Dynamic Characteristics of Welded Structures

Embed Size (px)

Citation preview

  • 8/8/2019 Dynamic Characteristics of Welded Structures

    1/7

    E L S E V I E R Nuclear Engineering and Design 160 (1996) 379-385

    N u c l e a rE n g i n e e r i n ga n d D e s ig n

    Dynamic characteris t ics of welded s tructuresShigeru Aoki

    Department o f Mechanical Engineering, Tokyo Metropolitan College of Technology, 1-10-40 Higashi-Ohi, Shinagawa-ku,Tokyo 140, JapanReceived 1 Jun e 1995; accepted 1 S eptembe r 1995

    A b s t r a c t

    W elding is widely used for joints of ma ny st ruc tures. In this paper , the effec t of welding on d ynam ic charac ter ist icsi s examined based on expe r imen t . F i r s t , dynam ic cha rac te r i s ti c s o f s imple spec imens wi th we lding a re measured . Nex t ,the effec t of welding on random vibra t ion and re l iabi l i ty for the f i rst passage problem is examined by a theore t ica lme thod us ing an ana ly t i ca l mode l wi th r e sponse cha rac t e r i s t i c s measured f rom expe r imen t . F ina l ly , t he app l i cab i l i t yof ob ta ined re su l t s t o ac tua l s t ruc tu re s i s examined by an expe r imen t us ing a f r ame mode l . I t i s conc luded tha t t hedamping ra t io increases when welding is used.

    1 . I n t r o d u c t i o n

    W e l d i n g is w id e l y u s e d f o r c o n s t r u c t i o n o fm a n y s t r u ct u r es . S t u d ie s o n v i b r a t i o n o f w e l d eds t r u c t u r e s s u b j e c t e d t o c y c l ic l o a d h a v e b e e n c a r -r i e d o u t ( E n g e l h a r d t , 1 99 3; Z u r a s k i , 1 9 93 ). T h e s es t u d i e s a r e m a i n l y c o n c e r n e d w i t h f a t i g u e f a i l u r e .O n r e l ia b i l it y o f w e l d e d s t r u c t u r e s s u b j e c t e d t oe x t e r n a l l o a d i n g , s t u d i e s h a v e b e e n c a r r i e d o u t o ns t a t i c s t r e n g t h ( L a B o u b e , 1 9 9 3 ) a n d a n a l y s i sb a s e d o n f r a c t u r e m e c h a n i c s ( R a h m a n , 1 99 2;S m i t h , 1 9 92 ). S t a t i s ti c a l e v a l u a t i o n o f ( C h e v e r t o n ,1 99 2) a n d f a i l u r e m e c h a n i s m s f o r ( B u s h , 1 9 92 )w e l d i n g h a v e a l s o b e e n p r e s e n t e d .

    I n m a n y o f t h es e s t u di e s, d y n a m i c c h a r a c t er i s -t ic s a r e n o t c o n s i d e r e d . T h e e f fe c t o f w e l d i n g o nd y n a m i c c h a r a c t e r i s t i c s h a v e n o t b e e n s t u d i e d i nd e t a i l e v e n f o r t h e e l a s t i c r a n g e . T h i s p r o b l e m i s

    e x p e c t e d t o b e u s e f u l f o r s t u d y a n d d e s i g n o fw e l d e d s t r u c t u r e s s u b j e c t e d t o o r d i n a r y d y n a m i cl o a d i n g .

    C o n s i d e r i n g t h e a b o v e m e n t i o n e d p o i n t s , th ea i m o f t h i s p a p e r i s t o p r e s e n t t h e e f f e c t o f w e l d -i n g o n d y n a m i c c h a r a c t er i s ti c s o f s t ru c t u r e s a n do n r e s p o n s e c h a r a c t e r i s t i c s a n d r e l ia b i l it y o f s t ru c -t u r e s s u b j e c te d t o r a n d o m v i b r a t i o n . F i r s t , b y a ne x p e r i m e n t u s i n g s i m p l e s p e c im e n s , d y n a m i c c h a r -a c t e r is t i c s o f s p e c i m e n s w i t h w e l d i n g a r e c o m -p a r e d w i t h t h o s e o f s p e c i m e n s w i t h o u t w e l di n g .N e x t , u s i n g r e s u l t s o b t a i n e d b y t h e e x p e r i m e n t ,t h e e f f ec t o f w e l d i n g o n r e s p o n s e c h a r a c t e r i s t i c sa n d r e l ia b i l it y o f s t r u c t u r e s s u b j e c t e d t o r a n d o mv i b r a t i o n a r e e x a m i n e d . F i n a ll y , b y a n e x p e r i m e n tu s i n g a m o d e l o f a c t u a l s t r u c t u r e s , t h e a p p l i c a -b i l it y o f o b t a i n e d r e s u l t s to a c t u a l s t r u c t u r e s i se x a m i n e d .

