22
17-Jan-15 1 17-Jan-15 HR Spring 2015 1 1-Basics DSP Basics Chapter 1 ME-4701 Digital Signal Processing Elective Spring 2015 SZABIST, Karachi 17-Jan-15 HR Spring 2015 2 1-Basics

DSP1 Basics

  • Upload
    baby320

  • View
    222

  • Download
    0

Embed Size (px)

DESCRIPTION

lecture

Citation preview

  • 17-Jan-15

    1

    17-Jan-15 HR Spring 2015 1

    1Basics

    DSP Basics

    Chapter 1

    ME-4701

    Digital Signal Processing

    Elective

    Spring 2015

    SZABIST, Karachi

    17-Jan-15 HR Spring 2015 2

    1Basics

  • 17-Jan-15

    2

    Instructor:

    Engr. Humera Rafique

    Assistant Professor (Mechatronics)

    [email protected]

    Office: FR-404 (100 Campus )

    Course Support

    Official: ZABdesk

    17-Jan-15 HR Spring 2015 3

    1Basics

    Chapter Contents

    1. Introduction

    2. Signals and Systems

    3. Types of Signals

    4. Types of Systems

    17-Jan-15 HR Spring 2015 4

  • 17-Jan-15

    3

    Introduction to Signal

    Processing

    17-Jan-15 HR Spring 2015 5

    1Basics

    Introduction

    System

    input output

    Excitation Response

    signals

    Signals and Systems:

    17-Jan-15 HR Spring 2015 6

    1Basics

  • 17-Jan-15

    4

    Introduction

    Signal:

    An entity, a pattern of variations, that carries or translates some information

    Input, a stimulus, an excitation to a system or process

    Response to a system or process

    e.g., electrical pulses, sine wave, audio signal, video signal, TV broadcast etc.

    Representation of Signals:

    Graphical

    Mathematical

    Physical

    17-Jan-15 HR Spring 2015 7

    1Basics

    Introduction

    0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Time

    Amplitu

    de

    2

    17-Jan-15 HR Spring 2015 8

    1Basics

  • 17-Jan-15

    5

    Introduction%% DSP lecture Support

    % Chapter 1: Introduction to Signal Processing

    % Article: Signals and Systems

    % grpahical representation

    fs = 8000; dt=1/fs; t = 0:dt:1; f= 500;

    x = sin(2*pi*f*t); % mathematical representation

    plot(t,x), axis([0 0.02 -1 1]),grid, xlabel('Time'), ylabel('Amplitude')

    % physical interpretation

    wavplay(x,fs)

    % saving audio for playback

    wavwrite(x,fs,'H:\Fall 13\DSP\MatlabSupp\sinsound')

    17-Jan-15 HR Spring 2015 9

    1Basics

    Introduction

    System:

    An electrical/physical unit, comprising of a component, device or a complex

    small or large network, capable of processing an input signal to a response

    System Components:

    1. Excitation (input) x(t)

    2. Process (system kernel) h(t)

    3. Response (output) y(t)

    h(t)

    x(t) y(t)

    17-Jan-15 HR Spring 2015 10

    1Basics

  • 17-Jan-15

    6

    Introduction

    Time domain

    Frequency domain

    Domain of Signals and Systems:

    sin 2

    X 24

    syms t f;

    y = sin(2*pi*f*t);

    Y = laplace(y)

    pretty(Y)

    Graphical

    Mathematical

    Physical

    Signals are represented as a function of one or more variables

    17-Jan-15 HR Spring 2015 11

    1Basics

    Introduction

    Spatial domain

    Time-Frequency: Spectrogram

    (Hz/Sec)

    Domain of Signals and Systems:

    Graphical

    Mathematical

    19 20 21 22 23 24

    7.5

    8

    8.5

    9

    9.5

    10

    10.5

    11

    11.5

    12

    12.5

    17-Jan-15 HR Spring 2015 12

    1Basics

  • 17-Jan-15

    7

    Types of Signals

    17-Jan-15 HR Spring 2015 13

    1Basics

    Signal Types

    Signal Classifications:

