4 Freescale Semiconductor Preliminary

Page 29: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Vector Control of AC Induction Machine

Chapter 5 Design Concept of an ACIM Vector Control Drive

5.1 Vector Control of AC Induction MachineAligning the d axis to the stator flux, , written in d-q component, stator voltage is then transformed to:

Eqn. 5-1

Eqn. 5-2From Equation 4-2 to Equation 4-4, the following equations can be derived:

Eqn. 5-3

Eqn. 5-4then:

Eqn. 5-5where:

Equation 5-4 indicates the coupling between isd and isq. “A Stator Flux Oriented Induction Machine Drive” presents a method to decouple the isd from isq using a decouple compensator. However, the use of a decouple compensator will negatively affect the system performance, depending on the machine parameters, and increase software complexity. Equation 5-1 represents the relationship between stator flux, Ψs, and the d-axis stator voltage. The differential will introduce noise, so a Proportional-Integral (PI) flux regulator is used to approach the effect of stator voltage on flux, as shown in Equation 5-6:

Eqn. 5-6where:

Rotor Time Constant

Total Leakage Factor

Ψ∗s

Commanded Stator Flux

∗s

Estimated Stator Flux

Ψs

ds s ds su R i p= + Ψ

1qs s qs su R i ω= + Ψ

(1 ) ( ) 0r s sq s r s s sdp L i L iστ ω τ σ+ − Ψ − =

(1 ) (1 )r s r s sd s r s sqp p L i L iτ στ ω στ+ Ψ = + −

e p sq sT n i= Ψ

rτ2

1 m

s r

LL L

σ = −

** ˆ ˆ( ) ( )ds p s s i ssu K K dt= Ψ − Ψ + Ψ − Ψ∫

Ψˆ

Design Concept of an ACIM Vector Control Drive, Rev. 1

Freescale Semiconductor 5-1 Preliminary

Page 30: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

This information allows calculation of voltage on the d axis.

Assuming Rsiqs < < Ψsω1, Equation 5-2 will simplified to:

Eqn. 5-7In the steady state, uqs is proportional to ω1 and, in a sense, ω1 possesses a characteristic of the constant volts/hertz ratio, but at the low speed range, Rsiqs can’t be ignored.

From Equation 5-2 and Equation 5-6, the terminal reference voltage vector, ref can be established as shown in Figure 5-1, where ω*

1 is the commanded synchronous speed.

Eqn. 5-8From Figure 5-1, it is clear that uqs takes up the majority of ref, while uds compensates the stator flux loss due to the voltage drop across the stator resistance in the transient state.

Based on the analysis, the control scheme can be obtained as shown in Figure 5-2.

Figure 5-1. Block Diagram of the Stator Flux Oriented (SFO) System

Figure 5-2. Stator Reference Voltage ref

1qs su ω≈ Ψ

V

* *1 1 0cdt Tθ ω ω θ= = +∫

VSVPW

M IM*sdU

w∆ *sqU

*sqi

*sΨ

Observerˆ

eTSlip

FrequencyEstimator

ddt

sR

*rω

ˆrω

*1ω

ˆslω

sV αβ

αβ

ABC

abcI Feedbacksignal

detector

sI αβ

ˆˆ

Ψ

sqi

sqi

sqi

α

β

d

qrefVv

θdsu

qsu

V

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

5-2 Freescale Semiconductor Preliminary

Page 31: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Block diagram of Stator Flux Oriented (SFO) Control

5.2 Relationship between Rotor Flux Orientation and Stator Flux Orientation Induction Motor DriveThe aim of vector control is to implement control schemes which produce high-dynamic performance and are similar to those used to control DC machines. To achieve this, the reference frames may be aligned with the stator flux-linkage space vector, the rotor flux-linkage space vector, or the magnetizing space vector.

From Equation 4-3 and Equation 4-4, the relationship between stator flux and rotor flux can be calculated as follows:

Eqn. 5-9

Eqn. 5-10Equation 5-9 indicates that the stator flux depends only on the stator resistance, which is relatively easy to calculate. Equation 5-10 demonstrates that the rotor flux requires the knowledge of instances of the machine, especially the leakage inductance. The rotor flux estimation suffers when machine parameters are detuned. When the estimated value of a parameter differs from its actual value, the estimated rotor flux is then different from the actual rotor flux. The orientation is no longer accurate with respect to the actual rotor flux. In this case, the system becomes coupled, and instantaneous torque control is lost.

The stator flux can be estimated more easily and precisely than the rotor flux. Thus, the Stator Flux Oriented (SFO) system has been attracting more attention. However, a coupling exists between the torque-producing component of the stator current isq and the stator flux-producing component. Consequently, any change in isq without a corresponding change in isd will cause a transient in stator flux. See “A Stator Flux Oriented Induction Machine Drive”. Accurate decoupling control still depends on knowledge of machine parameters.

This application illustrates an ACIM drive using stator flux orientation, without the use of a speed sensor.

5.3 Block diagram of Stator Flux Oriented (SFO) ControlFigure 5-2 shows the basic structure of SFO control of an AC induction motor. To perform vector control, follow these steps:

1. Measure bus voltage and phase currents2. Transform these measurements into a 2-phase system using Clarke transformation3. Estimate stator flux and slip frequency4. Calculate synchrounous speed, then rotor speed5. Calculate the torque-producing current, isq

6. Use the PI regulator to obtain the commanded slip frequency7. Add the commanded slip frequency to the estimated rotor speed to find the commanded

synchronous speed8. Use the compensation method to obtain the stator voltage on the direct axis and

quadrature axis.9. Use SVPWM to generate stator voltage

( )ss s sU r i dtΨ = −∫uvv v

( )rr s s s

m

L L iL

σΨ = Ψ −v v v

Design Concept of an ACIM Vector Control Drive, Rev. 1

Freescale Semiconductor 5-3 Preliminary

Page 32: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

5.4 Forward and Inverse Clarke Transformation (a, b, c to α , β and backwards)The forward Clarke transformation converts a 3-phase system (a, b, c) to a 2-phase coordinate system (α, β). Figure 5-3 shows graphical construction of the space vector and projection of the space vector to the quadrature-phase components, α, β. Assuming that the a axis and the α axis are in the same direction, the quadrature-phase stator currents isα and isβ are related to the actual 3-phase stator currents as follows:

Figure 5-3. Clark Transformation

Eqn. 5-11

Eqn. 5-12The inverse Clarke transformation transforms from a 2-phase (α, β) to a 3-phase (isa, isb, isc) system.

Eqn. 5-13

Eqn. 5-14

Eqn. 5-15

s sai iα =

1 23 3s sa sbi i iβ = +

sa si i α=

1 32 2sb s si i iα β= − +

1 32 2sb s si i iα β= − +

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

5-4 Freescale Semiconductor Preliminary

Page 33: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Rotor Speed Estimation

5.5 Forward and Inverse Park Transformation (α, β to d-q and backwards)In stator-vector oriented control, the quanties in the statar reference frame should be transformed into the synchronous rotation with the stator flux vector reference frame. The relationship of the two reference frames is shown in Figure 5-4. The d axis is aligned with the stator flux vector, where θΨ s is the position of the stator flux.

Figure 5-4. Park Tranformation

The quantity in the stationary frame is transformed into synchrounous frame by:

Eqn. 5-16

Eqn. 5-17And the inverse relation is:

Eqn. 5-18

Eqn. 5-19

5.6 Rotor Speed EstimationThe synchronous frequency can be calculated:

Eqn. 5-20where:

usα, usβ, isα, isβ are the stator voltage and current in the α—β stationary reference frame.

Slip frequency can be deduced from Equation 5-3:

Eqn. 5-21

α

β

o

sΨv

q

d

sθΨv

cos sins ssd s si i iα βθ θΨ Ψ= +v v

sin coss ssq s si i iα βθ θΨ Ψ= − +v v

cos sins ss sd sqi i iα θ θΨ Ψ= −v v

sin coss ss sd sqi i iβ θ θΨ Ψ= +v v

ˆ1 2

ˆ ˆ ˆ( ) ( )ˆˆ ( ) arctan( )ˆ ˆs

s s s s s s s s s

s s

u R i u R id ddt dt

β β β α α α β

α

ω θΨ

Ψ − Ψ − − Ψ= = =

Ψ Ψ

ˆ(1 )ˆ ˆ ˆ( )

r s sqs

r s s sd

p L iL i

στω

τ σ+

=Ψ −

Design Concept of an ACIM Vector Control Drive, Rev. 1

Freescale Semiconductor 5-5 Preliminary

Page 34: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

It will add to the software complexity to calculate s using Equation 5-21, and the detuning of the parameters will affect the rotor speed calculation.

Slip frequency can be derived from nameplate specification of the induction machine, as shown in Table 5-1.

Slip frequency is obtained by:

Eqn. 5-22

Estimated slip frequency can be determined by the observer of electric torque:

Eqn. 5-23Therefore, the rotor speed can be calculated:

Eqn. 5-24

5.7 Speed RegulatorFrom Equation 5-5, the torque is in proportion to the torque-producing current isq . Quick control on isq will yield a fast transient state. The PI speed regulator generates the command i*sq from the difference between the commanded rotor speed and estimated rotor speed. Commanded slip frequency can then be obtained by the difference between the commanded isq and estimated sq through another PI regulator. The reference synchronous speed is calculated by finding the sum of the estimated rotor speed and commanded slip frequency.

The speed regulator channel can be found as shown in Figure 5-5.

