DTU Wind Speed Course Cups

Embed Size (px)

Citation preview

  • 7/28/2019 DTU Wind Speed Course Cups

    1/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 20121 DTU Wind Energy Department

    Troels Friis Pedersen

    Professor, Ris DTU Wind Energy Division

    Wind Speed Measurements in Wind Energy

    Average wind speed measurements

    - Cup anemometry

    Turbulence measurements

    -Sonic anemometry

    -Cup anemometry

  • 7/28/2019 DTU Wind Speed Course Cups

    2/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 20122 DTU Wind Energy Department

    Cup anemometry used for:- wind resource assessment (low power consumption, low

    cost)

    - power performance measurements (accuracy, traceability)

    - wind turbine control (robust, maintainable)

    Sonic anemometry used for:

    - site turbulence measurements (3D wind, fast response)

    - wind turbine control (2D, robust, maintainable)

  • 7/28/2019 DTU Wind Speed Course Cups

    3/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 20123 DTU Wind Energy Department

    Example of types commonly used in wind energy

    NRG WindSensor (Ris) Vector ThiesMaximum 40 P2546a A100L2 First Class

    Cup anemometry

  • 7/28/2019 DTU Wind Speed Course Cups

    4/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 20124 DTU Wind Energy Department

    Components of acup anemometer

    1. Cup anemometer body

    (rotational symmetric)2. Cup (three)3. Shaft4. Dust labyrinth5. Bearings6. Pulse generator7. Pulse detection

    8. Cable connection (centered)9. Mounting (on tube)10. Top pin (optional for

    cosine tilt response)

    Cup anemometry

  • 7/28/2019 DTU Wind Speed Course Cups

    5/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 20125 DTU Wind Energy Department

    Wind Speed Measurement Uncertainty- the driving parameter in windmeasurements in wind energy:

    In wind energy an uncertainty of lessthan 1% is required

    (WMO, World Meteorology

    Organization, only requires anaccuracy of 5% on anemometers)

  • 7/28/2019 DTU Wind Speed Course Cups

    6/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 20126 DTU Wind Energy Department

    An Example - cup anemometer wind speedmeasurement uncertainty

    1.Cup anemometry is required in power performance measurements2.Wind speed measurement uncertainties relates to:

    Calibration Field operation Mast and boom flow distortion

    Terrain effects (power performance measurements)3.Calibration standard uncertainty 0.07-0.15m/s(Round Robin calibrations within 1%)

    4.Field operation uncertainties 1% to 5%5.Mast flow distortion 1% to 5% (boom mounted)6.Boom flow distortion 0.5% (boom mounted)7.Terrain effects 2% to 3% (performance measurements)

    Total uncertainty (boom mounted) 2.8% to 7.8% at 10m/s!(Uncertainty in Cp 8.6% to 25.4% at 10m/s!)Total uncertainty (topmounted, excl. terrain effects and bestpractice) about 1.6%

  • 7/28/2019 DTU Wind Speed Course Cups

    7/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 20127 DTU Wind Energy Department

    Cup anemometer calibration

  • 7/28/2019 DTU Wind Speed Course Cups

    8/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 20128 DTU Wind Energy Department

    Cup anemometer calibration

    General calibration expression:

    = +cal calU A F B

    Where F is pulse frequencyWe also have:

    2

    = +cal cal

    NU A B

    Where N is number of pulses

    per revolution and is angular

    speed in rad/s

  • 7/28/2019 DTU Wind Speed Course Cups

    9/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 20129 DTU Wind Energy Department

    Influence due to field operational conditions (turbulence, temp, etc.)

    (graph: SITEPARIDEN/DEWI)

    Field comparison of cup anemometers

    Thies Classic

    (reference)

    Ris

    Vector

    Vaisala

    Thies

    Compact

  • 7/28/2019 DTU Wind Speed Course Cups

    10/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201210 DTU Wind Energy Department

    Field Comparison of Thies Classic and Ris P2546 Cup Anemometers(Ris boom)

    Field comparison of cup anemometers

    Relative deviations Thies vs RIS per Ti

    -0.02

    -0.01

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0.09

    0.1

    0.11

    0.120.13

    0.14

    0.15

    0 1 2 3 4 5 6 7 8 9 10 11 12

    RIS [m/s]

    (Thies-R

    IS)/RIS

    Ti

  • 7/28/2019 DTU Wind Speed Course Cups

    11/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201211 DTU Wind Energy Department

    Angular respose RIS P2546 Cup Anemometer

    0,86

    0,88

    0,90

    0,92

    0,94

    0,96

    0,981,00

    1,02

    1,04

    -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45

    Tilt angle (positive from above) [deg]

    RelativeSpeed

    5 m/s8 m/s

    8 m/s rep11 m/sCos

    Tilt response measurements(Re Dahlberg FOI)

    Characteristics of cup anemometers

  • 7/28/2019 DTU Wind Speed Course Cups

    12/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201212 DTU Wind Energy Department

