42
Dynamic relaxation processes in compressible multiphase flows Application to evaporation phenomena Olivier Le Métayer Aix-Marseille University, Polytech Marseille UMR CNRS 7343

Dynamic relaxation processes in compressible multiphase

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dynamic relaxation processes in compressible multiphase

Dynamic relaxation processes in compressible

multiphase flows

Application to evaporation phenomena

Olivier Le Métayer

Aix-Marseille University, Polytech Marseille

UMR CNRS 7343

Page 2: Dynamic relaxation processes in compressible multiphase

Some industrial applications where evaporation is crucial

Fuel injectors at

high pressure

BLEVE phenomena (Security) : rapid

depressurization of liquefied gas + combustion

Cryogenic injection

device in space launcher

Page 3: Dynamic relaxation processes in compressible multiphase

Typical physical processes we are interested in

Low pressure

chamber

Liquid/vapor mixture (drops, bubbles,

pockets, ,…)

Liquid flow from a

high pressure chamber

Drops evaporation and jet explosion

« Flashing » (rapid depressurization)

generated by the initial pressure ratio

Valve/diaphragm

Cavitation created by geometric

singularities (strong rarefaction waves)

Interface problems

Two-velocities flow

(inter-penetration)

How can be solved the multiphase flow when the topology strongly varies ?

A way is to consider relaxation effects

Page 4: Dynamic relaxation processes in compressible multiphase

Plan

Presentation of the relaxation effects

Some multidimensional numerical results

Description of the non-equilibrium multiphase flow model

Page 5: Dynamic relaxation processes in compressible multiphase

Non-equilibrium

multiphase compressible

flow model

Page 6: Dynamic relaxation processes in compressible multiphase

Multiphase compressible flow model

0)u(.t

)(k

k

kIkk αPIPuuρ.

t

)u(

kIIkk α.uPuPρE.

t

)E(

0α.ut

αkI

k

Each phase has its own set of equations and associated variables

(velocity, pressure temperature, entropy,…) :

+ Equation of state : ),P(e kkk

Solved by the Discrete Equations Method (Abgrall & Saurel, JCP, 2003 ; Saurel & al.,

JFM, 2003 ; Chinnayya & al., JCP, 2004 ; Le Métayer & al., JCP, 2005 ; Saurel & al.,

IJNMF, 2007 ; Le Métayer & al., JCP, 2011)

Initially proposed by (Baer & Nunziato,IJMF,1986) for two phases

Page 7: Dynamic relaxation processes in compressible multiphase

Fixed control volume = sum of the sub-volumes filled with the fluids

Each phase has a time-dependent sub-volume (volume fraction)

Discrete Equations Method :

Godunov’s concept applied to multiphase cells

•DEM=averaging procedure by solving Riemann problems between pure fluids at each cells interface

Cell i Cell (i-1) Cell (i+1)

•Godunov’s method=averaging procedure by solving a single Riemann problem at each cells interface

Cell i Cell (i-1) Cell (i+1)

Fixed control volume = volume filled with the fluid

Page 8: Dynamic relaxation processes in compressible multiphase

Major contributions of DEM (1)

Discrete equations traducing the time evolution of phases and mixture variables are

obtained = Numerical scheme

When dealing with a two-phases bubbly flow, a continuous model has been obtained :

All interface variables are determined !

x

αP

x

Pρu

t

)u( 1I

1

2

1

12 uuλ

x

αu

t

α 1I

1 21 PPμ

x

αuP

x

uPρE

t

)E( 1II

11

21I PPμP 12I uuλu

21

I

ZZ

A

21

21I

ZZ

ZZA

21

2211I

ZZ

uZuZu

21

2

2

1

1

I

Z

1

Z

1

Z

P

Z

P

P

Interfacial area

between phases

µ and λ express the rates at which pressure and velocity equilibrium are reached respectively

Page 9: Dynamic relaxation processes in compressible multiphase

Major contributions of DEM (2)

This non-equilibrium model is able to treat simultaneously :

- mixtures with several velocities, temperatures,…

- material interfaces (contact)

- permeable interfaces (interfaces separating a cloud of drops and a gas for example,…)

Page 10: Dynamic relaxation processes in compressible multiphase

Evaporation effects

This model is completed by heat and mass transfer source terms (evaporation,

condensation) at infinite rates (relaxations)

They are particularly relevant when :

- the interfacial area and the flow topology are unknown,

- the Direct Numerical Simulation of interface problems is considered.