Figure 5-5. Speed Regulator Channel

Table 5-1. Nameplate SpecificationRated Power 0.12kw Rated Speed 1310rpm

Rated Current 0.76A Rated Frequency 50Hz

Rated Voltage 220V Pole Pairs 2

ω

(1500-1310)r(1500-1310)rounds 6.3minute 60seconds

nN

p Hzω ×∆ = = =

6.3ˆ ˆ ˆ_ 7.20.875

Ne e e

eN

Hzslip estimated T T TTω∆

= × = × = ×

1ˆ ˆ ˆr sω ω ω= −

i

sqI

w∆*rw *

sqi

ˆ rw ˆ rw

*1w

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

5-6 Freescale Semiconductor Preliminary

Page 35: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

PFC Design

5.8 PFC DesignThe main circuit adopted in this application is a single-switch PFC circuit (see Figure 5-6). The circuit is composed of Q, D, L, and filter capacitance, C2, C3 and includes an EMI filter, input relay, and full-wave rectifier. In the 56F8013-based PFC module system, the controller samples the voltage signal output and voltage DC_bus, and processes these samples in the digital control loop. Because system is based on current Discontinuous Current Mode (DCM) mode, there is only a voltage loop. Outer voltage loop G insures the output voltage is constant.

Figure 5-6. PFC Configuration Diagram

5.8.1 Inductor selectionA. Maximum peak line current:

Eqn. 5-25Ripple current:

Eqn. 5-26B. Determine the duty factor at Ipk, where Vin(peak) is the peak of the rectified line voltage.

Eqn. 5-27

Q

C2 C3 R1 R2

L

C1

D

+ -V_ref

RXTX

RX

TX

ADCIN0

G

DC_ b u sVerr

3.3 VP

PWM1

1

56F8013

Design Concept of an ACIM Vector Control Drive, Rev. 1

Freescale Semiconductor 5-7 Preliminary

Page 36: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

C. Calculate the inductance; fs is the switching frequency.

Eqn. 5-28Round up to 250µH.

5.8.2 Output Capacitor Output filter inductor can be calculated by the following equation:

Eqn. 5-29Po = 500W Vo(min) = 380 x (1 - 10%) = 342V Vo(max) = 380 x (1+10%) = 418V ∆t = 50ms

According to Equation 5-29, C = 866µH. Select the output capacitor to be C = 940µH. Two 470µH/450V electrolytic capacitors connected in parallel are chosen.

5.8.3 Main Switch The voltage limit of the main switch is:

VCEM(S) > 1.5Vcem(S) = 1.5Vin(max) = 1.5 x 380 = 570V Eqn. 5-30

The circuit limit of the main switch is calculated by RMS value:

Eqn. 5-31Select main switch Q400—Q401 to be the MOSFET IRFPC60LC. Parameters are described as follows: VDSS = 600V ID = 16A RDS (on) tye = 0.4Ω TO-247AC Package

5.8.4 Output Diode The voltage limit of the output diode is:

VCEM(S) > 1.5Vcem(S) = 1.5Vin(max) = 1.5 x 380 = 570V Eqn. 5-32

The circuit limit of the output diode is calculated by RMS value:

Eqn. 5-33

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

5-8 Freescale Semiconductor Preliminary

Page 37: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

PFC Design

Select output diode D400—D402 to be FRED DSEP60-06A. Parameters are described as follows: VRRM = 600V IFAVM = 60A trr = 35nS TO-247AD Package

5.8.5 Inductor DesignIn Section 5.8.1, it was found that L= 250µH. Select Bm= 0.3T. Select magnetic core to be EI33, with an effective area of 118mm2.

The number of inductor windings can be calculated as follows:

Eqn. 5-34Select N = 38.The gap is:

Eqn. 5-35When work frequency of inductance is 100kHz, the penetrate depth of copper lead is:

Eqn. 5-36Where: γ is the electric conductive ratio of lead µ is magnetical conductive ratio of lead

A copper lead with a smaller diameter than 0.42mm can be selected. In this case, select high intensity lead with a diameter of 0.33mm and an effective area of 0.0855mm2.

By selecting circuit density to be J = 3.5A/mm2,the area of leads is . Thirteen leads with a diameter of 0.33mm must be used.

Eqn. 5-37

me

L

BALI

N (max)= =38.2

mmL

AN eo 85.010250

10118381025.16

6262

××××== −

−−µδ

mmfs

209.010581025.11010014.3

12

2663 =

××××××==Λ −µγπ

S = 3.843.5

32.0132

0855.01338=

××=Kc <<0.35

= 1.1mm2

Design Concept of an ACIM Vector Control Drive, Rev. 1

Freescale Semiconductor 5-9 Preliminary

Page 38: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

5-10 Freescale Semiconductor Preliminary

Page 39: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

56F8013 Device

Chapter 6 Hardware ImplementationThe motor control system is designed to drive the 3-phase AC motor in a speed closed loop. The prototype is pictured in Figure 6-1 and It consists of the following blocks:

• 56F8013• High-voltage power stage board with sensor board• Power supply stage and PFC• 3-Phase AC motor without speed transducer

6.1 56F8013 DeviceThe demonstration system is illustrated in Figure 6-1 and the hierarchy diagram is depicted in Figure 6-2. it clearly shows that the 56F8013 is the core of the system, highlighted atop the mother board. Figure 6-3 shows the motor control system configuration.

Figure 6-1. Demonstration System

Hardware Implementation, Rev. 1

Freescale Semiconductor 6-1 Preliminary

Page 40: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

DSC Controller Board

Motherboard

Heatsink

AC Induction Motor

Aeration holes

Left Side Right Side

Front Side

InputPower

POWEROFF

POWER ON

RS-232Connector

J5000 on Power Board

J1 on DSCController Board

RS-232

Figure 6-2. Hierarchy Diagram

The 56F8013 is the drive’s brain. All algorithms are carried out in this single smart chip, which reads the input commands, processes the routine, and generates the PWM to govern the power switches driving the motor and the PFC to make the input current sinusoid.

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

6-2 Freescale Semiconductor Preliminary

Page 41: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

High-Voltage Power Stage

Power supplystage & PFC

Bus Voltage

Auxillary Voltage

High VoltagePower Stage

SensorStage

56F8013EVM

Control Signal Feedback Signal

Speed setup

110V-220VACINPUT

3phaseACIM

LOAD

Mother Board

Figure 6-3. Motor Control System Configuration

6.2 High-Voltage Power Stage The HV Medium Power Board is designed to meet the power needed by a household washing machine and lower-power industrial applications. An Integrated Power Module (IPM) is used to simplify the design and board layout and to lower the cost. IPMs are available from various suppliers and it is simple to use one from a supplier of choice. The IRAMS10UP60A is an IPM, which targets the household appliance market. Its features include:

• Integrated gate drivers and bootstrap diodes• Temperature monitor• Temperature and overcurrent shutdown• Fully isolated package• Low VCE (on) non-punch-through IGBT technology• Undervoltage lockout for all channels• Matched propagation delay for all channels• Low-side IGBT emitter pins for current conrol• Schmitt-triggered input logic• Cross-conduction prevention logic• Lower di/dt gate driver for better noise immunity

Its maxium IGBT block voltage is 600V; phase current is 10A at 25°C and 5A at 100°C, making it suitable for this appliance.

Hardware Implementation, Rev. 1

Freescale Semiconductor 6-3 Preliminary

Page 42: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

6.3 Sensor StageThe control algorithm requires DCBus voltage, DCBus current and phase current sensing, so these sensors are built on the power stage board. Schematics of the sensors circuits can be found in Appendix A.

A. DCBus Voltage Sensor

The DCBus voltage must be checked because overvoltage protection and PFC are required. A simple voltage sensor is created by a diffential amplifier circuit. The voltage signal is transferred through a resistor and then amplified to the reference level. The amplifier output is connected to the 56F8013’s ADC.

Figure 6-4. DCBus Sampling Circuit

B. DCBus Current Sensor

The bus current is sensed through the detection of the voltage drop across the resistor cascade into the negative bus link. A differential amplifier is then used to draw the voltage out and transform it to a level the 56F8013’s AD channel can accommodate. The sample circuit is depicted in Figure 6-5.

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

6-4 Freescale Semiconductor Preliminary

Page 43: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Sensor Stage

Figure 6-5. Bus Link Current Sample Circuit

C. Phase Current Sensor

The stator flux and electromagnetic torque can be derived from two phase currents and voltages. The use of a Hall current transducer will sharply increase the cost, and two channel differential amplifiers are used as the Analog-to-Digital Converter (ADC) to sample phase currents as shown in Figure 6-6. The SVPWM is employed. The state in which all bottom switches are turned on and upper switches are turned off is defined as state 0, and the corresponding equivalent topology is depicted in Figure 6-6 (b). The sample is triggered at state 0, shown in Figure 6-6 (c). In this way, two phase currents can be derived through the differential amplifier channels. The spot worth consideration is that a certain margin ∆ should be maintained between the circle track formed by the reference voltage vector ref and the inscribed circle of the hexagon shaped by the six base vectors as described in Figure 6-6 (a), especially at the high speed range.

Figure 6-6. Methods to Detect Phase Currents

D. Power Supply Stage

The power supply stage provides a high-voltage DCBus +5V power supply for the drive and auxillary power and +15V for the 56F8013, high-voltage drivers and amplifiers. A topswitch generates auxiliary power supply of +15V for both the ICs and the IPM. PFC is employed to make the input current trace the input voltage and to reduce the EMI.

