29
Engineering Mechanics: Dynamics 1e Gray , Costanzo, Plesha Answers to Selected Even-Numbered Problems We are in the process of adding content (e.g., FBDs) to this document. The answers reported here, along with those in the solutions manual, are being accuracy checked by several professors. This document, as well as the solutions manual, will be updated and completed by September 2009. Please note that answers are not provided for the following type of even-numbered problems: Concept Problems. Computer Problems. Design Problems. For Concept and Computer problems, please consult the solutions manual. Chapter 1 1.2 .r C=D / ` D 3:88 ft 1.4 E r B=A D .4:00 O { 1:00 O | / ft E r B=A D .3:31 O u p 2:46 O u q / ft ˇ ˇ E r B=A ˇ ˇ xy system D ˇ ˇ E r B=A ˇ ˇ pq system D 4:12 ft 1.6 The angle  is dimensionless (or nondimensional) Observe that since angles can be expressed in a variety of units, such as radian or degree, this problem illust rates the idea that some nondimen sional quantitie s still requir e proper use of units. 1.8 ŒI xx D ŒI yy D ŒI ´´ D ŒMŒL 2 Units of I xx , I yy , and I ´´ in the SI system: kg m 2 ; Units of I xx , I yy , and I ´´ in the U.S. Customary system: slug ft 2 D lb s 2 ft. 1.10 Concept problem. Chapter 2 2.2 E v.15 s/ D .72:1 O { C 6:24 O | / ft=s E a.15 s/ D .15:8 O { 1:39 O | / ft=s 2 Â.15 s/ D 4:95 ı .15 s/ D 180 ı 2.4 Concept problem. 2.6 y.x/ D 2:00 C 3:00x C 2:00x 2 m 2.8 Concept problem. 2.10 E r .t 1 ; t 2 / D .0:899 O { C 41:3 O | / ft E v avg .t 1 ;t 2 / D .0:450 O { C 20:7 O |/ ft=s 2.12 v.t/ D P r.t/ D Œ.4:08e 13:6t / O { C .0:720 1:28e 13:6t / O | m=s a.t/ D P v.t/ D Œ.55:5e 13:6t / O { C .17:4e 13:6t / O | m=s 2 The impact angle  is the slope of the stone’s trajectory at the time that the stone enters the water. Then, recalling that the velocit y is always tangen t to the trajectory , we have D 26:1 ı 2.14 y.x/ D 5:25 C 3:25x C 1:00x 2 m x max D 3:00 m and x min D 1:00 m 1 Last modied: November 2, 2009

Dynamics Answers 2009-11-2

Embed Size (px)

Citation preview

Page 1: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 1/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

Answers to Selected Even-Numbered ProblemsWe are in the process of adding content (e.g., FBDs) to this document. The answers reported here, along with those

in the solutions manual, are being accuracy checked by several professors. This document, as well as the solutions

manual, will be updated and completed by September 2009.

Please note that answers are not provided for the following type of even-numbered problems:

Concept Problems.

Computer Problems.

Design Problems.

For Concept and Computer problems, please consult the solutions manual.

Chapter 1

1.2 .rC=D /` D 3:88 ft

1.4 ErB=A D .4:00 O{ 1:00 O| / ft

ErB=A D .3:31 Oup 2:46 Ouq/ ftˇErB=Aˇxy system D ˇErB=Aˇpq system D 4:12 ft

1.6 The angle   is dimensionless (or nondimensional) Observe that since angles can be expressed in a variety of units,

such as radian or degree, this problem illustrates the idea that some nondimensional quantities still require proper

use of units.

1.8 ŒI xx � D ŒI yy � D ŒI  ´� D ŒM�ŒL�2

Units of I xx , I yy , and I  ´ in the SI system: kgm2;

Units of I xx , I yy , and I  ´ in the U.S. Customary system: slug ft2 D lbs2 ft.

1.10 Concept problem.

Chapter 2

2.2 Ev.15 s/ D .72:1 O{ C 6:24 O| / ft=s

Ea.15 s/ D .15:8 O{ 1:39 O| / ft=s2

Â.15 s/ D 4:95ı

.15 s/ D 180ı

2.4 Concept problem.

2.6 y.x/ D 2:00 C 3:00x C 2:00x2

m

2.8 Concept problem.

2.10 Er.t1; t2/ D .0:899 O{ C 41:3 O| / ftEvavg.t1; t2/ D .0:450 O{ C 20:7 O| / ft=s

2.12 v.t/ D Pr.t/ D Œ.4:08e13:6t/ O{ C .0:720 1:28e13:6t/ O| � m=s

a.t/ D Pv.t/ D Œ.55:5e13:6t/ O{ C .17:4e13:6t/ O| � m=s2

The impact angle   is the slope of the stone’s trajectory at the time that the stone enters the water. Then, recalling

that the velocity is always tangent to the trajectory, we have   D 26:1ı

2.14 y.x/ D 5:25 C 3:25x C 1:00x2

m

xmax D 3:00 m and xmin D 1:00 m

1 Last modified: November 2, 2009

Page 2: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 2/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

2.16 Ev D .29:3 ft=s/Œ1 C cosŒ.25:5 rad=s/t� O{ .29:3 ft=s/Œ1 C sinŒ.25:5 rad=s/t � O|v D .29:3 ft=s/

p 2 C 2 cosŒ.25:5 rad=s/t�

Ea D 748 ft=s2

sinŒ.25:5 rad=s/t � O{ 748 ft=s2

cosŒ.25:5 rad=s/t� O|

2.18 Computer problem.

2.20 Computer problem.

2.22 .EvP=O /1 D Œ.1 C cos t/ O{1 C .4 2t / O|1� m=s

.EvP=O /2 D ˚Œ.1 C cos t / cos   2.t 2/ sin Â� O{2 Œ2.t 2/ cos  C .1 C cos t / sin Â� O|2«