Relaxation processes (at infinite rate) allow the obtention of solutions in limit cases

corresponding to reduced models.

Page 11: Dynamic relaxation processes in compressible multiphase

Two-phase compressible flow model + relaxation terms

m

IH~

m

Iu~m

Pressure

relaxation Velocity

relaxation Mass

transfer

Heat

transfer Hyperbolic

1

1 )u.(t

)(

12 uuλ

1II11 α.uPuPρE.

t

)E(

21I PPPμ 12I uu.uλ

12T TTH

21I PPPμ IH~

m 12T TTH

)gg(~m 21I

12 uuλ

12I uu.uλ

2

2 )u.(t

)(

1I22 αPIPuuρ.

t

)u(

1II22 α.uPuPρE.

t

)E(

1I11 αPIPuuρ.

t

)u(

m

21 PPμ

Iu~m

I~m

1I

1 α.ut

Page 12: Dynamic relaxation processes in compressible multiphase

Relaxation coefficients

12 uuλ

12T TTH

)gg(~m 21I

21 PPμ

µ and λ express the rate at which pressure and velocity equilibria are

reached respectively :

HT expresses the rate at which temperature equilibrium is reached :

ν expresses the rate at which Gibbs free energy equilibrium is reached :

Heat exchange between phases

Mass transfer (evaporation/condensation process)

Mechanical interactions (drags, compressibility ratio) between phases

μ , HT , ν → ∞ Instantaneous exchanges : relaxation effects

Page 13: Dynamic relaxation processes in compressible multiphase

Relaxation effects

at infinite rates

Page 14: Dynamic relaxation processes in compressible multiphase

Hierarchy of compressible flow models : reduced models

Multi-velocity flow model

Non-equilibrium flows (u1,u2,p1,p2,T1,T2,g1,g2)

Single-velocity flow model

Interface problems (u,p,T1,T2,g1,g2)

Homogeneous Euler model

Thermodynamic equilibrium flows (u,p,T,g)

Thermal

relaxation

(temperature)

Mechanical

relaxation

(velocity and

pressure)

Chemical

relaxation

(Gibbs free

energy)

Multi-species Euler mixture model

Thermal equilibrium flows

(u,p,T, g1,g2)

,

TH

Page 15: Dynamic relaxation processes in compressible multiphase

Velocity relaxation procedure : λ → ∞

0t

)( 1

t

)u( 1

12 uuλ

0t

α1

12I uu.uλ

0t

)( 2

cst)(

Y 11

cst)(

Y 22

2211

* uYuYu

)uu).(uu(2

1ee 1

*

1

*

1

*

1

EOS of both phases are not used explicitly

)uu).(uu(2

1ee 2

*

2

*

2

*

2

cst1

12 uuλ-

t

)u( 2

12I uu.uλ-

t

)E( 1

t

)E( 2

Momentum and energy

conservation

Page 16: Dynamic relaxation processes in compressible multiphase

Pressure relaxation procedure : μ → ∞

0t

)( 1

0t

)u( 1

t

α1

cst)(

Y 22

21I PPPμ

cstu1

cstu2

1

*

1

*

1

*

1

11pee

Use of EOS

),p(e *

1

**

1

21I PPPμ

0t

)( 2

21 PPμ

t

)E( 1

0t

)u( 2

t

)E( 2

cst)(

Y 11

2

*

2

*

2

*

2

11pee

),p(e *

2

**

2

)p( **

1

)p( **

2

)p(

Y

)p(

Y1**

2

2

**

1

1

Function of the final

relaxed pressure only

When considering ideal gas or ‘Stiffened Gas’ EOS an

analytical relation is available for the pressure

Mass and energy

conservation

Page 17: Dynamic relaxation processes in compressible multiphase

Single-velocity flow model : Interface problems

Each phase has its own temperature and Gibbs free energy

(Kapila & al., 2001; Saurel & al., 2008)

