Dynamics 1e10 1no Drag -Sks

Embed Size (px)

Citation preview

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    1/33

    Page 1

    UTA010 (ED

    -

    II)

    Dynamics for the Catapult(No Drag)

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    2/33

    Page 2

    Modelling

    For a given size, can we maximise thedistance?

    What are the key parameters thatcontrol the distance?

    Can we formulate a model that will helpus design our Catapult?

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    3/33

    Page 3

    Objective of Modelling

    create the simplest possible projectilemotion model using standard kinematicformulas and variables.

    -initial height

    - initial speed

    -

    initial angle- time step

    Sandeep K SharmaMED, Thapar University, Patiala

    Animation of themodel for ease ofunderstanding

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    4/33

    Page 4

    Fundamentals

    force = mass x acceleration (ma)

    work = force x distance (Fs)

    energy== workpower = rate of work (work/time)

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    5/33

    Page 5

    Derived Units

    Force (1N=1kgm/s2)

    Work (1J=1Nm=1kgm2/s2)

    Energy (J)Power (1W=1J/s)

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    6/33

    Page 6

    Dynamics

    Sandeep K SharmaMED, Thapar University, Patiala

    Uniformly accelerated body moving along axis X

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    7/33Page 7

    Dynamics

    Speed av=distance/time

    Accelerationav=velocity/time

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    8/33Page 8

    Dynamics

    Can derive equations for linear motion(for constant acceleration)

    v = u + at

    s = ut + 1/2at2

    v2 = u2 + 2as

    u=initial velocity

    v=final velocity

    t=time duration

    a=acceleration

    s=distance travelled

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    9/33Page 9

    Dynamics

    Example 1: (1-D)

    Kick a ball straight up. Given a giveninitial velocity, how high will it go?

    DISTANCE.. ????

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    10/33Page 10

    Dynamics

    Example 1: (1-D)

    Use equation:v2=u2+2as

    s=u2/2g

    a=-g

    u

    v=0 (at top)

    s=?

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    11/33Page 11

    Dynamics

    Example 2: (1-D)

    Drop a rock from a cliff of

    height s. How long will ittake to hit the ground/sea?

    Time.???

    s = ut + 1/2at2

    Sandeep K SharmaMED, Thapar University, Patiala

    s=1/2at2

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    12/33Page 12

    Dynamics

    Example 2: (1-D)

    Reverse Case

    Use equation:

    s=ut+1/2at2

    s=1/2at2

    t (from stopwatch)

    u=0 (at top)

    s=?

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    13/33Page 13

    Dynamics

    Example 2: (1-D)

    s=1/2at2

    t (from stopwatch)

    u=0 (at top)

    s=?

    Example Result: t=3s =>s=44m

    However!

    t=2.5s =>s=31m

    t=3.5s =>s=60m

    Sensitive to error: proportional tosquare of t!

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    14/33Page 14

    Dynamics

    Sandeep K SharmaMED, Thapar University, Patiala

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

    Time

    S

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    15/33

    Page 15

    Dynamics

    Can we use these equations to modelthe trajectory of the missile?

    And hence predict the distance?

    A 2-D problem!

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    16/33

    Page 16

    Dynamics (2-D)

    y

    x

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    17/33

    Page 17

    Dynamics (2-D)

    y

    x

    Discretise the curve

    1

    2

    3 4

    s

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    18/33

    Page 18

    Dynamics (2-D)

    y

    x

    Not u and v now but

    v1, v2, v3, v4, etc..

    1

    2

    3 4

    v1

    v2

    v3v4

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    19/33

    Page 19

    Dynamics (2-D)

    y

    x

    We can decompose vectors (v, s, a)into x, y components

    1

    2

    3 4

    s1x

    s1s1y

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    20/33

    Page 20

    Dynamics (2-D)

    v=u+at becomes:

    vx2=vx1+ax1t

    vy2=vy1+ay1t

    s=ut+1/2at2 becomes:

    sx=vx1t+1/2ax1t2

    sy=vy1t+1/2ay1t2

    Acceleration is constant

    (for no drag of lift wellreturn to this point later)

    ax=0!

    ay=-g

    t2-t1= t(keep time interval constantthroughout the flight)