    0029-5493/96/$15.00 1996 Elsev ier Science S.A . All rights reser vedS S D I 0029-5493(95)01115-3

  • 8/8/2019 Dynamic Characteristics of Welded Structures

    2/7

    380 S . Ao k i / Nu c l ea r En g i n eer i n g a n d D es ig n 1 6 0 (1 9 9 6 ) 3 7 9 - 3 8 5

    13

    2;2 I I l l i l l l I

    Fig. t. Shape of specimen.

    2. Estimation o f dynam ic characteristics byexperiment

    B y a n e x p e r i m e n t u s i n g s i m p l e s p e c i m e n s , t h ee f fe c t o f w e l d i n g o n d y n a m i c c h a r a c t e r i s t i c s i se x a m i n e d . M e t h o d s a n d r e s u lt s o f t h e e x p e r i m e n ta r e s h o w n .

    t i o n a l m o d e a r e e s t i m a t e d , f , i s o b t a i n e d b y t h ef r e q u e n c y s w e e p m e t h o d . ( is o b t a i n e d b y t h ef o l l o w i n g t h r e e m e t h o d s .

    ( I ) A l o g a r i t h m i c d e c r em en t C~ i s o b t a i n ed b yt h e f r e e v i b r a t i o n , t h e n t h e f o r m u l a ( = 6 /2re is used.( I I) T h e h a l f p o w e r m e t h o d , t h a t i s f r e q u e n -c i es f~ a n d f 2 , w h e r e t h e a m p l i t u d e o n t h er e s o n a n c e c u r v e is 1 / ~ / 2 t i m e s t h e p e a ka m p l i t u d e , a r e o b t a i n e d , t h e n t h e f o r m u l a( = ( f 2 - J l ) / 2 f , i s used .( I II ) T h e r e l a t i o n 1 / 2 ( b e t w e e n t h e r a t i o o f t h er e s p o n s e a m p l i t u d e t o t h e i n p u t a m p l i t u d ea t f , i s u s ed .

    I n th e f r e q u e n c y s w e e p m e t h o d , t h e i n p u t a m -p l i t u d e i s f i x ed a s 1 .0 m m p p . A n am p l i t u d e o f2 .0 m m p p i s a l s o u s ed w h en i t is n eed ed .2.2. Results o f experiment

    2. I . M etho d o f experimentA s s p e c i m e n s , t h e c a n t i l e v e r m o d e l s s h o w n i n

    F i g . 1 a r e u s e d . F o u r t y p e s o f s p e c i m e n s i z e,s h o w n i n T a b l e 1 , a r e s e l e c t e d . T h e s p e c i m e nm at e r i a l i s r o l l ed s t ee l f o r g en e r a l s t r u c t u r e s ( J I SS S 4 0 0 ) . T h e l e n g t h L f o f t h e f i x e d p a r t o f t h es h a k e r i s 1 00 m m . T h i s p a r t i s f i x ed b y t h r ee b o l t s .T h e l e n g t h L w f r o m t h e w e l d l in e t o t h e c e n t e r o ft h e l e f t h o l e i s 2 5 0 m m . T h e f o l l o w i n g t h r e e t y p e so f s p e c i m e n a r e u s e d .

    ( I ) S p e c i m e n w i t h o u t w e l d i n g .( 2) S p e c i m e n w e l d e d b y m a n u a l o p e r a t i o n .( 3) S p e c i m e n w e l d e d b y t h e a u t o m a t i c C O 2 g a s

    s h i e l d e d a r c w e l d i n g m a c h i n e .T h e g r o o v e s h a p e i s V t y p e . S p e c i m e n s a r e b u t tw e l d e d .