    Influence of turbulence on inflow angleIn the field the inflow angle is not constant.Over 10min the inflow angle typically varies with a Gaussian distribution(x=value, =average value, =std.dev. )

    Characteristics of cup anemometers

    2

    2

    2

    ( )( )

    2

    ,

    1( )

    2

    x

    x e

    =

  • 7/28/2019 DTU Wind Speed Course Cups

    13/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201213 DTU Wind Energy Department

    Characteristics of cup anemometers

    Tilt responseApplying a Gaussian inclination angle distribution tomeasured til t characterist ics, Ris P2546

  • 7/28/2019 DTU Wind Speed Course Cups

    14/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201214 DTU Wind Energy Department

    Characteristics of cup anemometers

    Tilt responseApplying a Gaussian inclination angle distribution tomeasured tilt characterist ics, Thies classic

  • 7/28/2019 DTU Wind Speed Course Cups

    15/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201215 DTU Wind Energy Department

    Characteristics of cup anemometers

    Tilt responseApplying a Gaussian inclination angle distribution tomeasured til t characterist ics, Vaisala

  • 7/28/2019 DTU Wind Speed Course Cups

    16/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201216 DTU Wind Energy Department

    Characteristics of cup anemometers

    Tilt responseApplying a Gaussian inclination angle distribution tomeasured tilt characterist ics, Vector

  • 7/28/2019 DTU Wind Speed Course Cups

    17/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201217 DTU Wind Energy Department

    Characteristics of cup anemometers

    Tilt responseApplying a Gaussian inclination angle distribution tomeasured tilt characterist ics, Thies Compact

  • 7/28/2019 DTU Wind Speed Course Cups

    18/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201218 DTU Wind Energy Department

    Characteristics of cup anemometers

    Tilt responseApplying a Gaussian inclination angle distribution tomeasured ti lt characterist ics, ACCUWIND

  • 7/28/2019 DTU Wind Speed Course Cups

    19/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201219 DTU Wind Energy Department

    Characteristics of cup anemometers

    Measured rotor torque measured on onecup in wind tunnel

    Measured Torque Characteristics for one RIS cup

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    5

    0 2 4 6 8 10 12

    Wind speed (m/s)

    Torque(mNm

    ) Ome=25 rad/s

    Ome=40 rad/sOme=55 rad/s

    Poly. (Ome=25 rad/s)

    Poly. (Ome=40 rad/s)

    Poly. (Ome=55 rad/s) Measured Torque Characteristics for one RIS cup

    -6

    -4

    -2

    0

    2

    4

    6

    0 20 40 60 80

    Angular speed (rad/s)

    Torque(mNm) Wsp=5 m/sWsp=8m/s

    Wsp=11m/s

    Poly. (Wsp=5 m/s)

    Poly. (Wsp=8m/s)

    Poly. (Wsp=11m/s)

  • 7/28/2019 DTU Wind Speed Course Cups

    20/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201220 DTU Wind Energy Department

    Characteristics of cup anemometersNormalised rotor torque

    Note: Parabolic fit is not sufficient!

    RIS Normalised Torque Coefficient

    -5.0

    -4.0

    -3.0

    -2.0

    -1.0

    0.0

    1.0

    2.0

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    Speed ratio

    Cq

    Ome=25

    Ome=40

    Ome=55

    U=5

    U=8

    U=11

    U=8, Tu=16, f=2

    Parabola fit

    2( ) 1

    2

    A

    QA

    eq

    Q

    CARU

    =

    Measured rotor torque measured on onecup in wind tunnel, normalisation of torque

  • 7/28/2019 DTU Wind Speed Course Cups

    21/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201221 DTU Wind Energy Department

    -16

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    2

    46

    8

    10

    15 20 25 30 35 40 45 50 55 60 65 70

    Angular speed rad/s

    TorquemNm

    Ris P2546 cup anemometer ( Re Dahlberg FOI)

    Characteristics of cup anemometers

    Measurement of aerodynamic torquewith torque sensor and thin rod

  • 7/28/2019 DTU Wind Speed Course Cups

    22/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201222 DTU Wind Energy Department

    Normalisation of aerodynamic torque

    Characteristics of cup anemometers

    Aerodynamic Torque Coeff ic ient o f RIS P2546

    -1,8

    -1,6

    -1,4

    -1,2

    -1,0

    -0,8

    -0,6

    -0,4

    -0,2

    0,0

    0,20,4

    0,6

    0,8

    1,0

    0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55

    Speed ratio lambda

    T

    orqueCoefficientCqa

    0

    20

    40

    60

    80

    100

    120

    Cqa

    Cqa fitWeight function

  • 7/28/2019 DTU Wind Speed Course Cups

    23/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201223 DTU Wind Energy Department

