DSU 2015 -IC-Ch7-5

  • Upload
    ivka369

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    1/64

    PHYSICAL CHEMISTRY: QUANTA, MATTER, AND CHANGE 2E| PETER ATKINS| JULIO DE PAULA | RONALD FRIEDMAN

    ©2014 W. H. FREEMAN D COMPANY

    Inorganic Chemistry Sixth Edition

    Chapter 7- An

    Introduction toCoordination Compounds

    PART A

    INORGANIC CHEMISTRY 6E| SHRIVER| WELLER| OVERTON | ROURKE | ARMSTRONG©2014 W. H. FREEMAN AND COMPANY

    Modified By Dr. Cheng-Yu Lai 

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    2/64

    Transition Metal Complexes Structures-A

    The structures, nomenclature and isomers of coordination compounds

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    3/64

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    4/64

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    5/64

    Introduction to Coordination Compounds

    Any compound containing a metal atom or ion

    with one or more ligands is called a coordination

    compound or complex. The ligands donate

    electrons to the metal via coordinate covalent

    bonds.

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    6/64

    The structures of these compounds was

    not always evident. Ions or molecules might

    be directly bonded to the metal, or serve as a

    counter ion for an ionic salt.

    [Mn(OH2)6] SO4 sulfate ion is outer sphere

    [Mn(OH2)5 SO4].H2O sulfate ion is inner sphere

    Introduction to Coordination Compounds

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    7/64

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    8/64

    The coordination number is the number of donor atoms bonded tothe central metal atom/ion.

    Introduction to Coordination Compounds

    Some Coordination Complexes

    example molecularformula

    Lewisbase/ligand

    Lewis acid donor atom coordinationnumber

    [Ag(NH3)2]+ NH3 Ag

    + N 2

    [Zn(CN)4]2- CN- Zn2+ C 4

    [Ni(CN)4]2- CN- Ni2+ C 4

    [PtCl6]2- Cl- Pt4+ Cl 6

    [Ni(NH3)6]2+ NH3 Ni

    2+ N 6

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    9/64

    Name of Common Ligands

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    10/64

    Nomenclature of Coordination Compounds

    There is a separate system for naming

    coordination compounds:

    prefix indicating + ligand name + metal + (oxidation #

    # of ligands in romannumerals)

    or

    “ “ “ + “ “ “ + “ “ “ + (charge of  complex)

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    11/64

    Nomenclature of Coordination Compounds

    1. If ionic, the positive ion is named first, then

    the negative ion.

    2. The inner coordination sphere is indicated by

    square brackets. In the formula, the metal is

    written first, followed by the ligands. In

    naming, the ligands are named first, then the

    metal.

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    12/64

    Nomenclature of Coordination Compounds

    3. Prefixes: If the ligand itself contains a prefix in its

    name (ex. dimethyl amine), then the prefix to indicate

    the number of ligands changes, and the ligand name is

    placed in parenthesis.

    2  di or bis 5  penta or pentakis 8  octa or octakis

    3   tri or tris 6  hexa or hexakis 9   nona or nonakis4   tetra or tetrakis7  hepta or heptakis 10   deca or decakis

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    13/64

    Nomenclature of Coordination Compounds

    4. Ligands are listed in alphabetical order (ignoring anyprefixes). Most ligands have special names, with all

    negatively charged ligands ending in the letter “o”.

    Most neutral ligands retain their usual names, with

    the following common exceptions:NH3  ammine H2O   aqua CO   carbonyl 

    5. Ligands that bridge two metal centres are denoted by a

    prefix μ (mu) added to the name of the relevant ligand

    μ-oxido-bis(pentamminecobalt(III))

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    14/64

    Nomenclature of Coordination Compounds

    5. There are two systems for indicating the oxidation

    number of the metal. The more commonly used system

    indicates the oxidation number in Roman numerals in

    parentheses after the name of the metal.The other system puts the charge of the coordination

    complex in Arabic numbers in parentheses after the

    metal.