    A s d y n a m i c c h a r a c te r i st i c s, t h e d a m p i n g r a t io (a n d t h e n a t u r a l f r e q u e n c y f n f o r t h e f i rs t v i b r a -Table 1Size o f specimen (mm)Specimen L B LA 530 65 9B 530 65 6C 460 65 9D 460 65 6

    I n T a b l e 2 , v a l u e s o f ( a n d J~ e s t i m a t e d b y t h ee x p e r i m e n t a r e s h o w n . T h e r e s u l ts o f s p e c i m e n B 'a r e t h o s e o b t a i n e d f o r s p e c i m e n B s h a k e n b y2 . 0 m m p p i n p u t a m p l i t u d e . O t h e r c a se s a r eo b t a i n e d f o r a n i n p u t a m p l i t u d e o f 1 .0 m m p p .I n t h i s t ab l e , ( w an d ~ b ' fnw and Jnb are th ed a m p i n g r a t io a n d t h e n a t u r a l f r e q u e n c y f o r t h es p e c i m e n w i t h w e l d i n g a n d w i t h o u t w e l d i n g r e -s p ec t i v e l y . V a l u es o f ( w / ( b an d f ,w / fn b a r e s h o w ni n th e r i g h t - h a n d c o l u m n o f t h e r e s u l ts f o r t h es p e c i m e n w i t h w e l d i n g .

    F o r t h e d a m p i n g r a t i o ( , v a r i a t i o n d u e t o t h em e a s u r i n g m e t h o d i s s e e n . I n m o s t s p e c i m e n s , ( wis g r e a t e r t h a n ( b ; (w is a b o u t 1 0 % g r e a t e r t h a n( b . D i f f e r e n c e s d u e t o w e l d i n g m e t h o d s a r e n o tc l e a r l y s e e n. C o m p a r i n g r e s u lt s f o r s p e c i m e n Bw i t h t h o s e f o r s p e c i m e n B ' , ( f o r s p e c i m e n B ' i sa b o u t 5 % g r e a t e r t h a n t h a t f o r s p e c i m e n B . ( w / f hf o r s p e c i m e n B ' i s l e s s t h a n t h a t f o r s p e c i m e n B .

    F o r t h e n a t u r a l f r e q u e n c y f , , i n t he g r e a t e stcas e o f f l w / J n b , fnw i s 4 % g r e a t e r t h a n fnb" H o w -ev e r , f ~,~ i s a l m o s t t h e s am e a s f n b in m o s t ca s e s .

    I n T a b l e 3 , t h e m e a n v a l u e a n d c o e f f i c ie n t o fv a r i a t i o n ( C O V ) o f ( w /( b andfnw/ f ,b f o r t h e s p ec -i m e n w e l d e d b y m a n u a l o p e r a t i o n a n d t h a t w e l d edb y t h e a u t o m a t i c C O 2 g a s s h i e l d e d a r c w e l d i n gm a c h i n e a r e s h o w n . I n m o s t c a s e s , t h e C O V o f~ ,, ./ (b is le s s t h a n 1 0%. T h e r e f o r e , v a r i a t i o n o f

  • 8/8/2019 Dynamic Characteristics of Welded Structures

    3/7

    S. Aoki / Nuclear Engineering and Design 160 (1996) 379-385 381Table 2Damping ratio and natural frequency of specimenSpecimen Method

    (I) (II) (III)( ( X 1 0 - 3 ) ( w /~ 'b ( ( X 1 0 2 ) ( w /~ b ( ( X 1 0 - 2 ) ( w /~ b Jn ( H z ) fnw/fnb

    (1) A 7.01 1.68 2.03 20.8B 7.56 5.20 0.97 15.4B' 8.15 5.06 1.21 15.8C 5.72 1.84 1.62 27.2D 7.34 1.70 1.51 20.6(2) A 8.20 1.17 2.10 1.25 2.17 1.07 21.4B 8.88 1.17 5.06 0.97 1.07 1.10 15.8B' 9.38 1.15 5.31 1.05 1.27 1.05 16.0C 6.94 1.21 2.02 1.10 1.72 1.06 27.2D 7.60 1.04 1.94 1.14 1.53 1.01 20.6(3) A 7.50 1.07 2.14 1.27 2.12 1.04 21.0B 9.06 1.20 5.31 1.02 1.10 1.13 16.0B' 9.28 1.14 5.00 0.99 1.29 1.07 16.0C 7.85 1.37 1.83 0.99 1.77 1.09 27.4D 9.20 1.25 1.68 0.99 1.59 1.05 20.9