    Aerodynamic torque coefficient ofvarious cup anemometers

    Torque Coefficients

    -2.5

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

    Speed Ratio

    Cq

    ThiesClasscupRISThiesCompactIdeal

    Characteristics of cup anemometers

  • 7/28/2019 DTU Wind Speed Course Cups

    24/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201224 DTU Wind Energy Department

    Overspeeding measurements in tunnel with

    varying wind speedFOI wind tunnel with test

    section in the middle. Inlet from

    the right and centrifugal blower

    on the left. Wind speed is

    varied cyclicly in the tunnel

    Rotating outlet w ind vanes and

    pitot tubes. Pitot tube

    measurements compared to cup

    anemometer rotor

    Characteristics of cup anemometers

    (Dahlberg, FOI wind tunnel)

  • 7/28/2019 DTU Wind Speed Course Cups

    25/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201225 DTU Wind Energy Department

    Characteristics of cup anemometers

    Overspeeding measurements(Dahlberg, FOI wind tunnel)

  • 7/28/2019 DTU Wind Speed Course Cups

    26/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201226 DTU Wind Energy Department

    Characteristics of cup anemometers

    Overspeeding measurements(Dahlberg, FOI wind tunnel)

  • 7/28/2019 DTU Wind Speed Course Cups

    27/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201227 DTU Wind Energy Department

    Friction measurements on cup anemometersFlywheel testing in climate chamber

    Flywheel

    Rubber

    wheel

    Blower

    Activation

    mechanism

    Motor

    Characteristics of cup anemometersMeasurement of friction in bearings

  • 7/28/2019 DTU Wind Speed Course Cups

    28/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201228 DTU Wind Energy Department

    The describing differential equation of the deceleration is:

    4 3 1/ 2( ) 0.616 ( )d

    I F R

    dt

    =

    where ( )F is the friction in bearings as function of angular speed, and the second term is the air friction of

    the flywheel with the radius R. The friction in bearings is determined by rearranging:

    4 3 1/ 2( ) 0.616 ( )d

    F I Rdt

    =

    A third degree polynomial was fitted to the deceleration, and the derivative was taken from the fit. Thefriction was again fitted to a second order polynomial.

    21 2 3( )F f f f = + +

    Friction measurements on cup anemometers

    Characteristics of cup anemometersMeasurement of friction in bearings

  • 7/28/2019 DTU Wind Speed Course Cups

    29/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201229 DTU Wind Energy Department

    Friction measurements on cup anemometers

    RIS P2546 cup anemometer - Flywheel tests Reproducability

    10

    20

    30

    40

    50

    60

    70

    80

    90

    1 2 3 4 5 6 7 8

    Time [s]

    Angularspeed[rad/s]

    -18deg

    -18deg

    -18deg

    -18deg

    -18deg

    Characteristics of cup anemometersFriction

  • 7/28/2019 DTU Wind Speed Course Cups

    30/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201230 DTU Wind Energy Department

    Friction measurements on cup anemometers

    RIS P2546 cup anemometer - Flywheel tests

    0,0E+00

    1,0E-04

    2,0E-04

    3,0E-04

    4,0E-04

    5,0E-04

    6,0E-04

    10 20 30 40 50 60 70 80 90

    Angular Speed [rad/s]

    FrictionTorque[Nm]

    -18deg

    -18deg

    -18deg

    -18deg

    -18deg

    Characteristics of cup anemometersFriction

  • 7/28/2019 DTU Wind Speed Course Cups

    31/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201231 DTU Wind Energy Department

    Friction measurements on cup anemometersRIS P2546 cup anemometer - Flywheel tests

    0,0E+00

    1,0E-04

    2,0E-04

    3,0E-04

    4,0E-04

    5,0E-04

    6,0E-04

    10 20 30 40 50 60 70 80 90

    Angular Speed [rad/s]

    FrictionTorque[Nm]

    40deg35deg30deg25deg20deg

    15deg10deg8deg6deg4deg2deg0deg-2deg-4deg-6deg-8deg-10deg-12deg-14deg-16deg-18deg-20deg

    Characteristics of cup anemometersFriction

  • 7/28/2019 DTU Wind Speed Course Cups

    32/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201232 DTU Wind Energy Department

    Friction measurements on cup anemometersRIS P2546 cup anemometer - Flywheel tests

    0,0E+00

    1,0E-05

    2,0E-05

    3,0E-05

    4,0E-05

    5,0E-05

    6,0E-05

    10 20 30 40 50 60 70 80 90

    Angular Speed [rad/s]

    FrictionTorque[Nm]

    40deg35deg30deg25deg20deg

    15deg10deg8deg6deg4deg2deg0deg-2deg-4deg-6deg-8deg-10deg-12deg-14deg-16deg-18deg-20deg

    Characteristics of cup anemometersFriction

  • 7/28/2019 DTU Wind Speed Course Cups

    33/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201233 DTU Wind Energy Department