    [Cr(H2O)5Cl]2+

    is pentaaquachlorochromium(III) or,pentaaquachlorochromium(2+).

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    15/64

    Nomenclature of Coordination Compounds

    6. Using either system, if the transition metal complexis negative in charge, the name of the metal ends inate.

    For example, [Pt(NH3)2Cl4]2- is nameddiamminetetrachloroplatinate(II).

    For metals with Latin names, the negativelycharge complex uses:

    ferrate (for Fe) argentate (for Ag)plumbate (for Pb) stannate (for Sn)

    aurate (for Au) cuprate (for Cu)

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    16/64

    Nomenclature of Coordination Compounds

    7. The complete name of the complex must also

    indicate the presence of geometric isomers. Prefixes

    such as cis, trans, mer , and fac are used to indicate

    the relative positions of similar ligands.

    In addition, stereoisomers are also possible with

    tetrahedral and octahedral geometries, and optical

    isomers are indicated with the prefixes ∆ and Λ.

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    17/64

    Names of Common Ligands

    Formula NameBr- bromo

    CO32- carbonato

    Cl- chloro

    CN- cyano

    H- hydrido

    OH- hydroxo

    O2- oxo

    prefix indicating + ligand name + metal + (oxidation ## of ligands in roman numerals)

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    18/64

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    19/64

    Polydentate Ligands

    Formula Name

    NH2CH2CH2NH2   ethylenediamine (en)

    Both amines of the

    ligand can attach at the

    metal forming a ring.

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    20/64

    Polydentate Ligands

    ethylenediaminetetraacetate (EDTA)

    EDTA is a hexadentate ligand.

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    21/64

    EDTA

    EDTA can wrap

    around a metal ion

    to coordinate at 6

    (octahedral) sites.

    Ligands that bind to

    more than one site

    are called chelatingagents.

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    22/64

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    23/64

    Constitution and GeometryThree factors govern the coordination number of a complex:

    1. The size of the central atom or ion.2. The steric interactions between the ligands.

    3. Electronic interactions between the central atom or ion and the ligands.

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    24/64

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    25/64

    Intermediate coordination numbersComplexes of metal ions with the intermediate coordination numbers

    four, five, and six are the most important class of complex

    T d symmetry

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    26/64

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    27/64

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    28/64

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    29/64

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    30/64

    K3[Fe(CN)6]

    K2[PtCl4]

    Na2[Fe(CO)4]

    [Co(H2O)2(NH3)4]Cl3

    [Ni(H2O)(NH3)4]SO4

    Na2[OsCl5N]

    [CoCl(NO2)(NH3)4]Cl

    [CoCl(NH2)(en)2]NO3

    [FeH(CO)3(NO)]

    [PtCl(NH2CH3)(NH3)]Cl

    NOW some for you to try!!!

    Potassium hexacyanoferrate(III)

    Potassium tetrachloroplatinate(II)

    Sodium Tetracarbonylferrate(II)

    Tetraammindiaquacobalt(III) chloride

    Tetraaminediaquanickel(II) sulfate

    Sodium pentachloronitridoosmate(VI)

    Tetraaminechloronitritocobalt(III) chloride

    Amidochlorobis(ethylenediamine)cobalt(III) chloride

    Tricarbonylhydridonitrosyliron(I) ?(II)??

    Amminchloro(methylamine) platinum(II) chloride

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    31/64

    Isomerism

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    32/64

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    33/64

    http://chemwiki.ucdavis.edu/Inorganic_Chemistry/Coordinatio

    n_Chemistry/Isomers/Structural_Isomers_in_Inorganic_Mole

    cules

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    34/64

    Stereoisomerism

    Stereoisomers have the sameconnectivities but different spatialarrangements.

    In geometric isomers, the ligands havedifferent spatial arrangements about themetal ion.

    Optical isomers are compounds withnon-superimposable mirror images.

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    35/64

    Geometric Isomerism

    Geometric isomers differ in the geometric

    arrangement of the ligands around the central

    metal.