    1.031.031.011.001.001.011.041.011.011.01

    (w/(b due to specimen size and input amplitude isrelatively Small. However, variation of fnw/fnb isvery small since the COV O f f n w / f n b is about 1%.

    3 . E f f e c t o f w e l d i n g o n r a n d o m v i b r a t i o nc h a r a c t e r i s t i c s

    It is assumed that specimens are simulated by asingle-degree-of-freedom system with ( and fn ob-tained by the experiment. T he effect of welding onresponse characteristics of specimens subjected torandom accelerat ion input is examined.Table 3Mean value and coefficient of variation of (w/fb and J'nw/fnbSpecimen Method

    (1) (II) (III)~w/b ~/ (b (w/(b Lw/fnb

    (2) Mean 1.15 1.10 1.06 1.01COV 0.050 0.085 0.028 0.013(3) Mean 1.20 1.05 1.08 1.02COV 0.084 0.104 0.031 0.012

    The equa tion of moti on with respect to thedisplacement of mass relative to the input point zis expressed as follows:

    - 5 2 ( ~ n Z - 4 - 0 ) 2 z = - - ) 7 ( I )

    where f is the i np ut acc ele rat ion an d (an( = 2ZCfn) isthe natural circular frequency; z, which is relatedto the deflection of specimens, is obtained.

    In this paper, the sta ndard deviati on of z isexamined when y is the stationary white noise.The ratio of the standard deviation ~zw for thespecimen with welding to that, azb, for the speci-men without welding is expressed as follows:

    = V w A w ) (2 )In Table 4, the obtained results are shown. The

    standard deviat ion is re la ted to the maximumresponse (Tajimi, 1960). ~zw is about 7% less thanGzb.

    4 . E f f e c t o f w e l d i n g o n r e l i a b i l it yThe effect of welding on reliability when the

    structure is subjected to stationary white noise

  • 8/8/2019 Dynamic Characteristics of Welded Structures

    4/7

    38 2 S . Aok i /Nuclear Engineering and Design 160 (1996) 379 385T a b l e 4Ra t io of s ta nd ard de via t ion Cr~w,/O'~b

    T a b l e 5R a t i o o f t o l e r a n c e l e ve l BDw /BDb (H ~ I )

    S p e c i m e n M e t h o d S p e c i m e n M e t h o d( l ) ( l l ) ( l I D ( l ) ( I I ) ( l I l )