11

22

8.2K-0.1%R6003

10K-0.1%R6001

10K-0.1%R6002

1 1228.2K-0.1%

R6004

I_Sense_DCB I_Sense_DCBPGND

I_Sense_DCB1 3

21

84

MC33172U6001A

0.1uFC6000

D+5V

5

67

MC33172U6001B

160

R6005

0.01uFC6003

V

T1 T2

A

B

CAD1 AD2

T3T0 T4 T5 T6

Td Td

PhaseA

PhaseB

PhaseC

V1( 100)

V2( 110)V3( 010)

V4( 011)

V5( 001) V6( 101)

Vr ef

T1

T2I

I I

I I I

I V

V

VI

I nduct i on Mot or

Cur r ent Sensi ng Ci r cui t∆

(a) SVPWM (b) Equivalent Topology (c) Sample Time

Hardware Implementation, Rev. 1

Freescale Semiconductor 6-5 Preliminary

Page 44: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

CC

3KR6015

6

57

LM293U6002B10K

RV6003

D+5V

D+5V IPMLOCK

IN4148D6001

IN4148D6000

IPMLOCK

0.1uF

C6005

3

21

84

MC33172U6002A

D+5V

V_Sense_DCB620R6012

220K

R6014

1.2K

R6013

0.01uFC6006

2KR6011

10KRV6002

D+5V

D+5V

I_Sense_DCB 620R6008

220K

R6010

1.2K

R6009

0.01uFC6004

0.01uFC6030

0.01uFC6031

0.01uFC6032

0.01uFC6033

6.8KR6016

12

RED DISPLAYLED6001

6.8KR6016

12

RED DISPLAYLED6001

E. Protection Circuit

To improve the system safety level, overcurrent and overvoltage in the bus link detection and protection are introduced into the system, illustrated in Figure 6-7. The signal generated by the circuit “IPMLOCK” will be connected to the IPM’s drive IC (74HC244) and to the 56F8013’s fault pin. When a fault is generated, the IPMLOCK signal draws to high level. On the one hand, the IPMLOCK will disable the 74HC244 and the PWM signals won’t pass through; on the other hand, the IPMLOCK signal will drive the 56F8013’s fault0 pin, and the 56F8013 will block the PWM signal instantly.

Figure 6-7. Protection Circuit

6.4 PFC Hardware DesignThe topology of the main circuit is a boost circuit. One signal, output bus voltage DC_bus, is sampled and sent to the 56F8013.

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

6-6 Freescale Semiconductor Preliminary

Page 45: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

PFC Hardware Design

Figure 6-8. Main PFC Circuit

6.4.1 Drive Circuit Hardware Design IC IR2125, a simple and reliable gate drive circuit based on a current-limiting single channel driver, is used; it is shown in Figure 6-9.

Figure 6-9. PFC Drive Circuit

6.4.2 Sample Circuit Hardware DesignThe output bus voltage, Vbus, sample circuit is shown in Figure 6-10. A simple voltage divider is used for the bus voltage sample.

Hardware Implementation, Rev. 1

Freescale Semiconductor 6-7 Preliminary

Page 46: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Figure 6-10. PFC Sampling Circuit

6.5 Detailed Motherboard Configurations for ACIMThe motherboard shown in Figure 6-2 comprises a high-voltage power stage, a sensor stage, a protection circuit and PFC. It is a general board which can be used for ACIM, BLDC and PMSM after simple configuration with resistances and jumpers.

Configurations for the ACIM are shown in Figure 6-11; shorten circuits for the jumpers circled in red.

Figure 6-11. ACIM Jumper Configuration

JP1009

JP1008JP1005

JP6000

JP1004

U6008

U6001

U6002

U6003

C5004

C5003

DSC

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

6-8 Freescale Semiconductor Preliminary

Page 47: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Detailed Motherboard Configurations for ACIM

Table 6-1 details the configurations of the 56F8013 resources used in the system and the corresponding variables used in the software.

Table 6-1. Configuration of the 56F8013’s Resources

Target Variables 56F8013 Resources Software Resources

DCBus Voltage: V_sense_DCB ANB1 (PC5) sample3 AD_VDC

Uphase Current Sample: I_sense_U ANA1 ( PC1 sample0 AD_iA

Vphase Current Sample: I_sense_V ANA0 (PC0) sample1 AD_iB

DCBus Current Sample: I_Sense_DCB ANB0 (PC4 sample4 AD_iDC

Relay: AC_RELAY PB5

OPEN: OPEN PB2

DACCLK PB0

DACDATA PB3

DACEN PB1

TXD PB7

RXD PB6

FAULT0 PA6

Hardware Implementation, Rev. 1

Freescale Semiconductor 6-9 Preliminary

Page 48: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

6-10 Freescale Semiconductor Preliminary

Page 49: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Data Flow

Chapter 7 Software DesignThis section describes the design of the drive’s software blocks. The software will be described in terms of:

• Control Algorithm Data Flow• State Diagram

7.1 Data FlowThe drive requires the software to gather and process values from the user interface and generate 3-phase PWM signals for inverter. The control algorithm contains the processes, described in the following sections.

Figure 7-1. Data Flow

U_dc_bus

Fault Control

I_dc_bus

DC_Bus Voltage(A/D)DC_Bus Current(A/D)

IPM temperaturemonitor

Drive Fault status

Block IPM

PC master Washing machinework pattern

Desired rotor speed

Speedregulator

Phase currentsample(A/D)

iA&iB

Stator fluxestimation

U_dc_bus

Electromagnetictorque

Slip frequencyestimation

Synchronousspeed estimation

Rotor speedestimation

Elec_torque_estStator_flux_est

w1_est Slip_est

w2_est

w1_command

StatorFluxDetermine

Stator_flux_commanded

StatorFluxRegulator

Usd

Usq determine

Usq

SVPWM

PVAL0 PVAL2 PVAL4

Software Design, Rev. 1

Freescale Semiconductor 7-1 Preliminary

Page 50: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

7.2 Stator Flux EstimationEstimating stator flux is one of the algorithm’s key tasks. Using the phase voltages and phase currents, an estimation of stator flux can be derived from the stator flux model. Generally, the stator flux based on the voltage model is determined by Equation 7-1.

Eqn. 7-1Where:

is the back EMF E is the magnitude of ∠E is the phase of

The pure integral of back EMF involves the drift and saturation problems due to initial condition and DC offset. The Low-Pass Filter (LPF) is employed to replace the pure integral as shown in Figure 7-2.

Figure 7-2. Stator Reference Voltage ref

Eqn. 7-2Where:

ωc is the cutoff frequency of the LPF in radians per second

As expected, when ω1 >>ωc:

Eqn. 7-3

Eqn. 7-4

( 90 )

1 1 1

j Es s ss

U R i E E ej jω ω ω

∠ −−Ψ = = =

ovv vv

v

EE

E

α

β

d

qrefVv

θdsu

qsu

V

1( arctan )

2 21 1

cj E

sc c

E E ej

ωω

ω ω ω ω

∠ −′Ψ = =

+ +

vvv

1arctan 90c

ωω

≈ o

2 21 1cω ω ω+ ≈

Design of ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

7-2 Freescale Semiconductor Preliminary

Page 51: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Stator Flux Determination

In this case, the LPF estimator approaches the pure integrator estimator. But when the cut-off frequency, ωc, is close to the synchronous ω1, errors occur, so a correction factor, G, is used to minimize the errors.

Eqn. 7-5Equation 7-6 can be deduced:

Eqn. 7-6The improved stator flux observer channel is shown in Figure 7-3.

Figure 7-3. Improved Stator Flux Estimation Channel

7.3 Electromagnetic TorqueElectromagnetic torque can be estimated from stator flux and stator current and can be determined as shown in Equation 7-7.

Eqn. 7-7

7.4 Rotor Speed EstimationA speed sensorless induction motor drive is a trend in today’s low cost variable speed applications. Due to the cost and maintenance required by a speed transducer, speed sensorless technology is drawing more attention. For convenience, this application assumes a simple method to estimate rotor speed, described in Section 5.6.

7.5 Stator Flux DeterminationThe motor will get an optimum transformation from energy produced by magnetic field compared to that produced mechanically when it works at the point of the flux linkage curve. At the high speed range, however, the flux should be weakened to reach a high speed. Therefore, the electrical machine should maintain the flux below the rated speed range, and the flux should be weakened at the high speed range. The flux should be regulated depending on the rotor speed.

s sG′Ψ = Ψvv v

1

1

2 2 (arctan 90 )1 ( )

11

( )cj

c jG e G eωω ρ ωω ω

ωω

−+= =

ov

ae'ˆsαΨ

eβ'ˆsβΨ

Eq.5-20

1 1ˆ ˆ( ) cos( ( ))G ω ρ ω

1 1ˆ ˆ( )sin( ( ))G ω ρ ω

ˆsαΨ

ˆsβΨ

1

1ˆ cjω ω+

1

1ˆ cjω ω+

e s s s sT i iβ β α β= −Ψ + Ψ

Software Design, Rev. 1

Freescale Semiconductor 7-3 Preliminary

Page 52: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

7.6 Space Vector Pulse Width Modulation (SVPWM)Space Vector Modulation (SVM) can directly transform the stator voltage vectors from an α, β-coordinate system to Pulse Width Modulation (PWM) signals (duty cycle values).

The standard technique for output voltage generation uses an inverse Clarke transformation to obtain 3-phase values. Using the phase voltage values, the duty cycles needed to control the power stage switches are then calculated. Although this technique gives good results, space vector modulation is more straightforward and realized more easily by a digital signal controller.