    Common examples are square planar complexes such as [Pt(NH3)2Cl2].

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    36/64

    Geometric Isomerism

    In octahedral complexes, the prefixes cis andtrans are used for complexes of the form

    [MX4Y2]

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    37/64

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    38/64

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    39/64

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    40/64

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    41/64

    Octahedral ComplexesFor complexes with the formula

    [MX3Y3], there are two spatial

    arrangements of the ligands.

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    42/64

    Octahedral Complexes

    fac stands for facial, and mer stands for 

    meridian.

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    43/64

    Chirality

    Both four-coordinate and six-coordinatecomplexes exhibit chirality. Chiral molecules have

    either no symmetry elements (other than identity),

    or only a Cn axis.

    Tetrahedral complexes can be chiral in the

    same way that organic compounds are: they may

    have four different ligands. They may also have

    unsymmetrical chelating ligands.

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    44/64

    Chirality

    Square-planar 

    complexes can

    also be chiral,as seen in

    these

    compounds of 

    platinum(II) andpalladium(II).

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    45/64

    EXAMPLE 7.5 Recognizing chirality

    Which of the complexes (a) [Cr(edta)], (b) [Ru(en)3]2, (c)

    [Pt(dien)Cl] are chiral? Answer If a complex has either a mirror plane or centre of 

    inversion, it cannot be chiral. If we look at the schematic

    complexes in (74), (75), and (76), we can see that neither (74)

    nor (75) has a mirror plane or a centre of inversion; so both

    are chiral (they also have no higher  Sn axis). Conversely, (76)has a plane of symmetry and hence is achiral. (Although the

    CH2 groups in a dien ligand are not in the mirror plane, they

    oscillate rapidly above and below it.)

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    46/64

    Optical Isomers

    Octahedral complexes containing

    polydentate ligands can form optical

    isomers. Complexes with three rings,

    such as [Co(en)3]3+, can be viewed like a

    propeller with three blades. The structure

    can be either left or right handed, with

    non-superimposable mirror images.

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    47/64

    Optical Isomers

     The upper isomer

    is right handed, and the

    lower one is left

    handed.

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    48/64

    Optical Isomers

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    49/64

    Optical Isomers

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    50/64

    Optical Isomers

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    51/64

    Optical Isomers

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    52/64

    Optical Isomers

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    53/64

    Optical Isomers

    The right-handed

    isomer requires going

    clockwise to get from

    the upper triangle tothe lower one. The

    prefix for this isomer 

    is ∆.

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    54/64

    Optical Isomers

    The left-handed

    isomer requires going

    counterclockwise to

    get from the upper triangle to the lower 

    one. The prefix for 

    this isomer is Λ.

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    55/64

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    56/64

    http://www.people.carleton.edu/~mcass/TrisChelates/Index.html

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    57/64

    Isomers

    • Co(III) and ethylenediamine react to form

    several products.   cis[CoCl2(en)2]+ is

    violet, and the trans isomer is green. The

    reaction also forms a yellow product,

    [Co(en)3]3+. Determine the number of 

    isomers of each of the products. Label

    any enantiomers with the proper prefix (∆or Λ).

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    58/64

    Isomer Problem

    The yellow product is [Co(en)3]+3. It

    exists as an enantiomeric pair.

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    59/64

    Isomer Problem

    The violet product consists of a pair of optical

    isomers. The green product is not optically

    active, as it has a mirror plane.

    d i i h b k l f hi f

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    60/64

    •Hydrate isomerism: the best known example of this occurs for

    chromium chloride "CrCl3.6H2O" which may contain 4, 5, or 6

    coordinated water molecules.[CrCl

    2

    (H2

    O)4

    ]Cl.2H2

    O bright-green

    [CrCl(H2O)5]Cl2.H2O grey-green

    [Cr(H2O)6]Cl3 violet

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    61/64

    Naming

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    62/64

    Summary

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    63/64

    Summary

  • 8/16/2019 DSU 2015 -IC-Ch7-5

    64/64