    1. Periodic/Non Periodic signals

    2. Continuous time/Discrete time signals

    3. Analog/Digital signals

    4. Causal/Non-Causal/Anti-Causal signals

    5. Even/Odd signals

    6. Finite length/Infinite length signals

    7. Deterministic/Random signals

    8. Real / Complex valued

    9. Power and Energy signals

    17-Jan-15 HR Spring 2015 14

    1Basics

  • 17-Jan-15

    8

    Signal Types

    1. Periodic/Non Periodic signals:

    0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01-0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Time

    Ampl

    itude

    T = 0:1/50E3:10E-3;

    D = [0:1/1E3:10E-3;0.8.^(0:10)]';

    Y = pulstran(T,D,'gauspuls',10E3,0.5);

    plot(T,Y), xlabel('Time'), ylabel('Amplitude')

    0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Time

    Ampl

    itude

    fs = 10000; dt = 1/fs; t = 0:dt:1; f = 200;

    x = square(2*pi*f*t);

    plot(t,x,'.-m','MarkerSize',2), a = size(x); b = zeros(1,a);

    axis([0 0.02 -1.1 1.1]), xlabel('Time'), ylabel('Amplitude')

    hold, plot(t,b,'-.k'),axis([0 0.02 -1.1 1.1]) % for horizontal axis line

    17-Jan-15 HR Spring 2015 15

    1Basics

    Signal Types

    1. Periodic/Non Periodic signals:

    % Dirichlet Function

    x = linspace(0,4*pi,300);

    plot(x,diric(x,7)); axis tight; title(' Dirichlet Function')

    xlabel('Time'), ylabel('Amplitude')

    0 2 4 6 8 10 12-0.2

    0

    0.2

    0.4

    0.6

    0.8

    Dirichlet Function

    Time

    Ampl

    itude

    -5 -4 -3 -2 -1 0 1 2 3 4 5-0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    t

    x(t)

    Sinc

    %% sinc

    x = linspace(-5,5); y = sinc(x); % plot(x,y), xlabel('Time'), ylabel('Amplitude')

    a = length(x)-1; t = -a/2:a/2;

    plot (x,y,'LineWidth',1), xlabel('t'), ylabel('x(t)'), title('Sinc'), hold,

    plot(zeros(1,a+1)',t,'-.k') % for vertical axis line

    plot(t,zeros(1,a+1)','--k') % for horizontal axis line

    axis([-5 5 -0.4 1.1])

    17-Jan-15 HR Spring 2015 16

    1Basics

  • 17-Jan-15

    9

    Signal Types

    2. Continuous Time/Discrete Time signals:

    !"#Discretized time axis

    Continuous-time signal x(t), the

    independent variable, t is exist at

    every instant of time

    The signal itself needs not to be

    continuous

    A Discrete-time signal defined only at

    discrete instances

    Thus, the independent variable t has

    discrete values only

    0 0.002 0.004 0.006 0.008 0.01-1

    -0.5

    0

    0.5

    1

    Time

    Ampl

    itude

    0 0.002 0.004 0.006 0.008 0.01-1

    -0.5

    0

    0.5

    1

    Time

    DT Am

    plitu

    de

    sin2

    17-Jan-15 HR Spring 2015 17

    1Basics

    Signal Types

    2. Continuous Time/Discrete Time signals:

    %% continuous and discrete signals

    fs = 8000; dt = 1/fs; t = 0:dt:1; f = 500;

    x = sin(2*pi*f*t);

    subplot(211), plot(t,x)

    axis([0 0.01 -1 1]),grid

    xlabel('Time')

    ylabel('Amplitude')

    subplot(212)

    stem(t,x,'g','filled')

    axis([0 0.01 -1 1]),grid

    xlabel('Time')

    ylabel('DT Amplitude')

    0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01-1

    -0.5

    0

    0.5

    1

    Time

    Ampl

    itude

    0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01-1

    -0.5

    0

    0.5

    1

    Time

    DT Am

    plitu

    de

    17-Jan-15 HR Spring 2015 18

    1Basics

  • 17-Jan-15

    10

    Signal Types

    3. Analog /Digital signals:

    Discretized amplitude axis

    undiscretized time axis: : Piecewise

    continuous time signal

    Discretized amplitude axis

    Discretized time axis

    17-Jan-15 HR Spring 2015 19

    1Basics

    Signal Types4. Causal /Anti causal/Non-Causal signals:

