Dynamic Excitations

Embed Size (px)

Citation preview

  • 8/12/2019 Dynamic Excitations

    1/23

    Dynamic excitationsof transport structures

    Prof. Ing. Ladislav Frba, DrSc., Dr.h.c.

    UNC 2008

    Institute of Theoretical and Applied Mechanics, v.v.i.

    Academy of Sciences of the Czech Republic, Prague

  • 8/12/2019 Dynamic Excitations

    2/23

    Introduction Movement of loads

    Rails Random vibration of structures

    Degradation of structural materials under

    dynamic loads

    Conclusions

    Outline

  • 8/12/2019 Dynamic Excitations

    3/23

    Introduction

    Movement of the load

    Transport structures moving load

    earthquake

    wind

    Moving load

    [ ] [ ]2

    2

    ( ),( , ) ( )

    d v u t t

    f x t x u t F m dt

    =

    m

    v(x,t)

    x u t= ( )

    [ ] 22 2 2 2 22 2 2 2

    ( ),2

    d v u t t v du v du v d u v

    dt u dt u t dt u dt t

    = + + +

  • 8/12/2019 Dynamic Excitations

    4/23

    Uniform movement at velocity c2

    2( ) , 0

    du d ux u t ct c

    dt dt = = = =

    2 2 2 22

    2 2 2( , ) ( , ) ( , ) ( , )2

    x ct

    d v ct t v x t v x t v x t c cdt t x t x

    =

    = + +

    Motion in (x,y) plane x= u(t), y= v(t)load f(x,y,t) m(x,y,t) d2w/ dt2

    2 22 2 2 2 2

    2 2 2 2 2

    d w w du w dv w w du dv

    dt x dt y dt t x y dt dt

    = + + + + 2 2 2 2

    2 2( )

    ( )

    2 2x u t

    y v t

    w du w dv w d u w d v

    x t dt y t dt x dt y dt ==

    + + + +

  • 8/12/2019 Dynamic Excitations

    5/23

    Rails

    Diferencial equation

    0( , ) ( ),v x t v v s=

    ( , ) ( , ) 2 ( , ) ( , ) ( )IV bEIv x t v x t v x t kv x t x ct P + + + = && &

    Steady state vibration

    0 38 2P PvEI k

    = =

    1/ 4

    4

    k

    EI

    =

    P

    v(x,t)

    x t= c

    -x +xk

    s

    0

  • 8/12/2019 Dynamic Excitations

    6/23

    Moving coordinate:

    Speed parameter:

    Damping parameter:

    Critical speed:

    ( )s x ct = 1/ 2

    2cr

    c c

    c EI

    = =

    1/ 2( / )b k =

    1/ 2

    2crEI

    c

    =

    Ordinary differential equation:

    2( ) 4 ( ) 8 ( ) 4 ( ) 8 ( )IV II Iv s v s v s v s s + + =

  • 8/12/2019 Dynamic Excitations

    7/23

    Solution

    1 1 2 12 2

    1 1 2

    2( ) ( cos sin )

    ( )

    bsv s e D a s D a s

    a D D

    = +

    +

    3 2 4 22 2

    2 3 4

    2( ) ( cos sin )( )

    bsv s e D a s D a s

    a D D= +

    +

    for s > 0

    for s < 0

  • 8/12/2019 Dynamic Excitations

    8/23

  • 8/12/2019 Dynamic Excitations

    9/23

    Random vibration of a beam on

    elestic foundation under moving force

  • 8/12/2019 Dynamic Excitations

    10/23

    Equation of the beam

    [ ]( , ) ( , ) ( , ) 2 ( , ) ( ) ( , )IV bL v x t EIv x t v x t v x t k x v x t + + + =&& &