m=s

.EaP=O /1 D . sin t O{1 2 O|1/ m=s2

.EaP=O /2 D Œ. cos  sin t 2 sin  / O{2 C .sin  sin t 2 cos Â/ O|2� m=s2

jEvP=O.t D 2 s/j1 D 0:584 m=s

jEvP=O.t D 2 s/j2 D 0:584 m=s

2.24 EvP=B D .6:14 O{B C 23:7 O|B/ ft=s

vP=A D 24:5 ft=s

vP=B D 24:5 ft=s

EaP=A D .1:78 O{A C 5:96 O|A/ ft=s2

aP=A D 6:22 ft=s

2

aP=B D 6:22 ft=s2

2.26 EvA D .20:0 O{ 12:8 O| / ft=s

EaA D

p 2 O{ C 3

p 2 O|Á

ft=s2 D .1:41 O{ C 4:24 O| / ft=s2

2.28 Computer problem.

2.30 Computer problem.

2.32 Rx D 8a3v204a2 C y2

2

Ry

D

4a2v20y

4a2 C y2

22.34 Computer problem.

2.36 Ev D v0p 3a2 C b2

p 3a O{ C b O|

Á

2.38 tbraking D 5

2s D 7:85 s

2.40 tjajmaxD 3:93 s and tjajmax

D 11:8 s where jajmax D 3:60 m=s2

samaxD 12:8 m and samax

D 129 m

2.42 v0 D 10:1 m=s

2.44 Px.t/ Da0

!

sin 2! t C ˇ cos !v.t/ D 7:00

sin t C 1:50 cos.0:500t/ 1:50

m=sx.t/ D 7:00Œ1:00 1:50 cos t C 3:00 sin.0:500t/� m

2.46 vterm Dr 

mg

C d D 5:00 m=s

2.48 v.t/ D mg

C d 

Â1 e

C dt

m

Ã

vterm D mg

C d 

2.50 vf  D 3:56 m=s

2 Last modified: November 2, 2009

Page 3: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 3/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

2.52 Computer problem.

v D 10:1 ft=s

2.54 s D 186 ft

t D 3:90 s

2.56 PÂ.Â/ D ˙r P 20 C 2g

L cos   cos  02.58 . P 0/min D ˙4:93 rad=s

2.60 Px D ˙s 

v20 C 2

Âg C kL0

m

Ã.x x0/ k

m

x2 x20

2.62 txmax

D 0:243 s

2.64 (a) t D r3=20p 

2G .mA C mB/

"sin1

r r

r0s 

r

r0

Â1 r

r0

Ã

2

#

(b) t D 106 h

t D 106 h

2.66 tstop D v0gk

D 2:88 s

2.68 k D .vT /20aT 

g

.vT /20 2daT 

D 0:301

2.70 t D 8:63 s

Py D 77:7 m=s

2.72 v D v0 C ac.t t0/

s D s0 C v0.t t0/ C 12ac.t t0/2

2.74 ˛s D ap

rC hv2p

2 r3

˛sˇˇrDr1

D 1:44 rad=s2 and ˛sˇˇrDr2

D 3:63 rad=s2

2.76   D tan1Â

w hd 

Ã

2.78 Evgun D .14:7 ft=s/ O{

2.80 y D h C tan ˇ.x w/ g

2v20 cos2 ˇ.x w/2

2.82 The golfer’s chip shot is successful.

2.84 v0 D 52:8 ft=s

2.86 The two firing ranges are

30:4ı Ä Â  Ä 56:8ı and 69:4ı Ä Â  Ä 74:5ı

The sizes of these ranges are  1 D 26:4ı and  2 D 5:09ı

The angle subtended by the target as seen from an observer at point O is ˇD

21:3ı

Unlike Example 2.11, the difference between the angle subtended by the target and  1 or  2 is significant. In

addition, we see that the value of   1 is much closer to ˇ than  2.

2.88 d AB D 82:0 m

2.90 v0 D 62:5 ft=s and ˇ D 20:6ı

2.92 Computer problem.

d  D 4:70 m

Evinitial D v0 cos ˇ O{ C v0 sin ˇ O| D .6:02 O{ C 7:67 O| / m=s

where v0 is the initial speed of the tiger and ˇ is the angle formed with the horizontal by the initial velocity of 

the tiger.

3 Last modified: November 2, 2009

Page 4: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 4/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

2.94 v0 Dr 

gR

2

cos  p sin ˇ cos.ˇ Â/

2.96  max D

4D 45ı

R D v20g

D 447 ft

t D 2v0 sin  maxg D 5:27 s

2.98 y Dh

59:9103 ln

1 2:84104xÁ

C 17:7xi

m

2.100 Computer problem.

tI  D 6:19 s

xI  D 268 m

2.102 y D v0 sin ˇ

Äx cos ˛ y sin ˛

v0 cos.˛ C ˇ/

1

2g cos ˛

Äx cos ˛ y sin ˛

v0 cos.˛ C ˇ/

2

2.104 (a) Ea Eb D 1 6 C 2 3 C 3 0 D 0

(b)Ea

Ea EbÁ D 84

O{

42O

|C

0O

kÁ(c)

2.106 (a) E!1 D 105 Ok rad=s; E!2 D 105 O{ rad=s and E!3 D 105 O| rad=s

(b) E!` D 100

3p 

3

O{ C O| C Ok

Árad=s ) 60:5

O{ C O| C Ok

Árad=s

2.108

EvA D 5 Ok 2 O{ D 10 O| m=s; EvB D 5 Ok

2 O{ C 1 OkÁ

D 10 O| m=s;

EvC  D 5 Ok

2 O{ C 2 OkÁ

D 10 O| m=s; EvD D 5 Ok

2 O{ C 3 OkÁ

D 10 O| m=s

2.110 E! D v0R

Ok D .65:7 rad=s/ Ok

2.112 jEvj D 65;600 ft=s

Referring to the below,

let denote the angle formed by the velocity vector and the x axis such that tan D vy=vx . Then,

D 70:0ı

2.114 Pr D v0 cos. C / and P  D v0r

sin. C /

2.116 EvB D .4:00 Our C 0:800 Ou / ft=sEa D .0:320 Our C 3:20 Ou / ft=s

2.118 Pr D 0 and P  D v0d 

D 1:50 rad=s

Rr D v20d 

D 9:00 ft=s2 and R  D 0 rad=s2

2.120 Ea D .112 O{ C 5 O| / m=s2

2.122 2! Pr C P!r D 0

2.124 Ea D .262 OuC  200 OuB/ ft=s

4 Last modified: November 2, 2009

Page 5: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 5/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