    Causal:

    0 % 0

    17-Jan-15 HR Spring 2015 20

    1Basics

  • 17-Jan-15

    11

    Signal Types4. Causal /Anti causal/Non-Causal signals:

    Anti-Causal: 0 & 0

    17-Jan-15 HR Spring 2015 21

    1Basics

    Signal Types4. Causal /Anti causal/Non-Causal signals:

    Non-Causal:

    0'()**+ & 0, % 0

    17-Jan-15 HR Spring 2015 22

    1Basics

  • 17-Jan-15

    12

    Signal Types

    5. Even/Odd signals:

    -An even signal is symmetric around the vertical axis

    -5 -4 -3 -2 -1 0 1 2 3 4 5-0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Time

    Ampl

    itude

    -10 -5 0 5 10

    0

    0.2

    0.4

    0.6

    0.8

    1

    t

    x(t)

    Even Signal

    x = [ zeros(1,10) ones(1,5) zeros(1,10)];

    a = length(x)-1; t = -a/2:a/2;

    plot (t,x,'c','LineWidth',2), axis([-12 12 -0.1 1.1]), xlabel('t'), ylabel('x(t)'), title('Even Signal')

    hold, plot(zeros(1,a+1)',t,'-.k') % for vertical axis line

    plot(t,zeros(1,a+1)','--k') % for horizontal axis line

    17-Jan-15 HR Spring 2015 23

    1Basics

    Signal Types

    5. Even/Odd signals:

    --An odd signal is symmetric around the horizontal axis

    -4000 -3000 -2000 -1000 0 1000 2000 3000 4000-4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    t

    x(t)

    Odd Signal

    -

    --%% oddfs = 8000; dt = 1/fs; t = 0:dt:1; f = 500;

    x = sin(2*pi*f*t);

    a = length(x)-1; t = -a/2:a/2; plot(t,angle(fft(x))), grid

    xlabel('t'), ylabel('x(t)'), title('Odd Signal')

    17-Jan-15 HR Spring 2015 24

    1Basics

  • 17-Jan-15

    13

    Signal Types6. Finite Length / Infinite Length signals:

    Finite length:

    0 50 100 150 200 250 300-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Time

    Amplitu

    de

    17-Jan-15 HR Spring 2015 25

    1Basics

    Signal Types6. Finite Length / Infinite Length signals:

    Infinite length:

    0 0.005 0.01 0.015 0.02 0.025 0.03-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    . . . . . . .. . . . . . .

    17-Jan-15 HR Spring 2015 26

    1Basics

  • 17-Jan-15

    14

    Signal Types

    7. Real/Complex Valued signals:

    | | Real valued:

    12 Complex valued:

    | | 2

    34 56 2

    17-Jan-15 HR Spring 2015 27

    1Basics

    Signal Types

    8. Deterministic / Random signals:

    3 *589 Deterministic signal that can be represented by an equation, formula or table Future values are predictable

    Linear signals

    Random signals whose representation is not possible

    to by a usual mathematical equation, formula or table

    Thus, future values are not predictable (a statistical

    procedure can work)

    Non-linear, stochastic or un-deterministic signals

    5 10 15 20 25 30 35 40 45 50

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5Random Signal

    Time

    Ampl

    itude

    17-Jan-15 HR Spring 2015 28

    1Basics

  • 17-Jan-15

    15

    Signal Types

    8. Deterministic / Random signals:

    5 10 15 20 25 30 35 40 45 50-2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    Random Signal

    Time

    Ampl

    itude

    %% random signal

    x = randn(1,50);

    plot(x), grid, axis tight;

    title('Random Signal'),

    xlabel('Time'), ylabel('Amplitude')

    5 10 15 20 25 30 35 40 45 50-2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    Random Signal