7.7 Fault ControlFrom the consideration of the cost control, optocoupler is not used in this system. The fault control process and its hardware should be designed to provide a solid protection against damage. In this application, due to the high complex of the pins, the fault1 to fault3 input pins are coupled with the PWM output pads. Only fault0 is valid for the detection of the rising edge generated by the fault signals. The overcurrent, overvoltage and overheat protections are merged together with the OR relation; that is, if any of them occur, the pin Fault0 will catch the edge and the fault process will dominate all resources and disable the PWM output pads. The routine will trap into the Interrupt Service Routine (ISR) once the fault occurs.

7.8 PFC Software DesignPower Factor (PF) is defined as the ratio between real power and apparent power of AC input. Assuming input voltage is a perfect sine wave, PF can be defined as the product of current distortion and phase shift. Consequently, the PFC circuit’s main tasks are:

• Controlling inductor current, making the current sinusoidal and the same phase as input voltage• Controlling output voltage, insuring the output voltage is stable.

The PFC main current needs two closed loops to control the circuit:— The voltage loop is the outer loop, which samples the output voltage and controls it to a

stable level— The current loop is the inner loop, which samples inductor current and forces the current to

follow the standard sinusoidal reference in order to reduce the input harmonic currentThe system in this application is based on current Discontinuous Current Mode (DCM), in which there is only a voltage loop. DCM can make the current both sinusoidal and the same phase as input voltage.

PI loop control is widely used in industry control because of its simplicity and reliability. In this application, the voltage loop adopts PI regulator arithmetic.

These assumptions simplify analysis:

• Input current follows reference perfectly, which is proportional to the input voltage• There is no additional power depletion in the circuit; power efficiency is 1• Output power is constant

Design of ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

7-4 Freescale Semiconductor Preliminary

Page 53: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

PFC Software Design

Figure 7-4. Simple PFC Mode

The function for output voltage:

Figure 7-5. Discrete Voltage Loop Structure

Uv(n) = the result of PI unit

Ev(n) = input error

Iv(n) = integral unit

K0v = proportional constant

K1v = integral constant

Kcorrv = resistant saturation constant

Usv = result of voltage loop after limit

iUvmax = maximum of voltage loop

Uvmin = minimum of voltage loop

⎪⎩

⎪⎨

−=×+×+−=

−+×=

)()(1)1()()1()(0)(

nUvUsvEpivEpivKcorrvnEvvKnIvnIv

nIvnEvvKnUv

⎪⎩

⎪⎨

⎧≤≥

=elsenUv

UvnwhenUvUvUvnwhenUvUv

Usv)(

)()(

minmin

maxmax

)(ZG

K

ov*oV

-

Software Design, Rev. 1

Freescale Semiconductor 7-5 Preliminary

Page 54: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Design of ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

7-6 Freescale Semiconductor Preliminary

Page 55: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

JTAG Simulation Function

Chapter 8 JTAG Simulation and SCI CommunicationThere are abundant software and hardware resources for JTAG simulation and communication in the 56F8013 device. With these resources, a 56F8013-based motor system can accomplish mixed communication functions, such as JTAG debug and SCI interface, between the power module and PC. Isolation is necessary between power electronics and microelectronics in the power system for safety.

The communication system consists of two parts:

• JTAG circuit, designed with for debugging and programming the 56F8013• SCI circuit, designed for background communication from the PC; power management and

supervision can be realized conveniently

Figure 8-1. Communication Board’s Frame Figure

8.1 JTAG Simulation FunctionBecause the 56800E core integrates the JTAG/EOnCE function, the 56F8013 can be debugged and programmed through the parallel port by a simple interface circuit without any special emulator. The debug function is provided by JTAG interface.

The power main circuit must be removed to ensure safety. During debugging, the connection for main power circuit should be cut off by disconnecting the J5000 connector on power board; see Figure 8-2.

JTAG Simulation and SCI Communication, Rev. 1

Freescale Semiconductor 8-1 Preliminary

Page 56: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Figure 8-2. System Diagram

Figure 8-3. Connections for JTAG

As shown in Figure 8-3, the JTAG flat cable is connected to the 56F8013‘s J1. A parallel cable links the JTAG to PC’s parallel port.

CAUTIONDisconnect J5000 in the Power Board before debugging or refreshing the control program. Otherwise, damage to or invalidation of the demo, or even electrical shock, can occur.

Debugging or refreshing the control program should only be done by experienced personnel.

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

8-2 Freescale Semiconductor Preliminary

Page 57: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

SCI Communication Function

Figure 8-4. CodeWarrior Development Tool Interface

CodeWarrior IDE is necessary to debug software and refresh the program; version 7.0 or later is recommended. Figure 8-4 shows the software interface. Details about installation and use can be found in the CodeWarrior documentation.

8.2 SCI Communication FunctionConnections for SCI communication are shown in Figure 8-5. A serial cable links the RS-232 connector on the demonstration board to the PC’s serial port.

JTAG Simulation and SCI Communication, Rev. 1

Freescale Semiconductor 8-3 Preliminary

Page 58: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Figure 8-5. SCI Communication Connections

The PC Master software tool can be used for development and control of the application. Details about installation and use of PC master software can be found in the CodeWarrior tool.

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

8-4 Freescale Semiconductor Preliminary

Page 59: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Cautions

Chapter 9 OperationThis section offers brief instructions on operating the ACIM application.

9.1 Switch-onFollow these steps to start the ACIM application:

1. Make sure the power switch is on the POWEROFF state, then put the plug in a wall socket2. Switch the appliance on by pressing down the POWERON button.

The 56F8013 starts the main power, and the ACIM begins to work

9.2 During Operation1. LEDs on controllers can display system information

— LED 1 displays the operating mode— LED 2 displays the rotation speed

2. SCI communication provides background supervision for the power module— SCI baud rate configuration: 4800 BPS

3. Debug function is provided by the JTAG interface See Caution, Section 8.1 and Section 9.4

4. To ensure the demo plate coupled on the shaft of the motor will not fly out, be sure the upper cover of the box is closed

9.3 Switch-offTo turn the application off, follow these steps:

1. Switch off the POWERON Button — The 56F8013 cuts off the main power and the bus voltage is decreased

2. Unplug the power line.— The controller is powered off, and system is switched off

9.4 CautionsTo ensure safety, take care when:

1. Pressing the power switch to 1 on the unit after the power line is plugged in during the switch-on process

2. Pressing the power switch to 0 before power line is unplugged during the switch-off process

3. Debugging Before beginning the debug process, cut off power to the main power circuit by disconnecting the J5000 connector on the Power Board

Operation, Rev. 1

Freescale Semiconductor 9-1 Preliminary

Page 60: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

9-2 Freescale Semiconductor Preliminary

Page 61: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Appendix A Schematics