    Friction measurements on cup anemometers

    Friction of RIS P2546 as Funct ion of Temperature

    0,0E+00

    5,0E-05

    1,0E-041,5E-04

    2,0E-04

    2,5E-04

    3,0E-04

    3,5E-04

    4,0E-04

    4,5E-04

    5,0E-04

    5,5E-04

    -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45

    Temperature degC

    FrictionNm 20rad/s

    40rad/s60rad/s80rad/s

    Characteristics of cup anemometersFriction

  • 7/28/2019 DTU Wind Speed Course Cups

    34/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201234 DTU Wind Energy Department

    Friction is reduced within the first weeks of operation.New cup anemometers must be run-in before being used inmeasurements

    Characteristics of cup anemometersRunning-in of cup anemometers

  • 7/28/2019 DTU Wind Speed Course Cups

    35/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201235 DTU Wind Energy Department

    From the oscillations, the inertia can be found from the formula:

    l

    M g rTI

    2

    22

    4=

    where: T is average time of one oscillationM is mass of rotor

    r is radius from axis of rotation to the three strings

    l is the length of the stringsg is gravity acceleration 9,81m/s2

    For the RIS P2546 cup anemometer, the values are:

    0,062M kg=

    0,075r m=

    0,875l m=

    Measurement of rotor inertia

    Characteristics of cup anemometersRotor inertia

    S C

  • 7/28/2019 DTU Wind Speed Course Cups

    36/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201236 DTU Wind Energy Department

    Modeling cup anemometers

    Three models are considered:1.General time domain modelA model with a detailed description of the torque coefficient curve (a modelthat can be generally applied, and which is accurate enough for classification,being used in IEC61400-12-1)

    2.Parabolic torque coefficient modelA model with a parabolic torque coefficient curve (a more simple model thatcan be applied for analysis purposes)

    3.Drag coefficient modelA model with a parabolic torque coefficient curve based on a general high drag

    and low drag on either side of the rotor (an even more simple model that canbe applied for more simple analysis)

    46400 Wi d S d M t C

  • 7/28/2019 DTU Wind Speed Course Cups

    37/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201237 DTU Wind Energy Department

    Modeling cup anemometers1. General time domain model

    The response of the cup anemometer is derived from the driving torque differential

    equation, where the torque on the rotor is a sum of aerodynamic torque and friction

    torque:

    A f

    dI Q Qdt

    = +

    Numerically, the response of a cup anemometer can then be calculated by small

    time steps t by:

    A fQ Qt

    I

    + =

    The output of the cup anemometer cal calU A F B= + , where / 2F N = , can be

    compared to the horizontal wind speed2 2

    horU u v= + , which is the wind speed

    definition in the standard IEC61400-12-1

    46400 Wi d S d M t C

  • 7/28/2019 DTU Wind Speed Course Cups

    38/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201238 DTU Wind Energy Department

    The aerodynamic torque AQ is a function of the instantaneous wind speed vector{ }, ,U u v w=

    with the inflow angle and the scalar:

    2 2 2

    2 2tan

    wA U u v w

    u v = = + +

    +

    The aerodynamic torque may be divided into two components, one based on the

    influence of the inflow angle (tilt or angular response F), the other (the dynamic

    component) on the influence of an equivalent wind speed:

    ( , )eqU F U U =

    The aerodynamic torque can now be expressed as:

    21 ( )2

    A eq QAQ ARU C =

    where: is the air density

    A is the projected area of one cup

    R is the radius to cup centre

    eqU is the equivalent wind speed (in the horizontal plane)

    QAC is the generalized aerodynamic rotor torque coefficient

    Modeling cup anemometers1. General time domain model

    46400 Wi d S d M t C

  • 7/28/2019 DTU Wind Speed Course Cups

    39/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201239 DTU Wind Energy Department

    The generalized aerodynamic rotor torque coefficient is derived from wind tunnel

    torque measurements with the cup anemometer in vertical position and whereeq

    U

    in this case is equal to the tunnel wind speed:

    2

    ( )1

    2

    AQA

    eq

    QC

    ARU

    =

    The generalized aerodynamic rotor torque coefficient is a function of the speed

    ratio:

    eq t

    R

    U U

    =

    where:

    is angular speed of cup anemometer rotortU is a threshold wind speed

    The friction torque is a function of the temperature and the rotational speed, and is

    found form friction measurements:

    ( , )f f

    Q Q T =

    Modeling cup anemometers1. General time domain model

    46400 Wi d S d M t C

  • 7/28/2019 DTU Wind Speed Course Cups

    40/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201240 DTU Wind Energy Department

    Fitting of model to calibration dataDeviation of calibration points from line

    -0,030

    -0,020

    -0,010

    0,000

    0,010

    0,020

    0,030

    0,040

    0,050

    0 2 4 6 8 10 12 14 16 18

    Wind speed [m/s]

    Deviation[m/s]

    cali deviation

    simu deviation

    Modeling cup anemometers1. General time domain model

    46400 Wi d S d M t C

  • 7/28/2019 DTU Wind Speed Course Cups

    41/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201241 DTU Wind Energy Department