2.126 Concept problem.

2.128 Concept problem.

2.130 Concept problem.

2.132 Concept problem.

2.134Ea.s/

D f19:0

Out C

Œ69:9

.0:292/s�Oung

ft=s2

2.136 Concept problem.

2.138ˇEaˇ D .33:7103 cos / m=s2

2.140 v0 D 19:2 ft=s

2.142 D v20g

D 282 ft

2.144 min D v202g

D 565 ft

tf  Dv20

2g vf  Cv0

D 4:74 s

2.146 Pv D 13:8 ft=s2

2.148 s D 304 ft

2.150 Concept problem.

2.152 Concept problem.

2.154 Pr D 466 mph

P  D 41:6 rad=h

Rr D 12;100 mi=h2

R  D 5550 rad=h2

2.156

Pr.0/

D 438 ft=s and

PÂ.0/

D347

106 rad=s

Rr.0/ D 14:9 ft=s2 and RÂ.0/ D 10:6106 rad=s2

2.158 Pr D 0:265 ft=s

2.160ˇEvˇ Dq Pr2 C .L PÂ /2 D 5490 ft=s

ˇEaˇ Dv uut v2s

2L L P 2

!2C

2vsP Á2 D 1:00106 ft=s2

2.162 Ev D .1:3 Our C 0:22r Ou / m=s

.0:0484r Our 0:572 Ou / m=s2

2.164 P A D vAL

.d=2/2

CL2

D 1:16103 rad=s

P H  D1

L

s v2A C v2B

2D 4:29 rad=s

R A D 1

r2

"v2A

v2B

L

2d  v2

AdL

r2

#D 1:68104 rad=s2

R  D

v2A v2B

2dL

D 0:0755 rad=s2

2.166 Rr D 5:78 ft=s2 and R  D 1:42 rad=s2

2.168 PEa D«r 3r P R  3Pr P 2

ÁOur C

hr«Â  P 3

ÁC 3 Rr P C 3Pr R 

iOuÂ

5 Last modified: November 2, 2009

Page 6: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 6/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

2.170 r Dq 

.h C sin /2 C .d  C cos /2

Pr D v0 .h cos d  sin /q .d  C cos /2 C .h C sin /2

and P  D v0 . C d  cos C h sin /

d 2 C h2 C 2 C 2d cos C 2h sin :

Rr D v20. C d cos C h sin /

d 2 C d  cos C h2 C h sin

d 2 C 2d  cos C h2 C 2 C 2h sin 3=2

R  D v20

d 2

C h2

2

.d sin h cos /

d 2 C 2d  cos C h2 C 2 C 2h sin 2

2.172 P D 0

R D R!2ABp 

h2 R2D 15:8 rad=s2

2.174 Ev D .37:7103 Our C 0:534 Ou / m=s

Ea D .1680 Our C 237 Ou / m=s2

2.176 Evfollower D .1:76 m=s/ O|Eafollower D .137g/ O|

2.178 v

D0:119 ft=s

jEaj D 0:0864 ft=s2

2.180 Concept problem.

2.182 Concept problem.

2.184 ROS D EvB EvA

ErB=AjErB=Aj

2.186 EvC=A D .6:86 O{ C 30:3 O| / m=s

EaC=A D .1:38 O{ C 1:00 O| / m=s2

2.188 Computer problem.

For vB=W 

D10 s, the boat reaches A in 6:86 s

When vB=W  D 7 s, the boat does not reach A

2.190 vrain D 16:4 ft=s

2.192 EaB D

L1R cos   L1

P 2 sin  C L2R cos L2

P2 sin Á

O{C

L1P 2 cos  C L1

R sin  C L2P2 cos C L2

R sin Á

O|

2.194   D C sin1Ä

.vA` vBd / cos

vP=Ad 

D 63:6ı:

2.196   D 14:9ı

2.198 vpmaxD vs C `

2r g

2hD 331 ft=s D 225 mph

2.200 EvB D 3:09 ft=s

EaB D 0:319 ft=s2

2.202 EvB D .2:00 m=s/ O|

2.204 EaB D .11:1 m=s2/ O{ @ 

t Ds 

2a0D 0:164 s

6 Last modified: November 2, 2009

Page 7: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 7/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

2.206 a0 D 26d 

3t2D 0:937 ft=s2

2.208 EvA D v0p 

w2 C h2

w C p w2 C h2

O{ D .3:08 ft=s/ O{

EaA Dv20

w

p h2 C w2

Á a0

hh2 C w

w C

p h2 C w2

Áiw

Cp 

h2

Cw2Á2

O{ D .0:893 ft=s2/ O{

2.210 Concept problem.

2.212 EvC  D .6:61 ft=s/ sin  

Â1 C 0:292 cos  p 

0:195 0:0851 sin2  

ÃO|

EaC  D1:28104 ft=s2

Äcos  

Â1 C 0:292 cos  p 

0:195 0:0851 sin2  

Ã

C sin  

Â0:0248 cos2  sin  

.0:195 0:0851 sin2/3=2 0:292 sin  p 

0:195 0:0851 sin2  

ÃO|

2.214 r Dq 

.d  C cos /2 C .h C sin /2

P 

Dv0. C d cos C h sin /

.d C cos /2 C .h C sin /2and

Pr

Dv0.h cos d sin /p 

.d  C cos /2 C .h C sin /2

2.216 Concept problem.

2.218 Concept problem.

2.220 Referring to the figure below and keeping in mind that the coordinate system is defined in such a way that the

triad . OuR; Ou ; Ou´/ is right-handed

we have

EvC  D .6:5 Our C 5:52 Ou C 5:3 Ou´/ ft=s

EaC  D .0:662 Our 1:56 Ou / ft=s2

2.222 Ev D P tan ˇ OuR C K 

´ tan ˇOu C P Ou´

Ea DÂ

R tan ˇ K 2

´3 tan3 ˇ

ÃOuR C R Ou´

2.224

r P.r R sin C 2Pr P sin C 2r P P cos / r P sin .r R C 2Pr P r P 2 sin cos / D 0

r P sin . Rr r P2 r P 2 sin2 / Pr.r R sin C 2 Pr P sin C 2r P P cos / D 0

Pr.r R C 2Pr P r P 2 sin cos / r P.Rr r P2 r P 2 sin2 / D 0

2.226 Pr D 0

P D 0

P  D v0r sin

D 0:0177 rad=s

Rr D v20r

D 11:3 ft=s2

7 Last modified: November 2, 2009

Page 8: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 8/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