Schematics, Rev. 1

Freescale Semiconductor Appendix A-1Preliminary

Page 62: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

ISO

LA

TE

D S

CI

V2

.0

+5

V_

SC

I1

DG

ND

RX

D1

TX

D1

D+

3.3

V

GN

D_

PC

1

+5

V_

SC

I1GN

D_

PC

1

GN

D_

PC

1

+5

V_

SC

I1

+5

V_

SC

I1

GN

D_

PC

1

GN

D_

PC

1

D+

3.3

V

+5

V_

SC

I1

GN

D_

PC

1

J30

01

DB

9

162738495

162738495

C3

00

40

.1u

F

C3

00

20

.1u

F

C3

00

10

.1u

F

C3

00

30

.1u

F

+

C3

00

71

0u

F/1

0V

+

C3

00

61

0u

F/1

0V

D30

04

1N

47

33

U3

000

TC

76

60

12345 6 7 8

NC

CA

P+

GN

D

CA

P-

VO

UT

LV

OS

C

V+

+

C3

00

51

0u

F/1

0V

D3

003

BA

V9

9

1

D3

002

BA

V9

9

1

D3

001

BA

V9

9

1

D3

000

BA

V9

9

1

C3

00

00

.1u

FU

30

03

MA

X2

02

CS

E

5

12

2134

11

109

8 13

7 14

15

16

6

C2-

R1O

V+

C1+

C1-

C2+

T1I

T2I

R2O

R2I

R1I

T2O

T1O

GN

DV

CC V-

C3

00

9

0.1

uF

C3

00

8

0.1

uF

U30

01

NE

C2

50

1

1

4

AC

U30

02

NE

C2

50

1

1

4

AC

R3

00

08

00

R3

00

18

00

R3

00

28

00

R3

00

38

00

DG

ND

RX

D1

TX

D1

D+

3.3

V

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

Appendix A-2 Freescale Semiconductor Preliminary

Page 63: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Induct

ion M

oto

r &

Dri

ver

AC

IM/P

MS

M M

OT

OR

DR

IVE

R P

ow

er B

oar

d T

op V

iew

PW

M I

NP

UT

SIG

NA

LS

LO

W A

CT

IVE

DS

P C

ontr

ol

ON

IP

M

NO

TE

:PG

ND

,DG

ND

are

connce

cted

toget

her

,for

no o

pto

-iso

latio

n is

use

d

V2.0

Sen

sorV

02.S

CH

Sen

sorV

02

PG

ND

V_

Sen

se_

VV

_S

ense

_W

V_

Sen

se_

UU V B

US

+

I_S

ense

_D

CB

IPM

LO

CK

I_S

ense

_D

CB

1

D+

5V

DG

ND

V_

Sen

se_

DC

BV

N

UN

I_S

ense

_U

I_S

ense

_V

U1

V1

W1

PF

C&

AP

_2.S

CH

PF

C&

AP

_2

PG

ND

BU

S+

PFCdrive1

DGND

D+5V

P+15V

AC_RELAY

LE

DV

02.S

CH

LE

DV

02

LE

DC

LK

LE

DD

AT

A

DG

ND

D+

5V

/LE

DE

N

SC

IV02.S

CH

SC

IV02

DG

ND

RX

D1

TX

D1

D+

3.3

V

P+

15V

P+

15V

PW

M1

PW

M3

PW

M5

BU

S+

U1

PG

ND

IPM

LO

CK

IPM

LO

CK

OP

EN

V_S

ense

_UV

_Sen

se_V

V_S

ense

_W

V_S

ense

_D

CB

D+

3.3

VR

oto

rSpee

dG

ivD

GN

D

PFCdrive1

DGND

D+5V

P+15V

I_S

ense

_D

CB

AC

ur_

hal

lB

Cur_

hal

lD

GN

D

V_S

ense

_U

AN

A11

SU

B_A

NA

1

V_S

ense

_V

AN

A00

SU

B_A

NA

0

U1

V1

W1

AC_RELAY

IPM

LO

CK

U1

V1

V1

W1

W1

UN

1

VN

1

AC

ur_

hal

lS

UB

_A

NA

1I_

Sen

se_U

BC

ur_

hal

lS

UB

_A

NA

0I_

Sen

se_V

I_S

ense

_U

I_S

ense

_V

I_S

ense

_D

CB

1

/LE

DE

NL

ED

CL

KL

ED

DA

TA

IPM

LO

CK

TM

ST

CK

TD

OT

DI

/LE

DE

NL

ED

CL

KO

PE

NL

ED

DA

TA

AC

_R

EL

AY

PF

Cdri

ve

PW

M1

PW

M0

RX

D1

TX

D1

DG

ND

D+

3.3

V

AN

A00

AN

A11

V_S

ense

_W

I_S

ense

_D

CB

V_S

ense

_D

CB

Roto

rSpee

dG

iv

PW

M2

PW

M3

PW

M4

PW

M5

LE

DC

LK

LE

DD

AT

A

DG

ND

D+

5V

PF

Cdri

ve

PF

Cdri

ve1

D+

3.3

VD

GN

D

RX

D1

TX

D1

/LE

DE

N

TX

D1

RX

D1

RX

D1

TX

D1

TD

O

TD

I

TM

S

TC

K

PW

M0

PW

M2

PW

M4

U1

U U2

UN

1U

NI_

Sen

se_D

CB

1

V1

V V2

VN

1V

NI_

Sen

se_D

CB

1

U1

V1

W1

BU

S+

I_S

ense

_D

CB

1

D+

5V

DG

ND

PG

ND

U UN

V VN

U2

V2

PG

ND

PG

ND

PG

ND

P+

15V

D+

5V

D+

3.3

V

D+

5V

DG

ND

DG

ND

DG

ND

D+

3.3

VD

+3.3

V

D+

3.3

V

DG

ND

DG

ND

D+

3.3

VD

+3.3

V

DG

ND

DG

ND

DG

ND

DG

ND

DG

ND

DG

ND

DG

ND

DG

ND

JP1000

HE

AD

JP1001

UV

W_O

UT

PU

T

C1008

0.1

mF

/25V

R1009

10.2

K

R1004

6.8

K

R1008

0.5

AC

IM/2

PM

SM

TE

10

PW

M0

TE

12

PW

M2

TE

11

PW

M1

TE

13

PW

M3

TE

15

PW

M5

TE

14

PW

M4

U10

02

IRA

MS

10U

P60A

15

16

17

18

19

20

21

22

23

HIN

1H

IN2

HIN

3L

IN1

LIN

2L

IN3

T/I

trip

VD

DV

SS

C1006

0.1

uF

/630V

CB

B

D10

00

IN4

148

U100

0

MC

74H

C244

2 4 6 8

11

13

15

17

18

16

14

12

9 7 5 3

11

9

20 10

1A

11

A2

1A

31

A4

2A

12

A2

2A

32

A4

1Y

11

Y2

1Y

31

Y4

2Y

12

Y2

2Y

32

Y4

1G

2G

VC

C

GN

D

R1001

1.2

KU

100

1L

M293

1

OU

T

R1002

130

K

R1000

1.2

K

C1009

0.1

uF

RV

1000

10K

1

2

U100

1L

M293

7

RP

1000

8X

5K

12

34

56

78

12

34

56

78

C1000

0.0

1uF

LE

D100

1O

ver

Tem

p

1 R1010

300

D10

01

IN4148

R1011

4.7

KQ

10

00

PS

S8050

JP1006

Roto

r S

pee

d

R1012

470V

1K

JP1002

LE

M(F

OR

DE

BU

G P

UR

PO

SE

)

JP1004

AD

C C

han

nel

Jum

per

JP1005

AD

C C

han

nel

Jum

per

+

C1002

2.2

uF

/25V

+

C1003

2.2

uF

/25V

+

C1004

2.2

uF

/25V

R1013

5.1

K

R1015

2 o

nly

ForP

MS

M

R1016

2 o

nly

ForP

MS

M

JP1008

AD

C C

han

nel

Sub-J

um

per

JP1009

AD

C C

HA

NN

EL

SU

N_JU

MP

ER

C1036

0.1

uF

/630V

CB

BR

1017

0.5

AC

IM

R1018

0.5

AC

IM

R1019

0.5

AC

IM

C1001

0.1

uF

C1030

1nF

C1031

1nF

C1032

1nF

C1033

1nF

C1034

1nF

C1035

1nF

R1014

2 o

nly

ForP

MS

M

JP4000

LE

D a

nd D

A

12

34

56

78

91

0

JP1010

DS

P

1 34

5 7 91

01

11

21

31

41

51

71

81

92

02

12

22

32

52

62

72

82

93

03

13

23

33

43

6

3.3

V2

GN

DP

A7

-VP

PP

B7

-TX

D/S

CL

6P

B6

-RX

D/S

DA

/CL

KIN

8P

A0

-PW

M0

PC

0-A

NA

0P

A1

-PW

M1

PC

1-A

NA

1P

B4

-T0

/CL

K0

PC

2-V

RE

FH

PB

5-T

1/F

AU

LT

31

6P

B3

-MO

SI/

T3

PC

4-A

NB

0P

B2

-MIS

O/T

2P

C5

-AN

B1

PB

0-S

CL

K/S

CL

PC

6-A

NB

2/V

RE

FL

PB

1-/

SS

/SD

A2

4P

D0

-TD

IP

B1

-/S

S/S

DA

PD

1-T

DO

PB

0-S

CL

K/S

CL

PD

2-T

CK

PA

2-P

WM

2P

D3

-TM

SP

A3

-PW

M3

PA

6-F

AU

LT

0P

A4

-PW

M4

/FA

UL

T1

/T2

35

PA

5-P

WM

5/F

AU

LT

2/T

33

73

83

94

0

JP1007

SC

I

12

34

56

78

91

0

C1037

0.1

uF JP

1011

Jum

per

for

Push

Butt

on

C1038

0.1

uF

JP1012

Jum

per

for

Push

Butt

on

C1039

0.1

uF

JP1013

Jum

per

for

Push

Butt

on

C1040

0.1

uF

JP1014

Jum

per

for

Push

Butt

on

S1000

Funct

ion1

S1001

Funct

ion2

S1002

Funct

ion2

S1003

Funct

ion3

JP1015

Phas

eU_up

JP1016

Phas

eU_dow

n

JP1017

Phas

eV_up

JP1018

Phas

eV_dow

n

Schematics, Rev. 1

Freescale Semiconductor Appendix A-3Preliminary

Page 64: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

LE

D D

ISP

LA

Y74L

S164(4

001)

74L

S164(U

4000)