Mechanical equilibrium

Mixture variables :

Asymptotic analysis of the full non-equilibrium model

Wood sound speed :

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1

Fraction volumique eau

Vitesse du son de wood dans un melange eau/air (m/s)

21

21

)E()E(E

)()(

ppp

uuu

21

21

0u)pE(.t

)E(

0Ipuu.t

)u(

0u)(.t

)(

0u)(.t

)(

u.cc

)cc(.u

t

22

11

2

2

22

1

2

11

2

11

2

221

1

2

22

2

2

11

1

2

wood ccc

1

,

Page 18: Dynamic relaxation processes in compressible multiphase

Pressure and temperature relaxation procedure : μ , HT → ∞

0t

)( 1

0t

)u( 1

t

)E( 1

t

α1

0t

)( 2

0t

)u( 2

t

)E( 2

cst)(

Y 11

cst)(

Y 22

21I PPPμ

21 PPμ

21I PPPμ

cstu1

cstu2

cteYY1

*

2

2

*

1

1

Mass and energy

conservation

12T TTH

12T TTH

cteeYeYe *

22

*

11

Use of EOS

)T,p( ***

k

)T,p(e ***

k

)T,p(

Y

)T,p(

Y1***

2

2

***

1

1

When considering ideal gas or ‘Stiffened Gas’ EOS analytical

relations are available for pressure and temperature

)T,p(eY)T,p(eYe ***

22

***

11

Page 19: Dynamic relaxation processes in compressible multiphase

Two-species Euler model

0u)pE(.t

E

0Ipuu.t

u

0u)(.t

)(

0u)(.t

)(

22

11

Mixture variables :

u.u2/1eE

0u)pE(.t

E

0Ipuu.t

u

0)uY.(t

Y

0)uY.(t

Y

22

11

Mechanical and thermal

equilibrium

Asymptotic analysis of the full non-equilibrium model

TTT

ppp

uuu

21

21

21

TH,,

Each phase has its own Gibbs free energy

2

2

1

1 YY1

2211eYeYe

Page 20: Dynamic relaxation processes in compressible multiphase

Pressure, temperature and Gibbs free energy relaxation

procedure : μ , HT , ν→ ∞

I~m

m

IH~

m

Iu~m

t

)( 1

t

)u( 1

t

)E( 1

t

α1

t

)( 2

t

)u( 2

t

)E( 2

21I PPPμ

21 PPμ

21I PPPμ

Mass and energy

conservation

12T TTH

12T TTH

Use of EOS

)T,p( ***

k

)T,p(e ***

k

m

Iu~m

IH~

m

)gg(~m 21I

*

2

*

2

*

1

*

1 eYeYe + Gibbs free

energy equality

)p(TT *

sat

*

*

2

*

2

*

1

*

1 YY1

)p(h)p(h

pe)p(h

Y**

1

**

2

***

2

*

1

)p(

1

)p(

1

1

)p(

1

Y

**

1

**

2

**

2*

1

Latent heat of

vaporization

)p(L *

V

Page 21: Dynamic relaxation processes in compressible multiphase

Homogeneous Euler model

0u)pE(.t

E

0Ipuu.t

u

0)u.(t

ggg

TTT

ppp

uuu

21

21

21

21

Mechanical and thermodynamic

equilibrium

Closure relations :

u.u2/1eE

Equilibrium sound speed :

2

2

2,p

2

2

1

1,p

1

2

wood

2

eq dp

ds

C

Y

dp

ds

C

YT

c

1

c

1

woodeq cc

Asymptotic analysis of the full non-equilibrium model

,H,, T

)p(TT sat

12

21 11

11

Y

2211eYeYe

Page 22: Dynamic relaxation processes in compressible multiphase

For an arbitrary

number of phases…

Page 23: Dynamic relaxation processes in compressible multiphase

Multiphase compressible flow model

Pressure

relaxation

Velocity

relaxation

Temperature

relaxation Hyperbolic

k

k )u(.t

)(

kIkk αPIPuuρ.