R D v20 cos

r2 sin D 78:1106 rad=s2

R  D 0

2.228 Computer problem.

2.230 xland D 3:35 m; yland D 1:42 m; and ´land D 0:

2.232 Concept problem.

2.234 EvP=B .10:2 O{2 C 10:3 O|2/ m=s

EaP=B D .7:82 O{2 1:26 O|2/ m=s2

2.236 Computer problem.

h D 29:4106 m

2.238 s.t/ D mg

C 2d 

ÄC d t C m

ÂeC dm

t 1

Ã

2.240 x DÂ

L0 C gm

k

ÃÄ1 cos

Âr k

mt

Ã

2.242 v0 p gR

2.244 D 240 ft

2.246 f  D 629 m

tf  D 5:24 s

2.248 Pr ˇÂD180ı

D 0

P ˇÂD180ı

D 2:94 rad=s

Rr ˇÂD180ı D 40:8 m=s2 and R ˇÂD180ı D 0

2.250 P D30ı

D 0:0539 rad=s

R ˇD30ı D 0:243 rad=s2

2.252 jEaj D 2L!2ˇ0 D 1:24 ft=s2

2.254 at D 3:33 ft=s2

2.256 jEaAj D 2:58 m=s2

2.258ˇEaˇ D

s Âd!2

2

Ã2CÂ

2

Ã2C a20 D 173;000 ft=s2

2.260ˇEaˇ

minD L

q 12

P 4 C !421 !2 P 21 D 2:53 m=s2

Chapter 3

3.2 Concept problem.

3.4 ay D g .2P  W /

3.6 Rx C EA

mLx D 0

3.8 ay D C d m

v2 g

3.10 d  D v202kg

L D 50:8 ft

8 Last modified: November 2, 2009

Page 9: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 9/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

3.12 Py D mg

C d 

Â1 e

C dt

m

ÃD 0:701 m=s

3.14 T  D m

2

8<:g C v20 .` h/2

2h

x2A C .` h/2i3=2

9>=>; D 251 lb

3.16 .F s

/max D

2mg

3.18 Concept problem.

3.20 t D v v0kg

D 7:59 s

3.22 xstop D v0

s W 

gkD 0:737 ft

3.24 k D 50;800 lb=ft

3.26 ımax D 0:167 mF sp

Ámax

D kımax D 586 N

3.28 Computer problem.

ımax D 0:568 ft; when t D 0:177 s

3.30 xstop D 4

s 2mv2i

ˇD 0:160 m

3.32 k D 5:93 lb=ft

3.34 k D 9:03 kN=m

3.36 v.0/ D 2

v uut k

m

"x202

C L0

ÂL

q x20 C L2

Ã#

3.38 Concept problem.

3.40 Concept problem.

3.42 Concept problem.

3.44 D W v2

g .N  W /D 1:40104 ft

3.46 an D v2

D 35:51 m=s2 D 3:62 g

F L D mg C mv2

D 43;100 N

3.48

Rx C k

mx

1 rup 

x2 C y2

!D 0;

Ry C k

my

1 rup 

x2 C y2

!D 0

3.50

Rr r P 2 C k

m.r ru/ g cos   D 0;

r R C 2Pr P C g sin   D 0

9 Last modified: November 2, 2009

Page 10: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 10/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

3.52 y D m

C d tan  0

eC dx=m 1

Á m2g

2v20 cos2  0C 2d 

eC dx=m 1

Á2

3.54  s D cos1

2

3C v20

3gR

!D 47:7ı

3.56 vmax D p 

gs s C tan  

1 s tan   D55:36 m=s

D199 km=h

vmin D p g

s tan   s

1 C s tan  D 35:33 m=s D 127 km=h

127 km=h Ä v Ä 199 km=h

3.58 (a) Ea D .319103 Our C 603 Ou / m=s2

(b) P  D mar C mg sin   D 5:90106 N

(c) R D ma C mg cos   D 11:3103 N

3.60 ! D 9:94 rad=s

3.62 Concept problem.

3.64 R

R 

C2

PR

P 

D0

RR.1 C cot2 / R P 2 D g cot

3.66  B D sin1Â

2

3

ÃD 41:8ı

3.68

Rr r P 2 C Gme

r2D 0;

r R C 2 Pr P  D 0

3.70 k D 3v0m

.d max L0/2 .d max=2 L0/2D 4:74 lb=ft

3.72 sD

cos1 Â2

3Ã D

132ı

3.74RrL2

.L2 R2/ R P 2 C

PR2L2R

.L2 R2/2C gRp 

L2 R2D 0

R R C 2 PR P  D 0

3.76 Computer problem.

3.78 Pr D 0:471 m=s

3.80 Computer problem.

3.82 Concept problem.

3.84 Concept problem.

3.86 Concept problem.

3.88 aAy D F 

2mA

C g D 16:1 ft=s2

3.90 RrA D GmB

r2; and RrB D G

mA

r2

RrB=A D G

ÂmA C mB

r2

Ã

3.92 During the 1 s time interval: T  D 49:3 lb; after 1 s T  D 47:3 lb

3.94 ax D k1g D 4:41 m=s2

10 Last modified: November 2, 2009

Page 11: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 11/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