    Influence of Temperature Variations from Reference Case

    -0,20

    -0,18

    -0,16-0,14

    -0,12

    -0,10

    -0,08

    -0,06

    -0,04

    -0,02

    0,00

    -30 -20 -10 0 10 20 30 40 50

    Temperature [degC]

    deviation"Measured"[m/s]

    Temp

    Simulation of influence of external meteorological parameters

    average wind speed 10m/s

    turbulence intensity 10%

    isotropic turbulence

    length scale 500m air temperature 10C

    air density 1,23kg/m3

    slope of terrain 0

    Reference external conditions

    Modeling cup anemometers1. General time domain model

    46400 Wi d S d M t C

  • 7/28/2019 DTU Wind Speed Course Cups

    42/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201242 DTU Wind Energy Department

    Influence of Air Density Variations from Reference Case

    -0,10

    -0,09

    -0,08

    -0,07

    -0,06

    -0,05

    -0,04

    -0,03

    -0,02

    -0,01

    0,00

    0,80 0,85 0,90 0,95 1,00 1,05 1,10 1,15 1,20 1,25 1,30 1,35 1,40

    Air densi ty [kg/m^3]

    De

    viation"Measured"[m/s

    ]

    Dens

    Simulation of influence of external meteorological parameters

    Modeling cup anemometers1. General time domain model

    46400 Wi d S d M t C

  • 7/28/2019 DTU Wind Speed Course Cups

    43/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201243 DTU Wind Energy Department

    Influence of Turbulence Intensity Variations from Reference Case

    -0,14

    -0,12

    -0,10

    -0,08

    -0,06

    -0,04

    -0,02

    0,00

    0,02

    0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35

    Turbulence Intensity

    Dev

    iation"Measured"[m/s]

    Turb

    Simulation of influence of external meteorological parameters

    Modeling cup anemometers1. General time domain model

    46400 Wind Speed Meas rements C ps

  • 7/28/2019 DTU Wind Speed Course Cups

    44/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201244 DTU Wind Energy Department

    Influence of Length Scale Variations from Reference Case

    -0,10

    -0,08

    -0,06

    -0,04

    -0,02

    0,00

    0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

    Length Scale [m]

    De

    viation"Measured"[m/s

    ]

    Scale

    Simulation of influence of external meteorological parameters

    Modeling cup anemometers1. General time domain model

    46400 Wind Speed Measurements Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    45/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201245 DTU Wind Energy Department

    Influence of Slope Variations f rom Reference Case

    -0,50

    -0,45

    -0,40-0,35

    -0,30

    -0,25

    -0,20

    -0,15

    -0,10

    -0,05

    0,00

    0,05

    0,10

    -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

    Slope [deg]

    De

    viation"Measured"[m/s

    ]

    Slope

    Simulation of influence of external meteorological parameters

    Modeling cup anemometers1. General time domain model

    46400 Wind Speed Measurements Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    46/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201246 DTU Wind Energy Department

    Overspeeding of RIS P2546 Cup anemometer at 23% turbulence

    -1,0

    -0,5

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

    Gust frequency (Hz)

    Overspeeding%

    measured points

    simulation polynomia

    simulation table

    Overspeeding measurements, FOI wind tunnel, Re. TFP

    Modeling cup anemometers1. General time domain model

    46400 Wind Speed Measurements Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    47/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201247 DTU Wind Energy Department

    The parabolic torque coefficient model assumes the torque coefficient to be parabolic.For simplicity the friction is set to zero. The parabola has a proportionality factor

    and the two roots 0 and1:

    0 12

    ( ) ( )( )1

    2

    AQA

    eq

    QC

    ARU

    = =

    -7

    -6

    -5-4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    -2 -1.5 -1 -0.5 0 0.5 1

    Speed r atio lambda

    Tor

    quecoefficientCq

    Modeling cup anemometers2. Parabolic torque coefficient model

    46400 Wind Speed Measurements Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    48/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201248 DTU Wind Energy Department

    The torque coefficient curve crosses the x-axis at the equilibrium speed ratio 0 ,

    which corresponds to speed ratio at calibration:

    00

    0

    ( )t t

    t

    R RU U U U

    U U R

    = = + =

    The anemometer is normally calibrated in wind tunnel at equilibrium speed ratio.