    Time

    Ampl

    itude

    5 10 15 20 25 30 35 40 45 50

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2Random Signal

    Time

    Ampl

    itude

    17-Jan-15 HR Spring 2015 29

    1Basics

    Signal Types

    9. Power / Energy signals:

    : lim=>1

    2@ 1 A =

    BC5=

    Energy of a Signal:

    D A >

    BC5>

    Power of a Signal:

    * E | |,F

    5F

    ) limF>12E | |,

    F

    5F

    17-Jan-15 HR Spring 2015 30

    1Basics

  • 17-Jan-15

    16

    Signal Types

    9. Power / Energy signals:

    Energy Signal:

    Power Signal:

    )G* 0; **I+ *

    )G* *; **I+ 0

    All the periodic signals are power signals, but

    Not all non-periodic signals are energy signals

    17-Jan-15 HR Spring 2015 31

    1Basics

    Signal Types

    9. Power / Energy signals:

    Example 1-1:

    Find out if the signal is energy, power or neither?

    x(t)

    t

    3

    1

    0

    x(n)

    n

    0

    1 2

    17-Jan-15 HR Spring 2015 32

    1Basics

  • 17-Jan-15

    17

    Signal Types

    9. Power / Energy signals:

    Example 1-2: Find out if the signal is energy, power or neither?

    3 sin 2 - J J

    17-Jan-15 HR Spring 2015 33

    1Basics

    Types of Systems

    17-Jan-15 HR Spring 2015 34

    1Basics

  • 17-Jan-15

    18

    System Types

    System Classifications:

    1. Continuous time/Discrete time systems

    2. Analog/Digital systems

    3. Linear/Non-linear systems

    4. Time variant/ Time-invariant systems

    5. Causal/Non-causal systems

    6. Open loop/Closed loop systems

    7. Stable/Unstable systems

    8. Static /Dynamic Systems

    17-Jan-15 HR Spring 2015 35

    1Basics

    System Types

    Continuous /Discrete Systems:

    Continuous Time

    System

    Discrete Time

    System

    17-Jan-15 HR Spring 2015 36

    1Basics

  • 17-Jan-15

    19

    System Types

    Analog/Digital Systems:

    Analog System

    Digital System111011110001. . . . . . . . 101010010001. . . . . . . .

    17-Jan-15 HR Spring 2015 37

    1Basics

    System Types

    Linear/Non-Linear Systems:

    Linear System6 +

    Linear System

    6 +

    +6 +

    Linear System +

    17-Jan-15 HR Spring 2015 38

    1Basics

  • 17-Jan-15

    20

    System Types

    Time Variant/Time Invariant Systems:

    Time inVariant

    6 +

    6 - L + - L

    Time Variant

    6 +

    6 - L + - L

    17-Jan-15 HR Spring 2015 39

    1Basics

    System Types

    Causal / Non-causal Systems:

    Causal: A system whose, output depends on current and past inputs, no contribution from the future

    inputs

    Real time systems

    + - 2

    + 2

    Non-Causal: A system whose, output depends on future and past inputs

    17-Jan-15 HR Spring 2015 40

    1Basics

  • 17-Jan-15

    21

    System Types

    Open Loop / Closed Loop Systems:

    + - 2

    + 2 - + - 1

    Open Loop System6 +

    Closed Loop System6 +

    17-Jan-15 HR Spring 2015 41

    1Basics

    System Types

    Stable / Unstable Systems:

    Stable System6 stableinput + 2*S)S

    Unstable System6 stableinput +6 S2*S)S

    17-Jan-15 HR Spring 2015 42

    1Basics

  • 17-Jan-15

    22

    System Types

    Static / Dynamic Systems:

    Static Systems: Constant system, whose parameters do not change

    Memoryless systems (i.e., No feedback element)

    e.g., constant target shooting system

    Dynamic Systems: whose parameters change

    Memory based systems

    e.g., human body, missile system that tracks moving target

    + 6 - 2

    + 6+ 2+ 6+ - 217-Jan-15 HR Spring 2015 43

    1Basics

    Reference

    1. Proakis

    2. Orfanidis

    3. Mathworks Manual: Signal processing toolbox

    17-Jan-15 HR Spring 2015 44

    1Basics