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    21/33

    Page 21

    Dynamics (2-D)

    s2=s1+vavt

    s2=s1+ (v1+(at)/2)t

    s2=s1+v1t +(at2)/2

    s=s2-s1s= v1 t +(at2)/2

    x2=x1+v1xt +(axt2)/2

    y2=y1+v1yt +(ayt2

    )/2

    Sandeep K SharmaMED, Thapar University, Patiala

    For constant acceleration-

    a=(v2-v1)/(t2-t1)

    v2=v1+at

    s2=s1+vavt

    where vav=(v1+v2)/2

    vav=(v1+v1+at)/2

    vav=v1 +(at)/2

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    22/33

    Page 22

    Dynamics (2-D)

    s2=s1+vavt

    s2=s1+ (v1+(at)/2)t

    s2=s1+v1t +(at2)/2

    s=s2-s1s= v1 t +(at2)/2

    x2=x1+v1xt +(axt2)/2

    y2=y1+v1yt +(ayt2

    )/2

    Sandeep K SharmaMED, Thapar University, Patiala

    sx=vx1t+1/2ax1t2

    sy=vy1t+1/2ay1t2

    For constant acceleration-

    a=(v2-v1)/(t2-t1)

    v2=v1+at

    s2=s1+vavt

    where vav=(v1+v2)/2

    vav=(v1+v1+at)/2

    vav=v1 +(at)/2

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    23/33

    Page 23

    Dynamics Assignment1

    Use Excel to study trajectory of missile

    Position t x y vx vy ax ay

    Vel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81

    delt t 0.01

    theta (degrees) 30.00

    theta (radians) 0.52

    Input Data

    Initial Conditions

    vx=Vel*cos(theta)

    vy=Vel*sin(theta)

    Position t x y vx vy ax ay

    Vel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81

    delt t 0.01

    theta (degrees) 30.00

    theta (radians) 0.52

    Input Data

    Initial Conditions

    vx=Vel*cos(theta)

    vy=Vel*sin(theta)

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    24/33

    Page 24

    Dynamics

    t2=t1+t

    Position t x y vx vy ax ay

    Vel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81delt t 0.01 2.00 0.01 0.09 0.05 8.66 4.90 0.00 -9.81

    theta (degrees) 30.00

    theta (radians) 0.52

    Input Data

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    25/33

    Page 25

    Dynamics

    x2=x1+vx1t+1/2ax1t2

    Position t x y vx vy ax ay

    Vel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81delt t 0.01 2.00 0.01 0.09 0.05 8.66 4.90 0.00 -9.81

    theta (degrees) 30.00

    theta (radians) 0.52

    Input Data

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    26/33

    Page 26

    Dynamics

    y2=y1+vy1t+1/2ay1t2

    Position t x y vx vy ax ay

    Vel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81delt t 0.01 2.00 0.01 0.09 0.05 8.66 4.90 0.00 -9.81

    theta (degrees) 30.00

    theta (radians) 0.52

    Input Data

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    27/33

    Page 27

    Dynamics

    vx2=vx1+ax1t

    Position t x y vx vy ax ay

    Vel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81delt t 0.01 2.00 0.01 0.09 0.05 8.66 4.90 0.00 -9.81

    theta (degrees) 30.00

    theta (radians) 0.52

    Input Data

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    28/33

    Page 28

    Dynamics

    vy2=vy1+ay1t

    Position t x y vx vy ax ay

    Vel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81delt t 0.01 2.00 0.01 0.09 0.05 8.66 4.90 0.00 -9.81

    theta (degrees) 30.00

    theta (radians) 0.52

    Input Data

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    29/33

    Page 29

    Dynamics

    Const=0!

    Position t x y vx vy ax ay

    Vel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81delt t 0.01 2.00 0.01 0.09 0.05 8.66 4.90 0.00 -9.81

    theta (degrees) 30.00

    theta (radians) 0.52

    Input Data

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    30/33

    Page 30

    Dynamics

    Const=-g

    Position t x y vx vy ax ay

    Vel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81delt t 0.01 2.00 0.01 0.09 0.05 8.66 4.90 0.00 -9.81