t

)u(

kIIkk α.uPuPρE.

t

)E(

kI

k α.ut

α

N,1l

klkl )uu(

N,1l

lkkl )PP(

N,1l

klklI )uu(.u

N,1l

lkklI )PP(P

N,1l

klkl,T )TT(H

Page 24: Dynamic relaxation processes in compressible multiphase

Pressure, temperature relaxation and Gibbs free energy

relaxation (liquid/vapor) : μkl → ∞, HT,kl → ∞, ν → ∞

mt

)( 1

I

1 u~

mt

)u(

IN,1l

l1l1 ~m

)PP(

t

α1

N,1l

l1l1I )PP(P

t

)E( 1

I

N,1l

1ll1,T H~

m)TT(H

mt

)( 2

I

2 u~

mt

)u(

IN,1l

l2l2 ~m

)PP(

t

α2

N,1l

l2l2I )PP(P

t

)E( 2

I

N,1l

2ll2,T H~

m)TT(H

0t

)( k

0

t

)u( k

N,1l

lkkl )PP(

t

αk

N,1l

lkklI )PP(P

t

)E( k

N,1l

klkl,T )TT(H

Phase k (inert) : Phase 1 (liquid) :

Phase 2 (vapor) :

-pressure

-temperature

Relaxation : Relaxation :

-Gibbs free energy

-pressure

-temperature

)gg(~m 21I

-pressure

-temperature

Relaxation :

3k

Page 25: Dynamic relaxation processes in compressible multiphase

Pressure, temperature and Gibbs free energy (liquid/vapor)

relaxation for an arbitrary number of phases

Mass and energy

conservation

Use of EOS

)T,p( ***

k

)T,p(e ***

k

N,3k

*

k

0

k

*

2

*

2

*

1

*

1 eYeYeYe

+ Gibbs free energy

equality

)p(TT *

sat

*

N,3k

*

k

0

k

*

2

*

2

*

1

*

1 YYY1

)p(h)p(h

)p(hYp

e)p(hYY

Y**

1

**

2

N,3k

**

k

0

k

***

2

0

2

0

1

*

1

)p(

1

)p(

1

)p(

Y1

)p(

YY

Y

**

1

**

2

N,3k**

k

0

k

**

2

0

2

0

1

*

1

1YYYN,3k

0

k

*

2

*

1

)N,3k(cstYY 0

k

*

k

Modification of the final

thermodynamic state between the

liquid and its vapor

Page 26: Dynamic relaxation processes in compressible multiphase

One-dimensional

examples

Page 27: Dynamic relaxation processes in compressible multiphase

Shock tube (water, steam, air)

BarP 1BarP 10

K467)P(TT sat

4

Liq 10.5

Cloud of droplets in a gaz (air/steam) mixture

K373)P(TT sat

2.0Air

Page 28: Dynamic relaxation processes in compressible multiphase

Mechanical equilibrium :

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Mass fraction

Liq

Vap

Air

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Pressure(Bar)

Liq

Vap

Air

0

50

100

150

200

250

300

350

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Velocity(m/s)

Liq

Vap

Air

300

350

400

450

500

550

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Temperature(K)

Liq

Vap

Air

,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Mass fraction

Liq

Vap

Air

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Pressure(Bar)

Liq

Vap

Air

0

50

100

150

200

250

300

350

400

450

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Velocity(m/s)

Liq

Vap

Air

No interaction between phases

300

350

400

450

500

550

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Temperature(K)

Liq

Vap

Air

Page 29: Dynamic relaxation processes in compressible multiphase

Mechanical equilibrium

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Mass fraction

Liq

Vap

Air

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Pressure(Bar)

Liq

Vap

Air

0

50

100

150

200

250

300

350

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Velocity(m/s)

Liq

Vap

Air

300

350

400

450

500

550

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Temperature(K)

Liq

Vap

Air

,Mechanical/thermal equilibrium

TH,,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Mass fraction

Liq

Vap

Air

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Pressure(Bar)

Liq

Vap

Air

0

50

100

150

200

250

300

350

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Velocity(m/s)