    ( ) ( )x ct F t=

    Foundation ( ) ( )k x k k x= + o

    [ ]( )k E k x=

    Force 1

    ( ) ( )F t F F t = +

    o

    Moving coordinate

    Static deflection and bending moment under

    force F

    [ ]( )F E F t = 1/ 4( ) ,

    4

    ks x ct

    EI

    = =

    0 03 ,8 2 4

    F F F

    v MEI k

    = = =

  • 8/12/2019 Dynamic Excitations

    11/23

    Coeficient of variation VV and VM as a function of speed,

    = 0.2,i= 0, = 0.2, D = 10/

  • 8/12/2019 Dynamic Excitations

    12/23

    COVARIANCE

    POWER

    SPECTRALDENSITY

  • 8/12/2019 Dynamic Excitations

    13/23

    Random vibration of a beam

    Bernoulli-Euler equation

    Normal mode analysis

    Generalized deflection

    Generalized force

    ( , ) ( , ) 2 ( , ) ( , )IV bEI v x t v x t v x t p x t + + =&& &

    1

    ( , ) ( ) ( )j jj

    v x t v x q t

    =

    =

    1

    ( , ) ( ) ( )j jj

    p x t v x Q t

    =

    = 2( ) 2 ( ) ( ) ( )j b j j j jq t q t q t Q t + + =&& &

    0

    1( , ) ( ) 0

    ( ) for

    00

    L

    j

    jj

    p x t v x dxMQ t t

    =

  • 8/12/2019 Dynamic Excitations

    14/23

    Solution

    ( ) ( ) ( ) ( ) ( )j j j j jq t h t Q d h Q t d

    = =

    Impulse function (weighting function)1

    ( ) ( )2

    i

    j jh H e d

    =

    Frequency response function

    ( ) ( ) ij jH h e d

    =

    Load[ ]( , ) ( , ) ( , )p x t E p x t p x t= +

    o

  • 8/12/2019 Dynamic Excitations

    15/23

    Stationary vibration of a beam under

    moving continuous random load

  • 8/12/2019 Dynamic Excitations

    16/23

    Load ( , ) ( ) 1 ( )p x t p p s r t

    = + +

    o o

    [ ]( , )p E p x t=2

    ( , ) ( ) ( ) ( ) ( )p x t p s p r t p s r t = + +

    o o o o o

    Covariance of the moving load

    /s t x c= 1

    2 2 2 2

    1 2 0 1( , , ) ( ) ( ) ( / )pp pp rr prC x x C p C pC x c = + + + + +

    2 3 3 3 3 4

    2( / )rp ppr prr ppr prr pprr pC x c C pC C pC C + + + + + +

    1 2

    0

    x x

    c

    =

  • 8/12/2019 Dynamic Excitations

    17/23

    Non-stationary vibration of a beam

    under moving random force

  • 8/12/2019 Dynamic Excitations

    18/23

    Load

    ( , ) ( ) ( )p x t x ct P t= ( ) ( )P t P P t = + o

    [ ]( )E P t P=

    Covariance of the force

    Covariance of moving load

    Covariance of generalized deflection

    1 2 1 2( , ) ( ) ( )ppC t t E P t P t =

    o o

    1 2 1 2 1 1 2 2 1 2( , , , ) ( ) ( ) ( , )pp ppC x x t t x ct x ct C t t =

    , ,

    1 2 1 1 2 2 1 2 1 2 1 2

    1( , ) ( ) ( ) ( ) ( ) ( , )

    j kq q j k j k pp

    j k

    C t t h t h t v c v c C d d M M

    =

    Speed parameter

    Damping parameter

    Simple beam

    1/(2 )c f l=

    1/ /(2 )b = =3

    0( ) sin , 48j

    j x Pl

    v x vl EI

    = =

  • 8/12/2019 Dynamic Excitations

    19/23

    Degradation of structural materials

    under dynamic loads

    Dynamic loads

    Fatigue tests

    Whler curve

  • 8/12/2019 Dynamic Excitations

    20/23

    Concept of fatigue assessment

    Static system

    Material properties

    (Whler curve)

    Real Loads

    P (t)

    Stress curve

    (t)

    Spectrumni(

    o,

    n)

    Calculation value

    for damageDSd

    Proof

    DSd

    Dlim

    Simulation of

    train passages

    Counting procedure(Rainflow)

    Damage hypothesis

    (Palmgren-Miner) = max -min = min / max

  • 8/12/2019 Dynamic Excitations

    21/23

    Strategy of maintenance,

    repairs and reconstructions,

    yes the conditions

    are fulfilled,not the conditions

    are not fulf il led

    Effect of traffic loads

    Stress-tim e recordsstatis tical evaluation

    estimation of residual l ife

    yes

    yes

    yes

    yes

    yes

    Modal analysi s

    crit eria of dereriorationno t

    not

    no t

    not

    Monitoring of crack s

    criteria of c racks

    Inspections

    Technical ec onomic decis ion

    Maintenance

    Repair

    Reconstruction

  • 8/12/2019 Dynamic Excitations

    22/23

    Conclusions

    The dynamic loads, i.e. in time varying loads,increase the stresses in transport structures

    with increasing speed

    The dynamic loads are varying in time either

    regularly or randomly

    The response of structural materials

    deteriorates their properties in time

  • 8/12/2019 Dynamic Excitations

    23/23