3.96 s D tan   D 0:424

3.98 EaA D 1g O{ D .8:05 O{/ ft=s2

EaB D .145 O{/ ft=s2

3.100 vmax D mgs 1

k m Cmp

3.102 vimpact D 3:69 m=s

3.104 gd p 

4R2 d 2 cos   g.4R2 d 2/ sin   D 4R3 R 

3.106 tcontact D 78:5103 s D 21:8 h

3.108 j.yB/maxj Dˇˇ 2mBg

k

ˇˇ

j.yB/maxj D 2 ft

.vB/max D vB Œ.yB/max� D 8:58 ft=s

3.110 Defining a Cartesian coordinate system with the y axis opposite tot he direction of gravity and with origin at the

initial position of B , we havej.yB

/maxj D ˇ

2

k.m

Asin ˛

CmB

/g ˇ D 1:84 ft

.vB/max D vB j.yBD0:9202/ D 4:79 ft=s

3.112 EvA.tf / D .3:16 O{ C 3:13 O| / m=s and EvB.tf / D .3:26 O{/ m=s

3.114 Computer problem.

3.116 EaG D 9mGg 39P 

mB C mC  C 25mD C 9mG

O| D .9:46 ft=s/ O|

T 4 D 3g.mC  C 10mD/ mG C .4mB 9mC  30mD C 36mG/ P 

mB C mC  C 25mD C 9mG

D 1190 lb

3.118 Computer problem.

C d D

0:0888 lb

s=ft

3.120 vc Ds 

2G .mA C mB/

Â2

d A C d B 1

r0

ÃD 276106 ft=s

3.122 ab D g .1 cos Â/ D 1:94 ft=s2

an D g sin   D 11 ft=s2

D v2

g sin  D 101103 ft D 19:2 mi

3.124 Defining a Cartesian coordinate system with origin at O, y axis pointing opposite to gravity and x axis pointing

to the right, we have y D x

v0 cos ˇ

Ämg

ÁC v0 sin ˇ

C m2g

Á2ln

Ä1 Áx

mv0 cos ˇ

3.126 Verification problem

3.128 W A D W B .g aB/

2g C 4aBD 161 lb

3.130 m1L1R  D m2g cos sin   m2 sin  

hL1

R sin   L1P 2 cos   L2

P2i m1g sin  

L2R D g sin L1

R cos   L1P 2 sin  

11 Last modified: November 2, 2009

Page 12: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 12/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

Chapter 4

4.2 Concept problem.

4.4 9:02104 ftlb

4.6 U 1-2 D 12m.v22 v21/ D 180 kJ

4.8 U 1-2 D1

2m

v2

2 v2

1Á D 4:3010

5

J

4.10 (a) 283 m

(b) 283 m

(c) 14:8 km

4.12 d  D 15:8 m

4.14 4:981011 J

4.16 43:5106 ft lb

23:3106 ft lb

50:8103 lb

4.18 Concept problem.

4.20 Computer problem.

4.22 1:29105 lb=ft3

4.24 k D 2:74105 N=m

4.26 v0 Dp 

2gL.1 cos Â/ D 6:40 ft=s

4.28 k D mv2

ı2D 44:8 lb=ft

4.30 .U 1-2/Engine D 4:64105 ftlb

4.32 F avg D mg C m

2h.v21 v22/ D 1:47 kN

4.34   D sin123

Á D 41:8ı

4.36 V B D 14ˇx4

d  D 0:420 ft

4.38ˇEvˇA D

s ˇEvˇ2P  2GmE

Â1

RP  1

RA

ÃD 2:34103 m=s

4.40 V  D P 0s0A ln

Âs

s0

Ã

4.42 1:92 ftlb

4.44 D cos1

23 Á

D 132ı

4.46 v2 D 24:1 ft=s

4.48 k D 276 lb=ft

4.50 .vy/max D g

r m

k

4.52 L0 D 5R

3 mv2

B

4kRD 1:06 m

4.54 vA2 D

v uut2gd 

mB 13mA

ÁmA C 9mB

D 1:09 m=s and vB2 D 3

v uut2gd 

mB 13mA

ÁmA C 9mB

D 3:28 m=s

12 Last modified: November 2, 2009

Page 13: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 13/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

4.56 mB D mAv2B2 C kı2

2gı v2B2

D 0:685 kg

4.58 v2 Dr 

2gR dg

q 1 d 2=.2R/2

N A D mg

Â3 d 

R

q 1 d 2=.2R/2

Ã

4.60 vA Ds 

2hg ŒmA.1 0:35k/ mB �

mA C mB

D 3:69 m=s

4.62 vB Ds 

8gmA`OA mB`OB

mA C 4mB.sin 35ı C sin 75ı/ D 26:6 ft=s

4.64 yB D 1

k.mA sin ˛ C mB/g

.vB/max D vB.yB D 2/ D 9:42 ft=s

d B D 0 ft

4.66 W  D 2mg

4.68 Part (a): T  D 2m.v2

O C R2

!2

/ D 580 JPart (b): T  D 1

2 .4m/v2O C 12m.4R2!2/ D 2m.v2O C R2!2/ D 580 J

4.70 U  D 5760 kJ

4.72 Concept problem.

4.74 P 1 D P 2 D 7:48 kW

4.76 v D 54:7 m=s D 197 km=h

CR D 0:0171 L=s D 61:7 L=h:

4.78 Energy Burned D 274 C

4.80 P i D mgv .k cos  C sin Â/

D 1:51103 ftlb=s D 2:75 hp

4.82 ˇ D 1:07109 kg=.m2s2/

4.84 U 1-2 D 12m

Â0:99 mg

C d 

Ã2D 0:0361 J

4.86 k D mv2 32mgL

ı2u2 C ı2l2

ı2u1 ı2l1

D 9030 N=m

4.88 V  D 3EI cs

2L3ı2

4.90 .v2/max Ds 

2gı.mA sin ˛ C mB kmA cos ˛/ kı2

mA

CmB

D 9:67 ft=s

The distance between B and the ground is 0 ft

4.92 Eb D mgvt sin  

D 5:395103 kJ D 1290 C

Chapter 5

5.2 xe D 28:51024 m

xe D 4:151012 m

xe D 1:42106 m

13 Last modified: November 2, 2009

Page 14: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 14/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

5.4

ˇˇZ t2t1

EF dt

ˇˇ D mv2 D 2:64 lbs

ˇEF avg

ˇD mv2

t2 t1D 2400 lb

5.6 Concept problem.

5.8 t2 Dmvx2

F T  D 10:6 s

d  D 1280 ft

5.10 Concept problem.

5.12 (a)ˇ EF avg

ˇ D 8080 N

(b) s ˇ EF avg

ˇmg

D 0:515

5.14 (a) Impulse D .3:17 O{ C 1:20 O| / lbs(b) EF b

avgD .3170 O{ C 1200 O| / lb

(c) Within the accuracy of our calculation (4 significant figures), ˛ remains equal to 31ı.