    (2) A 0 .885 0 .856 0 .924B 0 .885 0 .969 0 .913B' 0 .918 0 .962 0 .961C 0.908 0 .953 0 .971D 0 .982 0 .935 0 .996

    (3) A 0 .953 0 .873 0 .964B 0.861 0.93 2 I) .888B' 0 .923 0 .991 0 .955C 0.841 0 .989 0 .941D 0 .880 0 .992 0 .963

    (2) A 0.91 0 (I .881 0.951B 0 .910 0 .997 0 .939B' 0.927 0.961 0.971C 0.908 0 .953 0 .971D 0 .982 0 .935 0 .996

    (3) A 0 .962 0 .882 0 .974B 0.894 0 .968 0 .923B' 0 .933 1 .000 0 .965C 0.850 0 .998 0 .95 ID 0.888 1 .000 0 .972

    e x c i t a t i o n s i s e x a m i n e d . S o m e t y p e s o f fa i l u r e a r ea s s u m e d i n t h e s t u d y o n r e l i a b il i ty o f s t r u c t u r e ss u b j e c t e d t o r a n d o m v i b r a t i o n . F a i l u r e d u e t o f i r s tp a s s a g e is o n e o f t h e m o s t i m p o r t a n t t y p e s o ff a i l u r e ( C r a n d a l l , 1 9 63 ; L i n , 1 9 6 7) . I n t h i s p a p e r ,t h e f i r s t p a s s a g e p r o b l e m i s d e a l t w i t h w h e r ef a i l u r e o c c u r s a t t h e i n s t a n t w h e n t h e a b s o l u t ev a l u e t z (t ) [ o f t h e r e s p o n s e f i rs t c r o s s e s t h e t o l e r -a n c e l e v e l B D . I n t h i s c a s e , t h e f i r s t p a s s a g e p r o b -a b i l i t y i s o b t a i n e d b y t h e f o l l o w i n g e q u a t i o n :P r ( t) = 1 - e x p ( - 2 v t ) ( 3)w h e r e1 (v = - - ~ o n e x p - (4 )27r 2o~]T h e t o l e r a n c e l e v e l B D b f o r t h e s p e c i m e n w i t h o u tw e l d i n g i s d e t e r m i n e d b y u s i n g c rz b a s f o l l o w s :B D b = n O -z b ( 5 )

    F i r s t , t h e e f f e c t o f w e l d i n g o n r e l i a b i l it y i se x a m i n e d b y o b t a i n i n g t h e r a t i o B Dw o f t h e t o le r -a n c e l e v e l f o r t h e s p e c i m e n w i t h w e l d i n g t o B D bf o r t h e c a s e w h e r e P r f o r th e s p e c i m e n w i t h w e l d -i n g is e q u a l t o t h a t f o r th e s p e c i m e n w i t h o u tw e l d i n g . B D w / B D b i s o b t a i n e d b y t h e f o l l o w i n ge q u a t i o n :B D w [ 2 ( l: a f3 n b l o g J C n w ~ > 1 . '2B D b- - n 2 (w .f~ ,~ . f , b + (6)I n T a b l e 5 , t h e r e s u l t s f o r n = 1 a r e s h o w n . B Dw i sa b o u t 5 % l e s s t h a n B D b . T h i s m e a n s t h a t Pr f o r

    t h e s p e c i m e n w i t h w e l d i n g i s l o w e r t h a n t h a t f o rt h e s p e c i m e n w i t h o u t w e l d i n g f o r t h e s a m e v a l u eo f t o l e r a n c e l e v e l .

    I n o r d e r t o e x a m i n e t h e e f f e ct o f n, th e m e a nv a l u e o f B D w / B D b i s s h o w n i n F i g . 2. W h e n n isl es s t h a n a b o u t 2 , /Dw/BDb d e c r e a s e s a s n i n -c r e a s e s . W h e n n i s g r e a t e r t h a n a b o u t 2 , B D w / B D bi s a b o u t 0 . 93 5 . W h e n n is l e ss th a n a b o u t 0 .3 ,B D w / B D b i s g r e a t e r t h a n 1 . T h e r e f o r e , w h e n n i sg r e a t e r t h a n a b o u t 0 . 3, P .. f o r t h e s p e c i m e n w i t hw e l d i n g i s l es s t h a n t h a t f o r t h e s p e c i m e n w i t h o u tw e l d i n g .

    N e x t , t h e e f f e c t o f w e l d i n g o n r e l i a b i l i t y ise x a m i n e d b y c o m p a r i n g t h e f ir st p a ss a g e p r o b a b i l -i t y P f ,, . f o r t h e s p e c i m e n w i t h w e l d i n g w i t h t h a t ,P n ,, f o r t h e s p e c i m e n w i t h o u t w e l d i n g f o r t h es a m e v a l u e o f t o l e r a n c e l ev e l. B o t h p r o b a b i l i ti e sa r e o b t a i n e d b y t h e f o l l o w i n g e q u a t i o n s :P ~ ( r ) = l - e x p - e x p - (7)

    1 - 0 00 .9

    " ~ 0 . 9 (r n0 . 9 ,0 9 2 0 i 2 4 5n

    F ig . 2 . Ra t i o o f t o l e r a nce l eve l . B l) ~ /BDb

  • 8/8/2019 Dynamic Characteristics of Welded Structures

    5/7

    S . A o k i I Nu c lea r En g in eer ing a n d Des ig n 1 6 0 (1 9 9 6) 3 7 9 -3 8 5 383Table 6First excu rsion probability (n = l , r = 5)Specimen Method

