25
Dynamic Causal Modelling for evoked responses Stefan Kiebel Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany

Dynamic Causal Modelling for evoked responses

  • Upload
    nicola

  • View
    78

  • Download
    0

Embed Size (px)

DESCRIPTION

Dynamic Causal Modelling for evoked responses . Stefan Kiebel. Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany. Overview of the talk. 1 M/EEG analysis 2 Dynamic Causal Modelling – Motivation 3 Dynamic Causal Modelling – Generative model - PowerPoint PPT Presentation

Citation preview

Page 1: Dynamic Causal Modelling for evoked responses

Dynamic Causal Modellingfor evoked responses

Stefan Kiebel

Max Planck Institute forHuman Cognitive and Brain Sciences

Leipzig, Germany

Page 2: Dynamic Causal Modelling for evoked responses

Overview of the talk

1 M/EEG analysis

2 Dynamic Causal Modelling – Motivation

3 Dynamic Causal Modelling – Generative model

4 Bayesian model inversion

5 Examples

Page 3: Dynamic Causal Modelling for evoked responses

Overview of the talk

1 M/EEG analysis

2 Dynamic Causal Modelling – Motivation

3 Dynamic Causal Modelling – Generative model

4 Bayesian model inversion

5 Examples

Page 4: Dynamic Causal Modelling for evoked responses

pseudo-random auditory sequence

80% standard tones – 500 Hz

20% deviant tones – 550 Hz

time

standards deviants

Mismatch negativity (MMN)

time (ms)

μV

Paradigm

Raw data(e.g., 128 sensors)

Preprocessing (SPM8)

Evoked responses(here: single sensor)

Page 5: Dynamic Causal Modelling for evoked responses

Electroencephalography (EEG)

time

sens

ors

sens

ors

standard

deviant

time (ms)

amplitude (μV)

Page 6: Dynamic Causal Modelling for evoked responses

Analysis at sensor levelse

nsor

sse

nsor

s

standard

deviant

time

Conventional approach: Reduce evoked response to a few

variables.

Alternative approach?

Page 7: Dynamic Causal Modelling for evoked responses

Overview of the talk

1 M/EEG analysis

2 Dynamic Causal Modelling – Motivation

3 Dynamic Causal Modelling – Generative model

4 Bayesian model inversion

5 Examples

Page 8: Dynamic Causal Modelling for evoked responses

Electroencephalography (EEG)

time (ms)

amplitude (μV)

Modelling aim: Explain all data with few

parameters

How?Assume data are caused

by few communicating brain sources

Page 9: Dynamic Causal Modelling for evoked responses

Connectivity models

A1 A1

STG

Input (stimulus)

STG

Conventional analysis: Which regions are involved in task?

A1 A1

STG

Input (stimulus)

STG

DCM analysis: How do regions communicate?

Page 10: Dynamic Causal Modelling for evoked responses

Macro- and meso-scale

internal granularlayer

internal pyramidallayer

external pyramidallayer

external granularlayer

AP generation zone synapses

macro-scale meso-scale micro-scale

Page 11: Dynamic Causal Modelling for evoked responses

Overview of the talk

1 M/EEG analysis

2 Dynamic Causal Modelling – Motivation

3 Dynamic Causal Modelling – Generative model

4 Bayesian model inversion

5 Examples

Page 12: Dynamic Causal Modelling for evoked responses

The generative model

),,( uxfx

Source dynamics

states x parameters θ

Input u

Evoked response

data y

),( xgy

Spatial forward model g

David et al., NeuroImage, 2006Kiebel et al., Human Brain Mapping, 2009

Page 13: Dynamic Causal Modelling for evoked responses

Neural mass equations and connectivity

Extrinsicforward

connectionsspiny

stellate cells

inhibitory interneurons

pyramidal cells

4 3

214

014

41

2))()((ee

LF

e

e xxCuxSIAAHx

xx

1 2)( 0xSAF

)( 0xSAL

)( 0xSABExtrinsic backward connections

Intrinsic connections

neuronal (source) model

Extrinsic lateral connections

State equations

,,uxfx

0x

278

038

87

2))()((ee

LB

e

e xxxSIAAHx

xx

236

746

63

225

1205

52

650

2)(

2))()()((

iii

i

ee

LB

e

e

xxxSHx

xx

xxxSxSAAHx

xxxxx

David et al., NeuroImage, 2006Time (ms)

Am

plitu

de (a

.u.)

Page 14: Dynamic Causal Modelling for evoked responses

Model for auditory evoked response

Garrido et al., PNAS, 2007

Page 15: Dynamic Causal Modelling for evoked responses

Spatial model

0x

LL

Depolarisation ofpyramidal cells

Spatial model

Sensor data y

Kiebel et al., NeuroImage, 2006Daunizeau et al., NeuroImage, 2009

Page 16: Dynamic Causal Modelling for evoked responses

Overview of the talk

1 M/EEG analysis

2 Dynamic Causal Modelling – Motivation

3 Dynamic Causal Modelling – Generative model

4 Bayesian model inversion

5 Examples

Page 17: Dynamic Causal Modelling for evoked responses

Bayesian model inversion

Evoked responsesSpecify generative forward model

(with prior distributions of parameters)

Expectation-Maximization algorithm

Iterative procedure: 1. Compute model response using current set of parameters

2. Compare model response with data3. Improve parameters, if possible

1. Posterior distributions of parameters

2. Model evidence )|( myp

),|( myp

Friston, PLoS Comp Biol, 2008

Page 18: Dynamic Causal Modelling for evoked responses

Model selection: Which model is the best?

)|( 1mypModel 1

data y

Model 2

...

Model n

)|( 2myp

)|( nmypbest?

Model selection:

Selectmodel with

highestmodel

evidence

),|( 1myp

),|( 2myp

),|( nmyp

)|( imyp

Fastenrath et al., NeuroImage, 2009Stephan et al., NeuroImage, 2009

best?

Page 19: Dynamic Causal Modelling for evoked responses

Overview of the talk

1 M/EEG analysis

2 Dynamic Causal Modelling – Motivation

3 Dynamic Causal Modelling – Generative model

4 Bayesian model inversion

5 Examples

Page 20: Dynamic Causal Modelling for evoked responses

Auditory evoked response

Garrido et al., PNAS, 2007

Page 21: Dynamic Causal Modelling for evoked responses

Auditory evoked response

Garrido et al., PNAS, 2007

time (ms) time (ms)

Page 22: Dynamic Causal Modelling for evoked responses

A1 A1

STG STG

ForwardBackward

Lateral

STG

input

A1 A1

STG STG

ForwardBackward

Lateral

input

A1 A1

STG

ForwardBackward

Lateral

input

Forward - F Backward - BForward and

Backward - FB

STG

IFGIFGIFG

modulation of effective connectivity

Mismatch negativity

Garrido et al., (2007), NeuroImage

Page 23: Dynamic Causal Modelling for evoked responses

Bayesian Model Comparison

Forward (F)

Backward (B)

Forward and Backward (FB)

subjects

log

-evi

denc

e

Group level

Group model comparison

Garrido et al., (2007), NeuroImage

Page 24: Dynamic Causal Modelling for evoked responses

Summary

DCM enables testing hypotheses about how brain sources communicate.

DCM is based on a neurobiologically grounded, dynamic model of evoked responses.

Differences between conditions are modelled as modulation of connectivity.

Inference: Bayesian model selection

Page 25: Dynamic Causal Modelling for evoked responses

Thanks to: Marta GarridoJean DaunizeauKarl Friston

and the FIL methods group