5.16 Concept problem.

5.18 Concept problem.

5.20 n D 9:170106 bees

Slowdown D 48:5 ft=s D 33:0 mph

5.22 .xfp/2 D Lfpmp

mp C mfp

5.24 vP4 D 1:86 ft=s

5.26 EvG D .2580 O{ 3030 O| / m=s;

5.28 d  D mALfp

mA C mC D 4:95 m

5.30 .EvP /final D .1:52 ft=s/ O{

5.32 (a) Amplitude D mAr

mA C mB

D 2:14106 m

(b) .vB/max D mAr!

mA C mB

D 0:0135 m=s

5.34 EvA2 D .5500 O{ C 9520 O| / m=s and EvB2 D .5500 O{ C 9530 O| / m=s @ 60ı

5.36 .vA/max D 25:2 ft=s and .vB/ D 0 for mB ! 1

5.38 Computer problem.

5.40 EvCA D EvCB D .55:9 ft=s/ O{

5.42 vB D mA C mB

mB

p 2gL.1 cos  m/ D 210 m=s

5.44 vB D mA C mB

mB

p 2kgd  D 199 m=s

5.46 0:817 Ä e Ä 0:882

5.48 d  D m2B.vB/2

2kg.mA C mB/2D 2:89 m

14 Last modified: November 2, 2009

Page 15: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 15/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

5.50 W max D mAg Cq 

.mA C mB/m2A

gk2Œ2hk C .mA C mB/g�

.mA C mB/kD 819 lb

5.52 EvCA D EvCB D .8:33 O{ C 78:0 O| / ft=s

Er D .14:5 O{ C 136 O| / ft

5.54 EvCA D 77:0 O| ft=s and EvCB D .73:3 O{ C 85:8 O| / ft=s

ErA D 132 O| ft and ErB D .184 O{ C 215 O| / ft

5.56

Given the assumption that the masses are not identical, it is not possible to have a moving ball A

hit a stationary ball B so that A stops right after the impact.

5.58 ˇ D tan1 .cot ˛/

5.60 The answer is an explanation.

5.62 Concept problem.

5.64 EvCA D .23:6 O{ C 18:5 O| / m=s and EvCB D .0:717 O{ 6:20 O| / m=s

5.66

d  Ds 

2

gh1.1 C e/h1 cos ˛ sin ˛

r gh1

2Œ.e 1/ C .1 C e/ cos 2˛�

Cq 

2gh2 C 12gh1Œ.e 1/ C .1 C e/ cos 2˛�2

D 6:24 ft

5.68 d  D 3:50 ft

5.70 vCN  D

2N  1Áp 

2gh

5.72EhOA D 593103 Ok slugft2=sEhOA D 79:9103 Ok slugft2=s

5.74 EhQ D 1:44106 Ok slugft2=s

5.76 Concept problem.

5.78 ! D .L sin  0 C d /2

.L sin  C d /2!0

5.80 SincePEhO D mP gvP .0/t cos   and EM O D mP gvP .0/t cos   Ok, it is indeed true that EM O D PEhO .

5.82 EhO D ˙W s 2L3

g .cos   cos 33ı/ Ok D .3:99 lbfts/p cos   0:839 Ok @ 57ı

5.84

v1 D sin 2

s 2gL.cos 2 cos 1/

sin2 1 sin2 2D 6:85 ft=s;

v2 D sin 1

s 2gL.cos 2 cos 1/

sin2 1 sin2 2D 2:32 ft=s

5.86 M A D 2m!20r

q r2 r20

15 Last modified: November 2, 2009

Page 16: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 16/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

5.88 Computer problem.

time to reach end of arm D 0:150 s

5.90 !satellite D 0:0612 rad=s

5.92 The ratio of the orbital sectors is equal to 1.

5.94 b

D

p rP rA

5.96 v Ds 

gr 2e

rc.p 

2 1/ D 3:23103 m=s

5.98 vesc D .1:631010 m3=2=s/p r

vesc

Earth

D 4:21104 m=s D 151;000 km=h

5.100 Gme D 42a3

 2D 3:971014 m3=s2

5.102 rg D 1:39108 ft D 26;200 mi; hg D 1:18108 ft D 22;300 mi; vc D 10;100 ft=s D 6870 mph

5.104 vP  Ds gr2e 2

rP  1

aà D 7:7110

3m=s D 27;800 km=h

vA Ds 

gr 2e

Â2

rA 1

a

ÃD 7:70103 m=s D 27;700 km=h

e D rAa

1 D 7:45104

  D 2

s a3

gr 2eD 5470 s D 91:2 min

5.106 vA D 4710 ft=s D 3210 mph

vA D 6830 ft=s D 4660 mph

t D s a3e

gr 2

e

D 10;600 s D 2:95 h

5.108 Concept problem.

5.110 (a) vbo D 5530 ft=s D 3770 mph

(b) vLM D 54:0 ft=s D 37:0 mph

(c) t D 3420 s D 0:950 h

(d)   D 180ı ˇ D 5:30ı

5.112 (a) v1 Ds 

rP v2P 

2GmB

rP 

(b) rP v2P  > 2GmB

5.114 Concept problem.

5.116 Concept problem.

5.118 R D 14pAd 2A C 4Q2

g

Â1

d 2A 1

d 2B

ÃD 2120 lb

5.120 vB D 29:2 ft=s

5.122 vmax D vo ln

Â1 C mf 

mb

Ã

5.124 k D d 2v2w4gımax

Œ1 cos.Â=2/� D 370 lb=ft

16 Last modified: November 2, 2009

Page 17: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 17/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

5.126 v D vo ln

ÂM 

M  Pmot

à gt

5.128

N  D 14P Ad 2 C 4Q2

d 2D 53:4 N;

V D

4Q2

d 2 D0:354 N;