    (1) (II) (11I)(l) 0.619(2) A 0.579 0.563 0.599B 0.579 0.619 0.593B' 0.589 0.608 0.608C 0.581 0.601 0.608D 0.612 0.593 0.617(3) A 0.604 0.566 0.610B 0.570 0.596 0.584B 0.591 0.619 0.604C 0.548 0.619 0.600D 0.570 0.619 0.608

    P r w ( r ) = 1 - e x p - - T f ~ b e x p (8 )w h e r e r = ~O n bt. I n T a b l e 6 , t h e r e s u l t s f o r n = 1a n d ~ = 5 a r e s h o w n . P rw is a b o u t 5 % l e s s t h a nP r o. T h i s m e a n s t h a t P r f o r t h e s p e c i m e n w i t hw e l d i n g i s l o w e r t h a n t h a t f o r t h e s p e c i m e n w i t h -o u t w e l d i n g f o r t h e s a m e v a l u e o f th e t o l e r a n c eleve l .

    I n o r d e r t o e x a m i n e t h e e ff e ct o f n a n d r , m e a nv a l u e s o f th e f ir s t p a s s a g e p r o b a b i l i t y a r e s h o w ni n F i g . 3 . C o n s i d e r i n g t h e r e s u l t s o f F i g . 2 , v a l u e so f n g r e a t e r t h a n 0 . 3 a r e s e l e c t e d . P r w i s l e ss t h a nP rb f o r a ll v a l u es o f n a n d r . T h e m a x i m u md i f f e r e n c e b e t w e e n P~w a n d P a , is a b o u t 1 0 % .T h e r e f o r e , P r f o r th e s p e c i m e n w i t h w e l d i n g i s le sst h a n t h a t f o r t he s p e c i m e n w i t h o u t w e l d i n g f o rt h e s a m e v a l u e o f t o l e r a n c e l e ve l.

    8 0 i 2 ~ . ' - - "

    = ! , : : - - -

    1 0 0 3 0 4 0 5 0Fig. 3. F irs t passage probability.

    0 0

    ! ! ] ; -IiIi

    J t ~ ,

    Fig. 4. Frame model.

    118

    5 . A p p l i c a t i o n t o a c t u a l s tr u c t u r e sT h e a p p l i c a b i li t y o f th e r e s u lt s o b t a i n e d i n S ec -

    t i o n 2 t o a c t u a l s t r u c t u r e s is e x a m i n e d b y e x p e r i-m e n t . A f r a m e m o d e l s h o w n i n F i g . 4 is u s e d .T w o c o l u m n s a r e c o n n e c t e d u s i n g H - s t e e l a t t h et o p . T h e c o l u m n m a t e r i a l i s r o l l e d st ee l f o r g en -e r a l s t ru c t u r e s , t h e s a m e a s t h a t o f t h e s p e c i m e n ss h o w n i n S e c t i o n 2 . T h i s m o d e l i s f i x e d a t t h eb o t t o m o n t o t h e s h a k i n g t a b le a n d s h a k e n i n t h eh o r i z o n t a l d i r e c t i o n . T h e i n p u t , a m p l i t u d e is0 .5 m m p - p . F r o m t hi s e x p e r im e n t , t h e d a m p i n gr a t i o a n d n a t u r a l f r e q u e n c y f o r t h e fi rs t v i b r a -t i o na l m o d e a r e m e a s u r e d b y th e m e t h o d s h o w ni n S e c t i o n 2 . W e l d i n g i s d o n e b y t h e a u t o m a t i cC O 2 g a s s h ie l d e d a r c w e l d i n g m a c h i n e . T h r e et y p e s o f m o d e l a r e u s e d.

    ( a ) M o d e l w i t h o u t w e l d i n g .( b ) M o d e l o f w h i c h o n e c o l u m n i s w e l d ed .( c) M o d e l o f w h i c h t w o c o l u m n s a r e w e l d ed .