    The calibration expression, where N is the number of pulses per revolution, is:

    2( )

    2

    = + = + =

    cal cal cal cal cal

    cal

    NU A F B A B U B

    N A

    From these relations the calibration coefficients can be found by:

    0

    2cal cal t

    RA B UN

    = =

    Modeling cup anemometers2. Parabolic torque coefficient model

    46400 Wind Speed Measurements Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    49/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201249 DTU Wind Energy Department

    Maximum overspeeding level (for high frequencies of wind

    variations)

    The general torque equation is:

    2

    0 1

    1( )( )

    2eq

    dQ I ARU

    dt

    = =

    Assuming the threshold wind speed to be zero, and rearranging, the governingdifferential equation is:

    23 2 2

    0 1 0 1

    1 1 1 1( ) ( ( )) ( )2 2 2

    dAR AR U AR U

    dt I I I

    = + +

    The maximum overspeeding level (constant overspeeding at high wind speed

    frequencies) with the parabolic torque coefficient model can be derived as:

    )4)1(1(21 2

    0

    12

    0

    1

    0

    1, is T=O

    +

    Approximation by a second order Taylor series expansion around Ti=0 gives:

    22

    1

    0

    2

    01

    1

    ,

    1

    1iOiis TFTTO =

    =

    Modeling cup anemometers2. Parabolic torque coefficient model

    46400 Wind Speed Measurements Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    50/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201250 DTU Wind Energy Department

    2. Parabolic torque coefficient model

    First order amplitude response

    With time constant

    And cut-off frequency

    Second order critically dampedoverspeeding response withsame time constant

    0.001 0.01 0.1 1 10 100

    Wind speed frequency (Hz)

    0.001

    0.01

    0.1

    1

    A

    mplituderesponse

    0.001 0.01 0.1 1 10 100

    Wind speed frequency (Hz)

    0.0001

    0.001

    0.01

    0.1

    1

    10

    Dynamicoverspee

    ding(%)

    21

    ,1 0

    s iO T

    0

    ( ) 1( )

    ( ( ) ) 1t

    s RG s

    U s U s

    = =

    +

    1

    2f

    =

    Modeling cup anemometers2. Parabolic torque coefficient model

    46400 Wind Speed Measurements Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    51/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201251 DTU Wind Energy Department

    Modeling of cup anemometers3. Drag coefficient model

    area A

    R

    DH

    DL

    U

    area A

    seen from the front

    seen from above

    The drag coefficient model assumes constant drag coefficients on two cups on either

    side of the rotor. The aerodynamic torque is then:

    2 2

    H L DH DLA

    1Q = R( - ) = AR((U - R - (U + R )) )C CD D

    2

    If friction is neglected the torque equation is:

    2 2(( ) ( ) )2

    DH DL

    d ARQ I U R C U R C

    dt

    = = +

    Rearranging, the governing differential equation is:2 3 2

    2 1( ( )) ( ( )) ( ( ))2 2

    DH DL DH DL DH DL

    d AR U ARC C U AR C C C C

    dt I I I

    = + +

    46400 Wind Speed Measurements Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    52/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201252 DTU Wind Energy Department

    Maximum overspeeding level

    The maximum overspeeding for the drag coefficient model can be derived as:

    )k-(1

    T)k-(1-4k-k2

    =O 2i

    2

    s

    2

    ,

    A Taylor series expansion around Ti=0 leads to the simple relation:

    2

    00

    22

    2

    ,)1)(1(4

    )1(iO

    i

    is TFT

    Tk

    kO =

    +=

    +

    Assuming 0tU = we have /R U = and:

    21 ((1 ) (1 ) )2

    DH DLQ ARU C C = +

    Setting 0Q = at torque equilibrium we find the two roots:

    0 1

    0

    1 1 1 /1 1

    DL DH k k where k C C k k

    += = = =+

    Modeling of cup anemometers3. Drag coefficient model

    -10

    0

    10

    20

    30

    40

    -1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5 4Torque

    coefficien

    t

    Cq

    Speed ratio l ambda

    46400 Wind Speed Measurements Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    53/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201253 DTU Wind Energy Department

    Modeling of cup anemometers

    Parabolic torque coefficient model and drag modelMaximum overspeeding level Os,max=F0*Ti

    2

    Overspeeding factor Fo (Os,max=Fo*Ti 2)

    -0,6

    -0,4

    -0,2

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    1,4

    1,6

    1,8

    2

    -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5 4

    lambda1 (for lambda0=0,3)

    Fo

    Parabolic model

    Drag model

    lambda0=0,3

    lambda1lambda0

    Drag model:

    lambda1=1/lambda0

    46400 Wind Speed Measurements - Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    54/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201254 DTU Wind Energy Department

    Modeling of cup anemometers

    Parabolic torque coefficient model and drag modelTorque coefficients

    -4

    -3

    -2

    -1

    0

    1

    2

    -1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5 4

    Lambda

    Cq

    Drag model

    Zero overspeedingStraight lineIntermediate

    46400 Wind Speed Measurements - Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    55/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201255 DTU Wind Energy Department

    Field operation of cup anemometers - Classif ication

    IEC61400-12-1 standard on power performance measurements, annex I:Influence parameters for classification

    Influence parameter ranges (based on 10min averages) of Classes A and B

    Class ATerrain meets requirements

    of flat site

    Class BTerrain does not meet

    requirements of flat siteMin Max Min Max

    Wind speed range to cover [m/s] 4 16 4 16Turbulence intensity 0,03 0,12+0,48/V 0,03 0,12+0,96/V