Liq

Vap

Air

360

380

400

420

440

460

480

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Temperature(K)

Liq

Vap

Air

Mechanical/thermodynamical

equilibrium ,H,, T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Mass fraction

Liq

Vap

Air

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Pressure(Bar)

Liq

Vap

Air

0

50

100

150

200

250

300

350

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Velocity(m/s)

Liq

Vap

Air

380

390

400

410

420

430

440

450

460

470

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Temperature(K)

Liq

Vap

Air

Page 30: Dynamic relaxation processes in compressible multiphase

Another possibility : heat exchanges between inert phases and

liquid/vapor are absent

mt

)( 1

I

1 u~

mt

)u(

IN,1l

l1l1 ~m

)PP(

t

α1

N,1l

l1l1I )PP(P

t

)E( 1

I

N,1l

1ll1,T H~

m)TT(H

mt

)( 2

I

2 u~

mt

)u(

IN,1l

l2l2 ~m

)PP(

t

α2

N,1l

l2l2I )PP(P

t

)E( 2

I

N,1l

2ll2,T H~

m)TT(H

0t

)( k

0

t

)u( k

N,1l

lkkl )PP(

t

αk

N,1l

lkklI )PP(P

t

)E( k

N,1l

klkl,T )TT(H

Phase k (inert) : Phase 1 (liquid) :

Phase 2 (vapor) :

-pressure

-temperature

Relaxation : Relaxation :

-Gibbs free energy

-pressure

-temperature

)gg(~m 21I

-pressure

-temperature

Relaxation :

3k

Page 31: Dynamic relaxation processes in compressible multiphase

Mechanical/thermodynamical

equilibrium ,H,, T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Mass fraction

Liq

Vap

Air

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Pressure(Bar)

Liq

Vap

Air

0

50

100

150

200

250

300

350

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Velocity(m/s)

Liq

Vap

Air

380

390

400

410

420

430

440

450

460

470

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Temperature(K)

Liq

Vap

Air

Thermodynamical equilibrium

between liquid and vapor only

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Mass fraction

Liq

Vap

Air

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Pressure(Bar)

Liq

Vap

Air

0

50

100

150

200

250

300

350

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Velocity(m/s)

Liq

Vap

Air

300

350

400

450

500

550

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(m)

Temperature(K)

Liq

Vap

Air

Page 32: Dynamic relaxation processes in compressible multiphase

Multi-dimensional

examples

Page 33: Dynamic relaxation processes in compressible multiphase

Cryogenic liquid and inert gas injections

Inert gas

injection

Tank Bar1P

Tank filled

with cryogenic

liquid

~50000

tetrahedrons

Inert gas

Bar1P

bar20p

Page 34: Dynamic relaxation processes in compressible multiphase

Pressure and temperature equilibrium flow

Page 35: Dynamic relaxation processes in compressible multiphase

Pressure, temperature and Gibbs free energy equilibrium flow

Page 36: Dynamic relaxation processes in compressible multiphase

Vapor volume fraction evolution

Page 37: Dynamic relaxation processes in compressible multiphase

Filling of cavity under gravity effect

Walls

Connection to

atmosphere

Hot

steam

Bar1P

Air Bar1P

Cold

water Gravity

Page 38: Dynamic relaxation processes in compressible multiphase

Liquid volume fraction evolution : pressure relaxation

Page 39: Dynamic relaxation processes in compressible multiphase

Pressure and temperature relaxation

Page 40: Dynamic relaxation processes in compressible multiphase

Pressure, temperature and Gibbs free energy relaxation

Page 41: Dynamic relaxation processes in compressible multiphase

Perspectives

Exact steady solutions through converging-diverging nozzles should be

investigated under mechanical, thermal and Gibbs free energy equilibria for

an arbitrary number of phases

Reference solutions

The knowledge of the interfacial area at each point of the flow must be strongly

improved and particularly the change of the multiphase flow topology.

Additional equations are thus required (number of particles per unit volume,

geometrical equations,…)

Big challenge !!!

Page 42: Dynamic relaxation processes in compressible multiphase

Thanks for your attention…