    T h e l e n g t h f r o m t h e w e l d l in e t o t h e b o t t o m o ft h e c o l u m n i s 2 1 0 m m .T a b l e 7 s h o w s t h e r e su l ts . T h e d a m p i n g r a t i o o f

    t h e m o d e l w i t h w e l d i n g is a b o u t 1 0 % g r e a t e r t h a nt h a t o f th e m o d e l w i t h o u t w e l d in g . T h e d a m p i n gr a t i o o f m o d e l c i s g r e a t e r t h a n t h a t o f m o d e l b ,b u t t h e d i f f e r e n c e i s v e r y s m a l l . T h e n a t u r a l f r e -q u e n c i e s o f th e s e m o d e l s a r e a l m o s t t h e s a m e .

  • 8/8/2019 Dynamic Characteristics of Welded Structures

    6/7

    38 4 S . Ao k i / Nu c l ea r En g i n eer i n g a n d D es ig n 1 6 0 (1 9 9 6 ) 3 7 9 3 8 5T a b l e 7D a m p i n g r a t i o a n d n a t u r a l f r e q u e n c y o f f r a m e m o d e lS p e c i m e n M e t h o d

    ( l ) ( l l ) ( I l l )( ( x l 0 3 ) ( w / ( b ( ( x l 0 2 ) ( w / ( b ( ( x l 0 2 ) ( w / ( b J ~ ( H z ) Jn ,~ "~ nb

    (a) 7.47 1.48 2.84 22.0(b) 8.46 1.13 1.55 1.05 3.36 1.18 22.6 1.03(c) 8.88 1.19 1.59 1.07 3.25 1.14 22.0 1.00

    T h e r e f o r e , t h e r e s u l t s o b t a i n e d i n S e c t i o n 2 a r ee x p e c t e d t o a p p l y t o a c t u a l s t r u c t u r e s .

    6. ConclusionsB y a n e x p e r i m e n t u s i n g s i m p l e s p e c i m e n s , d y -

    n a m i c c h a r a c t e r i s t i c s o f s p e ci m e n s w i t h w e l d i n ga r e c o m p a r e d w i t h t h o se o f s p e c im e n s w i t h o u tw e l d i n g . T h e e f f ec t o f w e l d i n g o n r e s p o n s e c h a r a c -t e r i s t i c s a n d r e l i a b i l i t y a r e t h e n e x a m i n e d . T h eo b t a i n e d r e s u l t s a r e s u m m a r i z e d a s f o l l o w s .

    ( 1) T h e d a m p i n g r a t io o f t he s p e c i m e n w i thw e l d i n g i s a l m o s t 1 0 % g r e a t e r t h a n t h a t o f t h es p e c i m e n w i t h o u t w e l d i n g .

    ( 2) T h e n a t u r a l f r e q u e n c y o f th e s p e c i m e n w i t hw e l d i n g is a l m o s t t h e s a m e a s t h a t o f t h e s p e c i m e nw i t h o u t w e l d in g .

    ( 3 ) W h e n t h e s p e c i m e n i s s u b j e c t e d t o s t a t i o n -a r y w h i t e n o i s e e x c i t a t i o n , t h e s t a n d a r d d e v i a t i o no f t h e s p e c i m e n w i t h w e l d i n g is s m a l l e r t h a n t h a to f t h e s p e c i m e n w i t h o u t w e l d in g .

    ( 4 ) W h e n t h e s p e c i m e n i s s u b j e c t e d t o s t a t i o n -a r y w h i t e n o i s e e x c i t a t i o n , t h e f ir s t p a s s a g e p r o b a -b i l i t y f o r t h e s p e c i m e n w i t h w e l d i n g i s l o w e r t h a nt h a t f o r t h e s p e c i m e n w i t h o u t w e l d i n g .

    ( 5) B y a n e x p e r i m e n t u s in g a f ra m e m o d e l , t h ed a m p i n g r a t i o b e c o m e s g r e a t e r w h e n t h e c o l u m no f t h e m o d e l i s w e l d e d . S o t h e o b t a i n e d r e s u lt s a r ee x p e c t e d t o a p p l y t o a c t u a l s t r u c t u r e s .