    Turbulence structure u/v/w 1/0,8/0,5(non-isotropic turbulence)

    1/1/1(isotropic turbulence)

    Air temp. [C] 0 40 -10 40

    Air density [kg/m3] 0,9 1,35 0,9 1,35

    Average flow inclination angle [] -3 3 -15 15For assessment of a class using simulation it is suggested the wind spectrum is a Kaimal wind spectrum witha longitudinal turbulence length scale of 350m

    46400 Wind Speed Measurements - Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    56/70

    46400 Wind Speed Measurements - Cups

    T F Pedersen Oct 201256 DTU Wind Energy Department

    IEC61400-12-1 standard on power performance measurements, Annex J:Classification procedure with the use of general time domain model

    Realcup-anemometer

    -friction-torque curves-inertia-angular char.

    Cup-anemometer

    model

    Calibrations

    Fitting to

    cup-anem.

    model

    Calculation

    of responses

    Classification

    index

    Class

    Environmental

    operational

    conditions

    Field operation of cup anemometers - Classif ication

    46400 Wind Speed Measurements - Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    57/70

    46400 Wind Speed Measurements Cups

    T F Pedersen Oct 201257 DTU Wind Energy Department

    A systematic analysis of deviations from the calibration line due to influence

    parameters using artificially generated 3D wind and general time domainmodel

    -0,4

    -0,3

    -0,2

    -0,1

    0

    0,1

    0,2

    0,3

    0,4

    0 2 4 6 8 10 12 14 16 18 20

    Wind Speed [m/s]

    Deviations[m/s]

    Class 1Class 2Deviations

    Example of deviations of a Class 2.0A cup anemometer

    Field operation of cup anemometers - Classif ication

    46400 Wind Speed Measurements - Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    58/70

    46400 Wind Speed Measurements Cups

    T F Pedersen Oct 201258 DTU Wind Energy Department

    IEC61400-12-1, Annex IClass selection of cup anemometers

    The selection of an anemometer class for a specific measurement depends on the terrain or the accuracythat is needed for the measurement.

    Class A: Associated to flat terrain, and with general influence parameter ranges for this type ofterrain.

    Class B: Associated to terrain that does not meet the requirements of flat terrain, and with generalinfluence parameter ranges for complex terrain.

    Class S: Associated to a specified accuracy, where the influence parameter ranges are restricted toallow for the specified accuracy of the anemometer. Alternatively the class may beassociated to influence parameter ranges that are not specifically covered by class A or

    class B or to influence parameter ranges that are verified during the power performancemeasurements.

    Field operation of cup anemometers - Classif ication

    46400 Wind Speed Measurements - Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    59/70

    46400 Wind Speed Measurements Cups

    T F Pedersen Oct 201259 DTU Wind Energy Department

    IEC61400-12-1, Annex IClass description of cup anemometers

    The class number k shall be determined as the maximum anemometer response deviation (from thehorizontal wind speed input) in the wind speed range corresponding to the formula:

    5 / 0,5

    100 max /

    i i

    i i

    w m s U

    k w

    = +

    =

    where iw is a weighting function that defines the deviation envelope

    max,i is the maximum deviation for any wind speed bin i in the wind speed range in m/s

    k is the class number

    The classification of an anemometer is specified by the class number k and the class type by kA and kB or

    kS, for example 1,7A and 2,5S.

    Field operation of cup anemometers - Classif ication

    46400 Wind Speed Measurements - Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    60/70

    46400 Wind Speed Measurements Cups

    T F Pedersen Oct 201260 DTU Wind Energy Department

    IEC61400-12-1, Annex I

    Classification of cup anemometersACCUWIND project results

    Classification IEC61400-12-1

    Model: General time domain +FOI tilt responseHorizontalwsp definition

    Vectorwsp definition

    Cup anemometer Class A Class B Class A Class BNRG max 40 2.4 8.3 2.7 3.0Ris P2546 1.4 5.1 1.7 9.2

    Thies FC 1.8 3.8 1.6 4.4Vaisala WAA151 2.2 11.9 1.7 6.1Vector L100 1.8 4.5 1.6 4.0

    Field operation of cup anemometers - Classif ication

    46400 Wind Speed Measurements - Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    61/70

    46400 Wind Speed Measurements Cups

    T F Pedersen Oct 201261 DTU Wind Energy Department

    IEC61400-12-1, Annex IClassification of cup anemometersACCUWIND project results

    Classification IEC61400-12-1Model: General time domain +DEWI tilt response

    Horizontalwsp definition

    Vectorwsp definition

    Cup anemometer Class A Class B Class A Class BNRG max 40 2.4 7.7 2.8 4.8Ris P2546 1.9 8.0 2.4 12.0

    Thies FC 1.5 2.9 1.9 6.3Vaisala WAA151 1.7 11.1 1.2 5.5Vector L100 1.8 4.5 1.7 4.0