V2

.0

LE

DC

LK

LE

DD

AT

A

LE

DD

AT

A

DIG

1

DIG

4D

IG3

DIG

2

/LE

DE

N

/LE

DE

N

/LE

DE

N

LE

DD

AT

A

LE

DC

LK

/LE

DE

N

DIG

1D

IG2

DIG

3D

IG4

DIG

5D

IG6

DIG

7D

IG8

SE

GA

SE

GB

SE

GC

SE

GD

SE

GE

SE

GF

SE

GG

SE

GD

G

LE

DC

LK

SE

GE

SE

GD

SE

GF

SE

GD

G

DIG

6

DIG

8D

IG7

DIG

5

SE

GA

SE

GC

SE

GG

SE

GB

D+

5V

D+

5V

D+

5V

D+

5V

D+

5V

D+

5V

D+

5V

D+

5V

a

bf

c

g de

DIG

.1 dp

a

bf

c

g de

DIG

.2 dp

a

bf

c

g de

DIG

.3 dp

a

bf

c

g de

DIG

.4 dpU

4002

FY

Q-3

641A

11 7 4 2 1

10 5 3

12

9

8

6

a b c d e f g dp

DIG

.1D

IG.2

DIG

.3D

IG.4

C4

00

20

.1u

FC

40

01

0.1

uF

U4

001

74

HC

16

4

14 71 2

3 4 5 6 10

11

12

13

8 9

A BQ

0Q

1Q

2Q

3Q

4Q

5Q

6Q

7

CL

K

MR

R4

00

01

00

R4

00

11

00

R4

00

21

00

R4

00

31

00

R4

00

41

00

R4

00

51

00

R4

00

61

00

R4

00

71

00

R4

00

9

5K

R4

00

8

5K

R4

01

01

0K

+

C4

00

04

7u

F/1

0V

U4

004

MA

X7

219

19

18 1

12

13 9 4

24

2 11

6 7 3 10

5 8 14

16

20

23

21

15

17

22

V+

ISE

T

DIN

LO

AD

CL

K

GN

DG

ND

DO

UT

DIG

0D

IG1

DIG

2D

IG3

DIG

4D

IG5

DIG

6D

IG7

SE

GA

SE

GB

SE

GC

SE

GD

SE

GE

SE

GF

SE

GG

SE

GD

P

U4

000

74

HC

16

4

14 71 2

3 4 5 6 10

11

12

13

8 9

A BQ

0Q

1Q

2Q

3Q

4Q

5Q

6Q

7

CL

K

MR

a

bf

c

g de

DIG

.1 dp

a

bf

c

g de

DIG

.2 dp

a

bf

c

g de

DIG

.3 dp

a

bf

c

g de

DIG

.4 dpU

40

03

FY

Q-3

641A

11 7 4 2 1

10 5 3

12

9

8

6

a b c d e f g dp

DIG

.1D

IG.2

DIG

.3D

IG.4

LE

DD

AT

A

DG

ND

D+

5V

/LE

DE

NL

ED

CL

K

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

Appendix A-4 Freescale Semiconductor Preliminary

Page 65: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

DG

ND

& P

GN

D C

onnec

ted t

oget

her

,for

no

opto

-iso

lati

on i

s use

d

PF

C &

AP

V2.0

BU

S+

PF

Cdri

ve0

0P

GN

DP

GN

DP

+15V

P+

15V

PF

Cdri

ve2

PF

Cdri

ve1

PF

Cdri

ve0

0P

FC

dri

ve0

0

BU

S+

PF

Cdri

ve0

0

PF

C_A

P

D+

5V

PG

ND

P+

15V

DG

ND

D+

5V

DG

ND

PG

ND

DG

ND

D+

5V

P+

15V

P+

15V

PG

ND

P+

15V

AC

_IN

1

AC

_IN

2P

GN

D

CS

CS

CS

BU

S+

PF

C_A

PP

FC

_A

P

AC

_IN

11

AC

_IN

22

AC

_R

EL

AY

PF

Cdri

ve3

PF

Cdri

ve1

P+

15V

PF

Cdri

ve3

PF

Cdri

ve0

0P

FC

dri

ve2

PG

ND

PG

ND

PG

ND

PG

ND

PG

ND

PG

ND

PG

ND

PG

ND

PG

ND

PG

ND

PG

ND

PG

ND

PG

ND

P+

15V

P+

15V

PG

ND

PG

ND

F5000

250V

/20A

Q5000

IXT

H30N

50D

5001

DS

EP

60-0

6A

C5004

330uF

R5006

470K

/2W

R5007

470K

/2W

C5003

330uF

C5000

470nF

/275V

R5002

10/3

WC

5002

680pF

/2K

R5003

30K

J5000

AC

IN

PU

T

JP5020

Plu

g f

or

PF

C D

ebug

1234

U5020

IR2125

1 2 3 45678

VC

C

IN ER

R

CO

MV

S

CS

HO

VB

C5021

0.1

uF

C5023

10pF

D5020

1N

4001

C5024

0.1

uF

R5021

6.8

/0.5

W

C5020

220U

F/2

5V

R5020

1K

L5001

220uH

J5002

Pow

erJu

mper

F2000

2A

250V

AC

C2006

47uF

/400V

VR

2000

P6K

E200

D2001

BY

V26C

D2005

MU

R420

C2015

330uF

/35V

C2016

220U

F/2

5V

U2001

NE

C2501

A KE

R2001

2K

R2003

10KL

2002

3.3

uH

R2002

200/0

.5W

U2002

TL

431

D2003

1N

4148

C2007

0.1

uF

C2027

0.1

uF

C2009

47uF

R2000

6.2

C2005

0.1

uF

/250V

AC

C2008

0.1

uF

C2028

1.6

nF

/450V

AC

D2002

KB

P10

241

J2000

AC

IN

PU

T

C2017

0.1

uF

C2019

1uF

D2006

MU

R420

C2020

330uF

/35V

C2021

220U

F/2

5V

L2003

3.3

uH

C2022

0.1

uF

C2018

220U

F/2

5V

U2000

TO

P223Y

AI

1 2 3

Q2000

7805

1

3

2

JP2001

PO

WE

R P

LU

G

1234

L2004

3.3

uH

RV

2000

100K

1

2

LE

D2002

RE

D D

ISP

LA

Y

1 LE

D2001

RE

D D

ISP

LA

Y

1

R2004

300

R2005

900

D5023

1N

4004

R5008

0.0

2C

5026

10nF

U5021

RE

LA

Y

1

5

15

R5023

120/3

WD

5021

1N

4007

D5022

1N

4007

Q5001

PS

S8050

C5025

0.1

uF

R5022

1K

TE

5022

PG

ND

TR

2001

AP

C T

RA

NS

FO

RM

ER

9 9

U13

TC

4420

1

67

45

2 3

8V

DD

OU

TP

UT

OU

TP

UT

GN

DG

ND

INP

UT

NC

VD

D

R5024

6.8

/0.5

WC

50280

.1uF

C5027

0.1

uF

JP5003

PF

C D

RIV

ER

JU

MP

ER

D5000

IR25X

B08H

CA

K

C5001

0.1

uF

+C

5036

47uF

/10V

BU

S+

PF

Cdri

ve1

D+

5V

P+

15V PG

ND

DG

ND

AC

_R

EL

AY

Schematics, Rev. 1

Freescale Semiconductor Appendix A-5Preliminary

Page 66: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

(SA

MP

LE

OF

DC

BU

S+

, F

OR

PR

OJE

CT

OF

PM

SM

AN

D A

CIM

)

(SA

MP

LE

OF

U P

HA

SE

VO

LT

AG

E,

FO

RP

MS

M O

NL

Y)

(SA

MP

LE

OF

V P

HA

SE

VO

LT

AG

E,

FO

RP

MS

M O

NL

Y)

(SA

MP

LE

OF

W P

HA

SE

VO

LT

AG

E,

FO

RP

MS

M O

NL

Y)

(PR

OT

EC

OF

DC

BU

S C

UR

RE

NT

& D

CB

US

VO

LT

AG

E,

FO

RP

RO

JEC

T O

F A

CIM

AN

D P

MS

M)

SE

NS

OR

CIR

CU

IT F

OR

AC

IM &

PM

SM

(SA

MP

LE

OF

DC

BU

S C

UR

RE

NT

,F

OR

AC

IM)

(SA

MP

LE

OF

PH

AS

E C

UR

RE

NT

,F

OR

PM

SM

)

(SA

MP

LE

OF

PH

AS

E C

UR

RE

NT

,F

OR

PM

SM

)