    T h e a u t h o r p l a n s t h e f o l l o w i n g f u t u r e i n v e s t i g a -t i o n s .A l t h o u g h t h e r a n g e o f n a t u r a l f r e q u e n c ie s o fs p ec i m en s u s ed i n t h is p ap e r i s r e l a t i v e l y w i d e ,w e l d i n g i s u s e d f o r m a n y s t r u c t u r e s w i t h a w i d e rr a n g e o f n a t u r a l f r e q u e n c i e s a n d e x c i t a t i o n fr e -

    q u e n c i e s. T h e n a t u r a l f r e q u e n c i e s o f s o m e s t r u c -t u r e s a r e l o w e r t h a n t h o s e o f t h e s p e c i m e n s u s e di n th i s s t u d y . F o r s u ch s t r u c t u r e s , t h e e f f ec t o fw e l d i n g o n d y n a m i c c h a r a c t e r i s t ic s o f h i g h e r v i-b r a t i o n a l m o d e s i s a l s o i m p o r t a n t .

    I n t h i s p a p e r , s p e c i m e n s w i t h o n e w e l d a r ea d o p t e d . I n s o m e s t r u c t u r e s t h e r e a r e m o r e w e l d s .I n s u ch a ca s e , t h e e f f ec t o f t h e p o s i t i o n s o f w e l d st o s i g n i f i c a n t d e p e n d i n g o n m o d e s h a p e s .

    T h e a u t h o r i n t e n d s t o i n v e s t i g a te t h e e f fe c t o fw e l d i n g o n d y n a m i c c h a r a c t e r i s t ic s o f h i g h e r v i-b r a t i o n a l m o d e s , a n d t h e e f f e c t o f s o m e w e l d s a n dp o s i t i o n s o f w e l d s o n d y n a m i c c h a r a c t e r is t i c s .

    AcknowledgementsT h e a u t h o r w i s h e s t o t h a n k P r o f e s s o r S .F u k u d a , a n d P r o f e s so r Y . A m a n o o f T o k y o

    M e t r o p o l i t a n C o l l eg e o f T e c h n o l o g y f o r h is k i n d -n e s s i n a l lo w i n g u s e o f t h e a u t o m a t i c a c i d c a r b o nw e l d i n g m a c h i n e . H e a l s o w i sh e s to t h a n k M r . A .Y u t a , M a n a g i n g D i r e c t o r o f E m i c C o r p ., f o r hi sa i d w i t h p r e p a r i n g t h e s h a k e r . H e t h a n k s M r . K .S a i t o o f H i t a c h i B u i l d i n g S y s t e m S e r v ic e C o . , L t d .a n d M r . M . K o s u g i o f F u j i E l e c t ri c C o . , L t d . , a n dt h e f o r m e r s tu d e n t s o f T o k y o M e t r o p o l i t a n C o l -l e ge o f T e c h n o l o g y f o r t h e i r h e l p i n t h e e x p e r i -m e n t .

    ReferencesS.H . Bush , ASME J . P ressure Vesse l Technol . , 114(4) (1992)

    389.R .D . Chever ton and D .L . Se lby , ASME J . P ressure Vesse lTechnol. , 114(4) (1992) 396.

  • 8/8/2019 Dynamic Characteristics of Welded Structures

    7/7

    S. A oki / Nuclear Engineering and Design 160 (1996) 379-3 85 38 5S . H . C r a n d a l l a n d W . D . M a r k , R a n d o m V i b r a t i o n i n M e -

    chan ica l Sys tem s , Academ ic Press , 1963 .M . D . E n g e l h a r d t a n d A . S . H u s a i n , A S C E J . S t r u c t. E n g . ,

    119(2) (1993) 3357.R , A . L a B o u b e a n d W . W . Y u , A S C E J . S t r u c t . E n g . , 1 1 9 ( 7 )

    (1993) 2187.Y . K . L i n , P r o b a b i l i s t ic T h e o r y o f S t r u c t u r a l D y n a m i c s , M c -Graw-Hi l l , 1967 .

    S . R a h m a n a n d F . B r u s t , A S M E J . P r e s s u r e V e s s e l T e c h n o l . ,114(4) (1992) 410.

    E . Sm ith , ASME J . P ressure Vesse l Technol . , 114(4) (1992)405.

    H . T a j i m i , P r o c . 2 n d W o r l d C o n f . o n E a r t h q u a k e E n g i n e e r i n g ,Vol. II , 1960, p. 781.

    P .D . Zurask i , ASCE J . S t ruc t . Eng . , 119(10) (1993) 3056 .