    theta (degrees) 30.00

    theta (radians) 0.52

    Input Data

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    31/33

    Page 31

    Dynamics

    Copy formuladown

    Position t x y vx vy ax ay

    Vel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81

    delt t 0.01 2.00 0.01 0.09 0.05 8.66 4.90 0.00 -9.81

    theta (degrees) 30.00 3.00 0.02 0.17 0.10 8.66 4.80 0.00 -9.81

    theta (radians) 0.52 4.00 0.03 0.26 0.15 8.66 4.70 0.00 -9.81

    5.00 0.04 0.35 0.19 8.66 4.61 0.00 -9.81

    6.00 0.05 0.43 0.24 8.66 4.51 0.00 -9.81

    7.00 0.06 0.52 0.28 8.66 4.41 0.00 -9.81

    8.00 0.07 0.61 0.33 8.66 4.31 0.00 -9.819.00 0.08 0.69 0.37 8.66 4.21 0.00 -9.81

    10.00 0.09 0.78 0.41 8.66 4.11 0.00 -9.81

    11.00 0.10 0.87 0.45 8.66 4.02 0.00 -9.81

    12.00 0.11 0.95 0.49 8.66 3.92 0.00 -9.81

    13.00 0.12 1.04 0.53 8.66 3.82 0.00 -9.81

    14.00 0.13 1.13 0.57 8.66 3.72 0.00 -9.81

    15.00 0.14 1.21 0.60 8.66 3.62 0.00 -9.81

    16.00 0.15 1.30 0.64 8.66 3.53 0.00 -9.81

    17.00 0.16 1.39 0.67 8.66 3.43 0.00 -9.8118.00 0.17 1.47 0.71 8.66 3.33 0.00 -9.81

    19.00 0.18 1.56 0.74 8.66 3.23 0.00 -9.81

    Input Data

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    32/33

    Page 32

    Dynamics

    Plot x versus yusing chartwizard

    Position t x y vx vy ax ay

    Vel 10.00 1.00 0.00 0.00 0.00 8.66 5.00 0.00 -9.81

    delt t 0.01 2.00 0.01 0.09 0.05 8.66 4.90 0.00 -9.81

    theta (degrees) 30.00 3.00 30.01 0.17 0.10 8.66 4.80 0.00 -9.81

    theta (radians) 0.52 4.00 30.53 0.26 0.15 8.66 4.70 0.00 -9.81

    5.00 30.53 0.35 0.19 8.66 4.61 0.00 -9.81

    6.00 30.53 0.43 0.24 8.66 4.51 0.00 -9.81

    7.00 30.53 0.52 0.28 8.66 4.41 0.00 -9.81

    8.00 30.53 0.61 0.33 8.66 4.31 0.00 -9.81

    9.00 30.53 0.69 0.37 8.66 4.21 0.00 -9.81

    10.00 30.53 0.78 0.41 8.66 4.11 0.00 -9.81

    11.00 30.53 0.87 0.45 8.66 4.02 0.00 -9.81

    12.00 30.53 0.95 0.49 8.66 3.92 0.00 -9.81

    13.00 30.53 1.04 0.53 8.66 3.82 0.00 -9.81

    14.00 30.53 1.13 0.57 8.66 3.72 0.00 -9.81

    15.00 30.53 1.21 0.60 8.66 3.62 0.00 -9.81

    16.00 30.53 1.30 0.64 8.66 3.53 0.00 -9.81

    17.00 30.53 1.39 0.67 8.66 3.43 0.00 -9.8118.00 30.53 1.47 0.71 8.66 3.33 0.00 -9.81

    19.00 30.53 1.56 0.74 8.66 3.23 0.00 -9.81

    20.00 30.53 1.65 0.77 8.66 3.13 0.00 -9.81

    21.00 30.53 1.73 0.80 8.66 3.04 0.00 -9.81

    22.00 30.53 1.82 0.83 8.66 2.94 0.00 -9.81

    Input Data

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    1.40

    0.00 2.00 4.00 6.00 8.00 10.00

    Sandeep K SharmaMED, Thapar University, Patiala

  • 7/25/2019 Dynamics 1e10 1no Drag -Sks

    33/33

    Assignment 1

    Catapult Dynamics Design Tool using Excel

    Individual tutorial exercise

    1.Create excel spreadsheet as demonstrated

    2.Plot x versus y

    3.Study effect of changing velocity

    4.Study effect of changing angle

    An assignment will be set based on this work. Assignment to be submittedindividually no copying!

    Sandeep K Sharmah i i i l