V2

.0

FO

R B

LD

C

V1

V_S

ense

_WV

_Sen

se_W

W1

V_

Sen

se_

DC

BV

_S

ense

_D

CB

PG

ND

BU

S+

V_S

ense

_UV

_Sen

se_U

PG

ND

U V

BU

S+

U1

I_S

ense

_DC

B1

I_S

ense

_DC

B1

I_S

ense

_DC

B1

I_S

ense

_D

CB

1

V_S

ense

_V

D+

5V

DG

ND

I_S

ense

_DC

B

IPM

LO

CK

V_S

ense

_DC

B

1.6

5V

RE

F1

.65

VR

EF

1.6

5V

RE

F

I_S

ense

_DC

BP

GN

D

I_S

ense

_DC

B1

1.6

5V

RE

FV

RE

FD

GN

D

VR

EF

I_S

ense

_V

V VN

1.6

5V

RE

F

I_S

ense

_UU

NU

N

UU

1.6

5V

RE

F

UN

VN

U1

W1

V1

D+

5V

D+

5V

D+

5V

D+

5V

D+

5V

D+

5V

D+

5V

D+

5V

D+

5V

DG

ND

DG

ND

D+

5V

D+

5V

D+

5V

D+

5V

D+

5V

D+

5V

R6

03

07

.25

M-0

.1%

R6

03

17

.25

M-0

.1%

D6

00

31

N4

73

3

R6

03

2

51

K-0

.1%

D6

00

71

N4

73

3

U6

00

5M

C3

31

72

1

8 4O

UT

VC

C

GN

DC6

01

70

.1u

F

R6

03

35

1K

-0.1

%

C6

01

60

.01

uF

U6

00

5M

C3

31

72

7

R6

03

57

.25

M-0

.1%

R6

03

67

.25

M-0

.1%

D6

00

51

N4

73

3

R6

03

75

1K

-0.1

%

D6

00

81

N4

73

3

U6

00

6M

C3

31

72

1

8 4O

UT

VC

C

GN

D

R6

03

85

1K

-0.1

%

C6

02

10

.01

uF

U6

00

6M

C3

31

72

7

R6

02

17

.25

M-0

.1%

R6

02

07

.25

M-0

.1%

D6

00

41

N4

73

3

R6

02

25

1K

-0.1

%D

60

09

1N

47

33

U6

00

3M

C3

31

72

1

8 4O

UT

VC

C

GN

DC6

00

80

.1u

F

R6

02

35

1K

-0.1

%

C6

00

90

.01

uF

C6

01

20

.1u

F

U6

00

3M

C3

31

72

7

R6

02

57

.25

M-0

.1%

R6

02

67

.25

M-0

.1%

D6

00

21

N4

73

3

R6

02

75

1K

-0.1

%

D6

00

61

N4

73

3

U6

00

4M

C3

31

72

1

8 4O

UT

VC

C

GN

D

R6

02

85

1K

-0.1

%

C6

01

30

.01

uF

U6

00

4M

C3

31

72

7

R6

02

41

60

R6

02

91

60 R

60

34

16

0

R6

01

53

30

U6

00

2

LM

29

3

7

RV

60

03

10

K

1

2

R6

03

91

60

C6

00

5

0.1

uF

C6

02

00

.1u

F

R6

01

26

20

C6

00

70

.1u

F

C6

01

10

.01

uF

C6

01

50

.01

uF

C6

01

00

.01

uF

C6

01

40

.01

uF

C6

01

80

.01

uF

C6

02

20

.01

uF

C6

01

90

.01

uF

R6

01

4

22

0K

R6

01

3

1.2

K

C6

00

60

.01

uF

R6

01

13

30

RV

60

02

10

K

1

2

R6

00

86

20

R6

01

0

22

0K

R6

00

9

1.2

K

C6

00

40

.01

uF

C6

03

00

.01

uFC

60

31

0.0

1u

F

C6

03

20

.01

uF

C6

03

30

.01

uF

R6

01

63

00

LE

D6

00

1O

ver

Cur

1

R6

01

73

00

LE

D6

00

2O

ver

Bu

sVo

l

1

U6

00

9

RE

F1

96

1 2 3 4

8 7 6 5

TP

VS

SL

EE

PG

ND

NC

NC

OU

TP

UT

TP

R6

05

01

0K

R6

05

11

0K

U6

01

0M

C3

31

72

1

8 4O

UT

VC

C

GN

D

C6

03

90

.1u

F

+C

60

37

10

uF

/16

V

R6

05

24

.7K

C6

03

60

.1u

F

C6

03

80

.1u

F

R6

00

38

.2K

-0.1

%A

CIM

/1M

-0.1

%P

MS

M

R6

00

11

0K

-0.1

%A

CIM

/20

0K

-0.1

%P

MS

M

R6

00

21

0K

-0.1

%A

CIM

/20

0K

-0.1

%P

MS

M

R6

00

4

8.2

K-0

.1%

AC

IM/1

M-0

.1%

PM

SM

U6

00

1M

C3

31

72

1

8 4O

UT

VC

C

GN

D

C6

00

00

.1u

F

U6

00

1

MC

33

17

2

7

R6

00

5

16

0

JP6

00

0

Ref

eren

ce V

olt

age

Jum

per

(1.6

5V

fo

r P

MS

M a

nd

DG

ND

for

AC

IM)

R6

04

71

M-0

.1%

PM

SM

R6

04

52

00

K-0

.1%

PM

SM

R6

04

62

00

K-0

.1%

PM

SM

R6

04

8

1M

-0.1

%P

MS

M

U6

00

8M

C3

31

72

1

8 4O

UT

VC

C

GN

D

C6

04

10

.1u

F

U6

00

8

MC

33

17

2

7

R6

04

9

16

0

R6

04

21

M-0

.1%

PM

SM

R6

04

02

00

K-0

.1%

PM

SM

R6

04

12

00

K-0

.1%

PM

SM

R6

04

3

1M

-0.1

%P

MS

M

U6

00

7M

C3

31

72

1

8 4O

UT

VC

C

GN

D

C6

04

00

.1u

F

U6

00

7

MC

33

17

2

7

R6

04

4

16

0

U6

00

2L

M2

93

1

OU

T

C6

03

40

.01

uF

C6

03

5

0.0

1u

F

C6

00

3

0.0

1u

F

D6

00

0

1N

41

48

D6

00

1

1N

41

48

PG

ND

V_

Sen

se_

V

V_

Sen

se_

W

V_

Sen

se_

UU VB

US

+

IPM

LO

CK

I_S

ense

_D

CB

1

D+

5V

DG

ND

V_

Sen

se_

DC

B

I_S

ense

_D

CB

I_S

ense

_V

I_S

ense

_U

UN

VN

U1

W1

V1

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

Appendix A-6 Freescale Semiconductor Preliminary

Page 67: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

Appendix B ACIM Bill of Materials

Designator Description Footprint Quantity

C1000, C6003, C6004,C6006, C6009, C6010, C6011, C6013, C6014, C6015, C6016, C6018, C6019, C6021, C6022, C6030, C6031, C6032, C6033, C6034, C6035

0.01 µF RAD-0.1 21

C1001, C1009, C1037, C1038, C1039, C1040, C2007, C2008, C2017, C2022, C2027, C3000, C3001, C3002, C3003, C3004, C3008, C3009, C4001, C4002, C5001, C5021, C5024, C5025, C5027, C5028, C6000, C6005, C6007, C6008, C6012, C6017, C6020, C6036, C6038, C6039, C6040, C6041

0.1 µF RAD-0.1 38

C1002, C1003 2.2 µF / 25 V RB2.5/5 2

C1006, C1036 0.1 µF / 630V CBB RAD15/18/6 2

C1008 0.1 mF / 25V RB2.5/6 1

C1030, C1031, C1032, C1033, C1034, C1035 1 nF RAD-0.1 6

C2005 0.1 uF / 250VAC RAD15/18/6 1

C2006 47 µF / 400V RB10/22.4 1

C2009 47 µF RB2.5/5 1

C2015, C2020 330 µF / 35V RB5/10 2

C2016, C2018, C2021, C5020 220 µF / 25V RB3/8 4

C2019 1 µF RAD-0.2 1

C2028 1.6 nF / 450VAC RAD-0.4 1

C3005, C3006, C3007 10 µF / 10V RB2.5/5 3

C4000, C5036 47 µF / 10V RB2.5/5 2

C5000 470 nF / 275V RAD22/26/9 1

C5002 650 pF / 2K RAD-0.2 1

C5003, C5004 330 µF RB10/30 2

C5023 10 pF RAD-0.1 1

C5026 10 nF RAD-0.1 1

ACIM Bill of Materials, Rev. 1

Freescale Semiconductor Appendix B-1Preliminary

Page 68: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

C6037 10 µF / 16V RB2.5/5 1

D1000, D1001 IN4148 DIODE-0.4 2

D2001 BYV26C DIODE-0.4 1

D2002 KBP10 KBP19 1

D2003 IN4148 DIODE-0.4 1

D2005, D2006 MUR420 DIODE-0.5 2

D3000, D3001, D3002, D3003 BAV99 SOT-23 4

D3004 IN4733 DIODE-0.4 1

D5000 IR25XB08H IR25XB 1

D5001 DSEP60-06A TO247AD 1

D5020 IN4001 IN4007 1

D5021, D5022 IN4007 IN4007 2

D5023 IN4004 IN4004 1

D6000, D6001 IN4148 DIODE-0.4 2

D6002, D6003, D6004, D6005, D6006, D6006, D6008, D6009

IN4733 DIODE-0.4 8

F2000 Fuse 2A 250 VAC FUSE20/5/7 1

F5000 Fuse 250V / 20A FUSE20/5/7 1

J2000, J5000 AC INPUT Connectors CON5/3.96 2

J3001 DB9 Connector DB9/M 1

J5002 Power Jumper CON2/3.96 1

JP1000 Jumper HEAD CON5/3.96 1

JP1001 Jumper UVW_OUTPUT UVW 1

JP1002 Jumper LEM (For Debug Purpose)

HDR1X3 1

JP1004, JP1005 ADC Channel Jumper HDR1X3 2

JP1006 Jumper Rotor Speed HDR1X3 1

JP1007 Jumper SCI IDC10 1

JP1008 ADC Channel Jumper HDR1X3 1

Designator Description Footprint Quantity

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

Appendix B-2 Freescale Semiconductor Preliminary

Page 69: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

JP1009 ADC Channel Jumper HDR1X3 1

JP1010 DSC Demo Board Connector

HDR2X20 1

JP1011, JP1012, JP1013, JP1014 Jumper for Push Button HDR1X2 4

JP1015 Jumper PhaseU_up HDR1X3 1

JP1016 Jumper PhaseU_down HDR1X3 1

JP1017 Jumper PhaseV_up HDR1X3 1

JP1018 Jumper PhaseV_down HDR1X3 1

JP2001 Jumper PowerPlug HDR1X4-5 1

JP4000 LED and DA IDC10 1

JP5003 PFC Driver Jumper HDR1X3 1

JP5020 Jumper Plug for PFC Debug

HDR1X4 1

JP6000 Reference Voltage Jumper (1.65 for PMSM and DGND for ACIM)

