20
!"" Selene Paul Scherrer Institut Københavns Universitet Syddansk Universitet Jochen Stahn Tobias Panzner, Uwe Filges Marit´ e Cardenas BeateKl¨osgen progress report of the Swiss-Danish instrument initiative for the ESS WP2 focusing reflectometer IKON 2 09.–10. 02. 2012, Malmø, Sweden

DxX 1x5 P3 - psi.ch · J. Stahn: focusing reflectometer, IKON2, 2.2012 2.0 generic instrument layout cut in the scattering plane stretched by 10 normal to incident beam

Embed Size (px)

Citation preview

  • !""#

    Selene

    Paul Scherrer Institut

    Kbenhavns Universitet

    Syddansk Universitet

    Jochen StahnTobias Panzner, Uwe Filges

    Marite Cardenas

    Beate Klosgen

    progress report of the

    Swiss-Danish instrument initiative

    for the ESS

    WP2

    focusing reflectometer

    IKON 2

    09.10. 02. 2012, Malm, Sweden

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 1.0

    aims

    development and proof of concepts for two reflectometers for the ESS,

    optimized for:

    small samples (< 1mm2)

    horizontal scattering geometry

    polarization & analysis

    voluminous sample environment

    moderate to low resolution

    . . .

    liquid surfaces

    vertical scattering geometry

    time-resolved studies (t < 1 s)

    wide qz-range with one (few) angular setting(s)

    high to low resolution

    . . .

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 2.0

    generic instrument layout

    cut in the scattering plane

    stretched by 10 normal to incident beam

    initial slit = projected sample size

    sample

    detector

    1st elliptic reflector

    no direct line of sight

    2nd elliptic reflector

    knife blade

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 2.1

    generic instrument

    why focusing?

    beam

    pro

    file

    penumbra

    umbra

    beam

    pro

    file

    umbra

    slits

    reflective/

    refractiveoptics

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 2.2

    generic instrument

    why an elliptic reflector?

    an elliptic reflector allows for

    a parabolic reflector turns beam size into divergence and vice versa

    point-to-point focusing

    small source point

    convenient beam manipulation (chopper, filtering)

    early beam definition

    low background

    low radiation

    disentangling of spot size and divergence

    / encoding

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 2.3

    generic instrument

    why only one branch of an ellipse?

    no structured I(, z)

    in most cases one branch can cover

    I(, z) map

    "./mapes.dat"u 2:1:3

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 2-3

    -2

    -1

    0

    1

    2

    3

    /deg

    z/m

    m

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 2.4

    generic layout

    why two subsequent elliptic guides?

    convenient beam manipulation

    guide dimensions not too large

    correction for coma aberration!

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 3.0

    operation modes:

    for TOF (non-TOF operation is also possible!)

    definition of spot-size

    polarization / -filtering

    monochromatization

    chop beam

    definition of divergence

    definition of

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 3.1

    operation modes:

    almost conventional

    beam is still convergent

    off-specular measurements are feasible

    2 4 6 8 10 12 14 16 1

    2

    3

    4

    5

    6

    2

    0 0.02 0.04 0.06 0.08

    0

    0.02

    0.04

    0.06

    0.08

    kzf/A

    1

    kz i /A1

    qz

    x

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 3.2

    operation modes:

    wide q-range

    vary with fixed sample position

    shift diaphragm (chopper) between pulses

    suited for liquid surfaces

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 3.3

    operation modes:

    small spot size

    uses focusing due to coma aberration

    scanning mode possible

    use coma aberration to reduce beam size

    height/

    mm

    / deg

    I(y , z) and I(z , z) at the sample

    for a 1 1mm2 entrance slit

    -1 -0.5 0 0.5 1-1

    -0.5

    0

    0.5

    1

    0 0.5 1 1.5 2 2.5 3

    z/mm

    y / mm z / deg

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 3.4

    operation modes:

    angle/energy encoding

    uses a ml-monochromator at the intermediate image

    spectral analysis of the beam: / encoding

    large on small

    wide qz-range

    I(, ) after ml monochromator/deg

    / A

    3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

    -1

    -0.5

    0

    0.5

    1

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 3.5

    operation modes:

    high-intensity specular reflectivity

    energy- and angle-dispersive gain > 10

    for fast scanning (T ,H,E . . . )

    or if off-specular scattering is no problem

    2 4 6 8 10 12 14 16 1

    2

    3

    4

    5

    6

    2

    -5

    -4

    -3

    -2

    -1

    0

    0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

    log10[R(qz) ]

    qz / A1

    qz

    x

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 3.6

    operation modes:

    high-intensity specular reflectivity vs. almost conventional

    qz

    x

    qz

    x

    2 4 6 8 10 12 14 16 1

    2

    3

    4

    5

    6

    2

    2 4 6 8 10 12 14 16 1

    2

    3

    4

    5

    6

    2

    specularoff-specular

    incoherent

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 3.7

    operation modes:

    high-intensity specular reflectivity vs. almost conventional

    [ La2/3Sr1/3MnO3 /SrTiO3 ]4 /NGO 4 5mm2

    no focusing in sample plane

    TOF mode, [2 . . .18 A]

    measurement time:

    conventional 6.5 h

    Selene 45min

    gain-factor 8.3

    -5

    -4

    -3

    -2

    -1

    0

    0.02 0.04 0.06 0.08 0.1 0.12 0.14

    qz/A1

    log10[R

    (qz)]

    by courtesy of C. Aruta and F. Miletto

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 4.0

    prototype on BOA

    Boa is a test beam line at SINQ, PSI

    guide-end (40 150mm2, y = 1.4, z = 2.0

    )

    chopper ( = 150mm)

    slit elliptic guides

    sample position

    area detector

    x/y translation, 2/ rotation stages

    total length 8.6m

    [1.5, 12] A

    polarized beam

    setup operational 8. 2012

    -1.5 -1 -0.5 0 0.5 1 1.5-1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    z/deg

    x/deg

    0 0.5 1 1.5 2 2.5 3-1

    -0.5

    0

    0.5

    1

    z/deg

    z/mm

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 4.1

    concept for the ESS

    schematic lay-out of the reflectometer for tiny samples

    x/m0 2 67 20 50

    concrete

    source

    coarse slit

    initial slit

    intermediate image

    sample

    detectory/mm

    087

    261

    872

    2180

    2180

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 4.2

    concept for the ESS

    source

    coarse slit

    initial slit

    intermediate image

    sample

    detector

    total length

    repetition rate multiplication chopper / 1%

    ml-monochromator qz/qz 5% . . .20%

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 5.0

    schedule

    McStas simulations

    prototype on BOA

    January February Mars April May June July August September

    concept studies

    generic instrument (T. Panzner)

    adaption to BOA

    incl. off-specular scattering (K. Lefmann)

    incl. gravity (E. Rantsiou)

    ESS instrument for small samples (N.N.)

    ESS instrument for liquid surfaces (U. B. Hansen)

    construction (D. Graf, M. Schild)

    manufacturing (PSI)

    offer for guides (SwissNeutronics)

    set up on BOA

    experiments

  • J. Stahn: focusing reflectometer, IKON2, 2. 2012 6.0

    Selene is a guide concept

    which . . .

    prevents direct line of sight

    reduces radiation in the guide

    allows for convenient beam manipulation

    reduces illumination of the sample environment

    allows for a convergent beam set-up

    flux gain > 10