    Field operation of cup anemometers - Classif ication

    46400 Wind Speed Measurements - Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    62/70

    46400 Wind Speed Measurements Cups

    T F Pedersen Oct 201262 DTU Wind Energy Department

    Mast and boom flow distortionIEC61400-12-1 standard on power performance measurements

    Annex G Requirements for top mounting, one anemometer

    Vertical tube

    Mast top

    Mast shall be within 1:5 cone(mast centre to cone relative

    to vertical distance to anemometer)

    Hub height relativeto ground at met mast

    Minimum 0,75m

    Minimum 1,5mNo flow disturbances alowedabove this line

    No other instruments on boomsabove this line

    46400 Wind Speed Measurements - Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    63/70

    46400 Wind Speed Measurements Cups

    T F Pedersen Oct 201263 DTU Wind Energy Department

    Mast and boom flow distortionIEC61400-12-1 standard on power performance measurements

    Annex G Requirements for top mounting, two anemometers

    Minimum 15 timesboom diameterRecommended 25 timesboom diameter

    Minimum 1,5m and maximum 2,5m

    Hub height relativeto ground at met mast

    Minimum 1,5m

    Minimum 0,75m

    No flow disturbances alowedabove this line

    No other instruments on boomabove this line

    Mast top

    Mast box with pressure sensor

    46400 Wind Speed Measurements - Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    64/70

    46400 Wind Speed Measurements Cups

    T F Pedersen Oct 201264 DTU Wind Energy Department

    Vertical tube

    Mast top

    mast within 1:5 cone(mast centre to cone relative

    to vertical distance to anemometer)

    Hub height relativeto ground at met mast

    Free tubeMinimum 0,75m

    Minimum 1,5m andMaximum 2,5m

    Boom

    Mast box with pressure sensor

    Tmp Control anemometer should be mountedas described in clause G.5

    Mast and boom flow distortionIEC61400-12-1 standard on power performance measurements

    Annex G Requirements for top mounting, other sensors

    46400 Wind Speed Measurements - Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    65/70

    46400 Wind Speed Measurements Cups

    T F Pedersen Oct 201265 DTU Wind Energy Department

    Minimum 1,5m and maximum 2,5m

    Hub height relativeto ground at met mast

    Minimum 1,5m and

    maximum 10% of hub height

    Minimum 0,75m

    Mast box with pressure sensor

    Mast top

    Minimum 15 times

    boom diameterRecommended 25 timesboom diameter

    Boom

    Mast and boom flow distortionIEC61400-12-1 standard on power performance measurements

    Annex G Requirements for top mounting, other sensors

    46400 Wind Speed Measurements - Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    66/70

    6 00 Sp C p

    T F Pedersen Oct 201266 DTU Wind Energy Department

    0,960

    0,965

    0,970

    0,975

    0,980

    0,985

    0,990

    0,995

    1,000

    2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0 7,5 8,0 8,5 9,0 9,5 10,0

    Distance to Center Divided by Mast Diameter R/d

    CentrelineRelativeWindSpeed

    Mast and boom flow distortion

    IEC61400-12-1 standard on power performance measurementsAnnex G Flow distortion round a tubular mast

    46400 Wind Speed Measurements - Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    67/70

    p p

    T F Pedersen Oct 201267 DTU Wind Energy Department

    L

    R

    Actuator disc

    d

    Three legged mastCentrelinewind speed deficit U

    0,960

    0,965

    0,970

    0,975

    0,980

    0,985

    0,990

    0,995

    1,000

    2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0 7,5 8,0 8,5 9,0 9,5 10,0

    Distance to Mast Centre Divided by Mast Leg Distance R/L

    CentrelineRelativeWindSpeed

    Ct=0,1

    Ct=0,3

    Ct=0,5

    Ct=0,7

    Tubular (based on R/d)

    Mast and boom flow distortion

    IEC61400-12-1 standard on power performance measurementsAnnex G Flow distortion round a three-legged mast

    46400 Wind Speed Measurements - Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    68/70

    p p

    T F Pedersen Oct 201268 DTU Wind Energy Department

    Other inf luence factors on cup anemometers

    Rime Ice Dust Bird shit

    Example: shit from cormorant

    46400 Wind Speed Measurements - Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    69/70

    p p

    T F Pedersen Oct 201269 DTU Wind Energy Department

    Other inf luence factors on cup anemometersExample of influence of rime on a 116m mast:

    J umps in wind speed from about 7.5m/s to 12.5m/s at 60m, 80m and100m levels

    -3

    -2

    -1

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    1011

    12

    13

    14

    15

    16

    1 37 73 109 145 181 217 253 289 325 361 397 433 469 505

    10-min periods

    Measure

    dwindspeed[m/s]ortemperature[degC

    Wsp 116m

    Wsp 100m

    Wsp 80m

    Wsp 60m

    Tmp 60m

    46400 Wind Speed Measurements - Cups

  • 7/28/2019 DTU Wind Speed Course Cups

    70/70

    p p

    Other influence factors on cup anemometersIcing (re. Vaisala)