HDR1X3 1

L2002, L2003 3.3 µH IND3.3u 2

L2004 3.3 µH IND 1

L5001 220 µH IND_PFC 1

LED1001 LED OverTemp LEDA 1

LED2001, LED2002 RED LED DISPLAY LEDA 2

LED6001 LED OverCur LEDA 1

LED6002 LED OverBusVol LEDA 1

Q1000, Q5001 PSS8050 TO-92A 2

Q5000 IXTH30N50 TO247AC 1

R1000, R1001 1.2K Ohm AXIAL-0.4 2

R1002 130K Ohm AXIAL-0.4 1

R1004 6.8K Ohm AXIAL-0.4 1

R1008 6.8K Ohm AXIAL-0.4 1

Designator Description Footprint Quantity

ACIM Bill of Materials, Rev. 1

Freescale Semiconductor Appendix B-3Preliminary

Page 70: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

R1009 10.2K AXIAL-0.4 1

R1010 300 Ohm AXIAL-0.4 1

R1011 4.7K Ohm AXIAL-0.4 1

R1012 470V 1K Ohm VVR 1

R1013 5.1K Ohm AXIAL-0.4 1

R1014, R1015, R1016 2 Ohm (PMSM) SHANT-0.5 3

R1017, R1018, R1019 0.5 Ohm (ACIM) SHANT-0.5 3

R2000 6.2 Ohm AXIAL-0.4 1

R2001 2K Ohm AXIAL-0.4 1

R2002 200 Ohm / 0.5W AXIAL-0.5 1

R2003 10K Ohm AXILA-0.4 1

R2004 300 Ohm AXIAL-0.4 1

R2005 900 Ohm AXIAL-0.4 1

R3000, R3001, R3002, R3003 800 Ohm AXIAL-0.4 4

R4000, R4001, R4002, R4003, R4004, R4005, R4006, R4007

100 Ohm AXIAL-0.4 8

R4008, R4009 5K Ohm AXIAL-0.4 2

R4010, R6050, R6051 10K Ohm AXIAL-0.4 3

R5002 10 Ohm / 3W R2WV 1

R5003 30K Ohm AXIAL-0.4 1

R5006, R5007 470K Ohm / 2W R2WV 2

R5008 0.02 Ohm SHANT-0.2 1

R5020, R5022 1K Ohm AXIAL-0.4 2

R5021, R5024 6.8 Ohm / 0.5W AXIAL-0.5 2

R5023 120 Ohm / 3W RXWV 1

R6001, R6002 10K Ohm - 0.1% (ACIM) / 200K Ohm - 0.1% (PMSM)

AXIAL-0.4 2

R6003, R6004 8.2K Ohm -0.1% (ACIM) / 1M Ohm -0.1% (PMSM)

AXIAL-0.4 2

Designator Description Footprint Quantity

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

Appendix B-4 Freescale Semiconductor Preliminary

Page 71: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

R6005, R6024, R6029, R6034, R6039, R6044, R6049

160 Ohm AXIAL-0.4 7

R6008 620 Ohm AXIAL-0.4 1

R6009, R6013 1.2K Ohm AXIAL-0.4 2

R6010, R6014 220K Ohm AXIAL-0.4 2

R6011, R6015 330 Ohm AXIAL-04 2

R6012 620 Ohm AXIAL-04 1

R6016, R6017 300 Ohm AXIAL-04 2

R6020, R6021, R6025, R6026, R6030, R6031, R6035, R6036

7.25M Ohm - 0.1% AXIAL-04 8

R6022, R6023, R6027, R6028, R6032, R6033, R6037, R6038

51K Ohm - 0.1% AXIAL-04 8

R6040, R6041, R6045, R6046 200K Ohm - 0.1% (PMSM) AXIAL-04 4

R6042, R6043, R6047, R6048 1M Ohm - 0.1% (PMSM) AXIAL-04 4

R6052 4.7K Ohm AXIAL-04 1

RP1000 Resistor Pack 8 X 5K Ohm SIP9 1

RV1000, RV6002, RV6003 10K Ohm VRESLV 3

RV2000 100K Ohm VRESLV 1

S1000 Button Function1 BUTTON 1

S1001, S1002 Button Function2 BUTTON 2

S1003 Button Function3 BUTTON 1

TE10 Test point PWM0 SIP-1 1

TE11 Test point PWM1 SIP-1 1

TE12 Test point PWM2 SIP-1 1

TE13 Test point PWM3 SIP-1 1

TE14 Test point PWM4 SIP-1 1

TE15 Test point PWM5 SIP-1 1

TE5022 PGND SIP-1 1

TR2001 APC Transformer TRAN-E133-2 1

Designator Description Footprint Quantity

ACIM Bill of Materials, Rev. 1

Freescale Semiconductor Appendix B-5Preliminary

Page 72: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

U13 TC4420 DIP8 2

U1000 MC74HC244 DIP20 1

U1001, U6002 LM293 DIP8 2

U1002 IRAMS10UP60A IRAMS10UP60A-2 1

U2000 TOP223YAI TO-220 1

U2001, U3001, U3002 NEC2501 DIP4 3

U2002 TL431 TL431 1

U3000 TC7660 SO-8 1

U3003 MAX202CSE DIP16 1

U4000, U4001 74HC164 DIP14 2

U4002, U4003 FYQ-3641A LG3641AH 2

U4004 MAX7219 DIP24 1

U5020 IR2125 DIP8 1

U5021 RELAY 1

U6001, U6003, U6004, U6005, U6006, U6007, U6008, U6010

MC33172 DIP8 8

U6009 REF196 DIP-8 1

VR2000 P6KE200 DIODE-0.4 1

Designator Description Footprint Quantity

Design of an ACIM Vector Control Drive using the 56F8013 Device, Rev. 1

Appendix B-6 Freescale Semiconductor Preliminary

Page 73: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

INDEX

Numerics3-Phase AC Induction Motor Vector Control using a

56F80x, 56F8100 or 56F8300 Device Design of Motor Control Application Preface-xii

3-Phase AC Motor Control with VHz Speed Close Loop using the 56F80x Preface-xii

56F8300 Peripheral User Manual Preface-xii56F8323 Data Sheet Preface-xii

AA Fully Digitized Field-Oriented Controlled Induction

Motor Drive using Only Current Sensors Preface-xiiA Novel Stator-Flux-Oriented Speed Sensorless Induction

Motor Control System using Flux Tracking Strategy Preface-xii

A Stator Flux Oriented Induction Machine Drive Preface-xiiA Stator Flux-Oriented Voltage Source Variable-Speed

Drive Based on DC Link Measurement Preface-xiiA Stator-Flux-Oriented Vector-Controlled Induction Motor

Drive with Space-Vector PWM and Flux-Vector Synthesis by Neural Networks Preface-xii

ACIM Preface-xiAlternating Current Induction Motor Preface-xi

ADCAnalog-to-Digital Conversion Preface-xi

An Improved Stator Flux Estimation in Steady-State Operation for Direct Torque Control of Induction Machines Preface-xii

CCOP Preface-xi

Computer Operating Properly Preface-xi

DDCM Preface-xiDSP56800E Reference Manual Preface-xii

EEMF Preface-xiEVM Preface-xi

Evaluation Module Preface-xi

GGPIO Preface-xi

General Purpose Input/Output Preface-xi

Index,

Freescale SemiconductorPreliminary

HHMI Preface-xi

Human Machine Interface Preface-xi

II2C Preface-xi

Inter-Integrated Circuit Preface-xiIC Preface-xi

Integrated Circuit Preface-xiIM Preface-xi

Induction Motor Preface-xiInside Code Warrior Preface-xiiIPM Preface-xi

Intelligent Power Module Preface-xiISR Preface-xi

Interrupt Service Routine Preface-xi

LLPF Preface-xi

MMaximum Torque Control of Stator-Flux-Oriented Induction

Machine Drive in the Field-Weakening Region Preface-xii

NNew Integration Algorithms for Estimating Motor Flux over

a Wide Speed Range Preface-xii

PPFC Preface-xi

Power Factor Correction Preface-xiPI

Proportional-Integral Preface-xiPLL Preface-xi

Phase Locked Loop Preface-xiPractical Implementation of a Stator Flux Oriented Control

Scheme for an Induction Machine Preface-xiiProportional-Integral Preface-xiPWM

Pulse Width Modulation or ModulatorPWM Preface-xi

Rev. 1

i

Page 74: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

RRMS

Root Mean Square Preface-xiRoot Mean Square Preface-xi

SSCI

Serial Communication InterfaceSCI Preface-xi

SFOC Preface-xiStator-Flux-Oriented Control Preface-xi

SPI Preface-xiSerial Peripheral Interface Preface-xi

Stator Flux Oriented Control of Induction Motors Preface-xii

Stator-Flux-Oriented Sensorless Induction Motor Drive for Optimum Low-Speed Performance Preface-xii

SV Preface-xiSpace Vector Preface-xi

SVPWM Preface-xiSpace Vector Pulse Width Modulation Preface-xi

Design of an ACIM Vector Control Dr

ii

ive using the 56F8013 Device, Rev. 1

Freescale Semiconductor Preliminary

Page 75: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device
Page 76: DRM075, Design of an ACIM Vector Control Drive using the ...cache.freescale.com/files/dsp/doc/ref_manual/DRM075... · Design of an ACIM Vector Control Drive using the 56F8013 Device

How to Reach Us:

Home Page:www.freescale.com

E-mail:[email protected]

USA/Europe or Locations Not Listed:Freescale SemiconductorTechnical Information Center, CH3701300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or [email protected]

Europe, Middle East, and Africa:Freescale Halbleiter Deutschland GmbHTechnical Information CenterSchatzbogen 781829 Muenchen, Germany+44 1296 380 456 (English)+46 8 52200080 (English)+49 89 92103 559 (German)+33 1 69 35 48 48 (French)[email protected]

Japan:Freescale Semiconductor Japan Ltd. HeadquartersARCO Tower 15F1-8-1, Shimo-Meguro, Meguro-ku,Tokyo 153-0064, Japan0120 191014 or +81 3 5437 [email protected]

Asia/Pacific:Freescale Semiconductor Hong Kong Ltd.Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 [email protected]

For Literature Requests Only:Freescale Semiconductor Literature Distribution CenterP.O. Box 5405Denver, Colorado 802171-800-441-2447 or 303-675-2140Fax: [email protected]

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. This product incorporates SuperFlash® technology licensed from SST.© Freescale Semiconductor, Inc. 2005. All rights reserved.

DRM075Rev. 110/2005

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.