M  D 4Q2`

d 2D 0:0707 Nm

5.130 F  D

gL C v20

ÁD 1:10 lb

5.132 Computer problem.

5.134 Pmo D 0:0150 slug=s

vo D 4530 ft=s

vmax D vo ln

Â1 C mf 

mb

à gtbo D 1320 ft=s

5.136  max power

D0ı

v0 D 12vw

5.138 EF avg D m

t

q 2ghf  C

p 2ghi

O| D .654 N/ O|

j EpC Epjjt.mg O| /j D j EF avgj

mgDq 

2ghf  Cp 

2ghi

gtD 111

5.140 EvCA D .13:6 m=s/ O{ and EvCB D .21:3 m=s/ O{T  T C

T 100% D 45:3%

5.142

EvCA

D.4:61

O{

C75:3

O| / ft=s and

EvCB

D.37:4

O{

C98:8

O| /ft=s

ErA D d AEvCAvCA

D .7:71 O{ C 126 O| / ft

ErB D d BEvCBvCB

D .87:6 O{ C 231 O| / ft

5.144 hA D rA re D 7:02106 ft D 1330 mi

  D 6860 s D 1:91 h

5.146 ve D 8770 m=s D 31;600 km=h

vj  D 5640 m=s D 20;300 km=h

  D 8:64107 s D 1000 days

5.148 vw D 8<:1

2K 1

2q 

K 2

4v

2

0 D 0:219 m=s;12K C 1

2

q K 2 4v20 D 18:3 m=s;

5.150 EvA D .0:813 m=s/ O{ and EvB D .3:25 m=s/ O{

Chapter 6

6.2 E!B D 1800 Ok rpm and E!C  D 1160 Ok rpm

6.4 !B D RARB

!A D 600 rad=s

17 Last modified: November 2, 2009

Page 18: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 18/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

6.6 Concept problem.

6.8 Concept problem.

6.10 Concept problem.

6.12 .!OA/max D 2:48 rad=s

6.14j E!

ramj D0

6.16 EvG D .0:150 Our 3:38 Ou / m=s

EaG D .20:4 Our 3:66 Ou / m=s2

6.18 E!s D 10:0 Ok rad=s

Es D 1:33 Ok rad=s2

6.20 EvC  D .0:179 O{ C 0:492 O| / m=s

EaC  D .2:58 O{ C 0:938 O| / m=s2

6.22 !s D 2 rad

24 h

1 h

3600 sD 72:7106 rad=s

6.24 E!B D 8:00 Ok rad=s; EB D 2:00 Ok rad=s2; E!D D 1:60 Ok rad=s; ED D 0:400 Ok rad=s2

6.26 E!C  D 40:0 Ok rad=s

EC  D 5:20 Ok rad=s2

6.28 Letting E!OB and EOB denote the angular velocity and acceleration of the turbine,

E!OB D 1:60 Ok rad=s and EOB D 0:461 Ok rad=s2

EaA D .93:0 O{ 110 O| / m=s2

6.30 Chain ring/sprocket combination: C1/S3

!W  D !S D RC 

RS

!C  D52:6 mm

28:3 mm68 rpm D 126 rpm

6.32

EvB D

.9:88O{C

3:66O

| / m=s

6.34 E!P  D 9:60 Ok rad=s

EvO D 2:00 O{ ft=s

6.36 Concept problem.

6.38 E!P  D 1:60 Ok rad=s

EvC  D 5:33 O{ m=s

6.40  1 D 67:7ı

 2 D 231ı

6.42 E!A D 7:00 Ok rad=s

6.44 E!C  D 60:0 Ok rad=s

6.46 EvB D 10:6 O{ ft=s

EvC  D .5:31 O{ 4:00 O| / ft=s

6.48 E!P  D 8:80 Ok rad=s

ErIC=Q D 0:307 O| rad=s

6.50 EvC  D 82:2 O| ft=s

6.52 E!OC  D 2:86 Ok rad=s

EvP  D .0:0286 Our 0:119 Ou / m=s

18 Last modified: November 2, 2009

Page 19: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 19/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

6.54 EvC  D 16:3 O{ ft=s

the cable is unwinding at 12:2 ft=s

6.56 E!CD D 42:4 Ok rad=s

6.58 E!AB D 5:09 Ok rad=s

6.60

E!spool

D 3:33

Ok rad=s

EvO D 5:00 O{ rad=s

6.62 E!gate D 0:0467 Ok rad=s

6.64 E!AB D 7:21 Ok rad=s

E!BC  D 8:58 Ok rad=s

6.66 E!R D 35:0 Ok rpm

EvD D 17:2 O| in.=s

6.68 E!AB D 50:6 Ok rad=s

EvB D 1:92 O| m=s

6.70 EvB D "R P cos  R

PÂ.H 

R cos Â/ sin  p 

L2 .H  R cos Â/2# O|

6.72 Computer problem.

6.74 EaB D .17:0 O{ 5:38 O| / ft=s2

6.76 EaC  D .16:8 O{ C 87:7 O| / ft=s2

6.78 EaQ D 9:16 Our m=s2

6.80 EAB D 48:6 Ok rad=s2 and EBC  D E06.82 Letting Q denote the point on the ball in contact with the bowl, at the instant shown

EaA D .1020 Our C 24:0 Ou / ft=s2 and EaQ D 3480 Our ft=s2

6.84 EAB D 27:1 Ok rad=s2

EaB D 267 O{ ft=s2

6.86 E!AB D 0:458 Ok rad=s and EAB D 0:258 Ok rad=s2

6.88 EW  D 7:97 Ok rad=s2

6.90 EBC  D 1640 Ok rad=s2

6.92 EBC  D HR P 2.R2 H 2/ sin  

.H 2 C R2 2HR cos  /2Ok

6.94 Es D 0:400 Ok rad=s2 and EaO D 2:00 O{ ft=s2

6.96 Egate D 4:50 Ok rad=s2

6.98 EAB D 92:1 Ok rad=s2 and EBC  D 191 Ok rad=s2

6.100 Letting Q denote the point of contact between the wheel W  and the cylinder S , EaQ D 82:0 Our ft=s2

6.102 For C  accelerating downward and to the right: EAB D 551 Ok rad=s2 and EBC  D 320 Ok rad=s2

For C  accelerating downward and to the left: EAB D 729 Ok rad=s2 and EBC  D 320 Ok rad=s2

6.104 For D 10ı and   D 56:11ı EaD D .18;300 O{ C 34;900 O| / ft=s2

For D 10ı and   D 303:9ı EaD D .18;300 O{ C 32;900 O| / ft=s2

19 Last modified: November 2, 2009

Page 20: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 20/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

6.106 EaC  D(

R˛AB cos  

Â1 C R sin  p 

L2 R2 cos2  

Ã

C R!2AB

"R.L2 R2/ cos2  

.L2 R2 cos2 Â/3=2 R sin2  p 

L2 R2 cos2   sin  

#)O|

6.108 Computer problem.

6.110 EaP  D Rs s!20 O{ C s˛0 C 2Ps!0

O|

6.112 (a) E!CD D .R=h/!AB1 C R= h

D 3:14 Ok rad=s and Evbar D .R=h/d!AB1 C R= h

OI  D 0:377 OI  m=s

(b) ECD D E0 and Eabar D d˛CDOI  D E0

6.114 (a) E!CD D ı!AB.ı C sin Â/

1 C ı2 C 2ı sin  Ok

Evbar D ı!AB.ı C sin Â/

1 C ı2 C 2ı sin  d  OI 

(b) ECD D ı

1 ı2

!2AB cos  

1 C ı2 C 2ı sin  2

Ok

Eabar D d ı

1 ı2

!2AB cos  

1 C ı2 C 2ı sin  2 Ok

6.116 (a) Evbar D ı

1 C ı!ABd  OI 

(b) Evbar D ı

1 ı!ABd  OI 

(c) vbar D 2:90 m=s

vbar D 5:39 m=s

(d) vbar D 5:59 m=s

vbar D 50:3 m=s

6.118 EvP  D .23:6 O{A C 26:1 O|A/ ft=s

EaP  D .52:9 O{A 40:3 O|A/ ft=s

2

6.120 EaC  D .30:0 O{ C 51:8 O| / ft=s2

6.122 EvC  D .7:50 O{ C 7:51 O| / ft=s

EaC  D .105 O{ 161 O| / ft=s2

6.124 Concept problem.

6.126 Pd AB D 1:12 ft=s

Rd AB D 2:01 ft=s2

6.128 E!bar D 14:3 Ok rad=s

6.130

E!A

D 481 Ok rad=s

6.132 EaE D .1:50 O{ 0:320 O| / ft=s2

6.134 Pd EC  D 0:214 ft=s and Rd EC  D 0:0192 ft=s2

6.136 EvD D .vC  C !OA` sin / O{ C .d!OA `!C  cos / O| `!C  sin OkEaD D .d!2

OA C 2!OA`!C  cos C `˛OA sin / O{ C .d˛OA C .!2C  C !2OA/` sin C 2!OAvC / O| !2C  cos Ok:

6.138 EvC  D .21:5 O{ C 7:51 O| / ft=s

EaC  D .107 O{ 166 O| / ft=s2

20 Last modified: November 2, 2009

Page 21: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 21/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

Chapter 7

7.2 tstop D v0=.kg/ D 1:86 s and d stop D v20=.2gk/ D 16:8 ft

7.4 F  D 179 N and aGx D 4:71 m=s2

7.6   D 18:9ı

7.8 tmin D

v=.aGx

/D

v=.gs

/D

1:12 s

7.10 The FBD for the problem is

D577 lb; N f 

D784 lb; N r

D783 lb; and N B

D2230 lb

EH  D H x O{ C H y O| D .653 O{ C 166 O| / lb andˇ EH  D 674 lb

.s/min D 0:736

7.12 m1 D 14m; m2 D 3

4m; xP  D 23L

m1 D 12m; m2 D 1

2m; .I  G/extra D 16mL2

7.14

Rx D .0:112 N=s2/t2;

Ry D 0:0101 N;

M  D 3:11105 Nm

7.16 The FBD for the problem is

Or D 16:8 lb and OÂ D 5:00 lb

7.18 j˛barjmax Dp 

3g

Lfor d  D 1

6

3

p 3

L or d  D 16

3 C

p 3

L

7.20 The FBD for the problem is

EO D Ox O{ C Oy O| D .1320 O{ C 48:5 O| / N and ET-bar D .6:92 rad=s2/ Ok

7.22 Concept problem.

21 Last modified: November 2, 2009

Page 22: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 22/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

7.24 .vG/final Dp 

2gL.sin   k cos  C sin Â/ D 18:4 ft=s

tfinal D .vG/final=aGx Dp 

2gL.sin   k cos  C sin Â/

g.sin   k cos Â/D 1:08 s

7.26 tr D 2:41 s and d  D 50:7 ft

7.28 aGx D kg and ˛b D grk

k2G

7.30 The FBD for the problem is

T CD D 101 N: and EaG D aGx O{ C aGy O| D .6:45 m=s2/ O|7.32 The solution of this problem under the stated assumptions leads to conclusion that the crate starts rotating coun-

terclockwise. Since this fact runs contrary to the fact that the force system applied to the crate can only induce

a clockwise rotation of the crate, then we conclude that the solution obtained under the assumptions given in the

problem is not physically admssible.

7.34  separation D

3D 60:0ı

7.36 The FBD for the problem is

Under the assumption that the contact between the sphere and the semicylinder is frictionless, the solution in terms

of contact force N , second time derivative of the angle  , and angular acceleration of the sphere is as follows:

N  D mg cos   m.R C / P 2; R  D g sin  

R C ; and ˛s D 0:

Comparing these equations to Eqs. (5) and (6) in Example 3.6 on p. 216 for a particle, we can see that the sphere in

question behaves like a particle of mass m sliding over a semicylinder of radius R C and therefore if we “shrink”

the sphere to a particle by letting ! 0, we will recover exactly the same solution obtained for a particle.

7.38 (a) F  D I Gvf 

r2tf D 12:1 lb

(b) .tf /new D mcr2tf 

2I G C r2mc

D 6:85 s

7.40 ˛AB D 3mABg cos  

L.2mAB C 9mB sin2 Â/; EaB D 3mABg sin  cos  

2mAB C 9mB sin2  O{; ˛w D 3mABg sin  cos  

R.2mAB C 9mB sin2 Â /

22 Last modified: November 2, 2009

Page 23: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 23/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

7.42 ˛AB D 3.2mA C mAB/g cos  

L.6mA cos2  C 2mAB C 9mB sin2 Â/

EaB D 3.2mA C mAB/g sin  cos  

6mA cos2  C 2mAB C 9mB sin2  O{;

˛w D 3.2mA C mAB/g sin  cos  

R.6mA cos2  C 2mAB C 9mB sin2 Â/

7.44 I G D

mR2

7.46 ac D 1:35 m=s2; T  D 3130 N; and ˛s D 1:68 rad=s

7.48 Rx D .3g cos  C 2L P 2/ sin  

1 C 3 sin2  and R  D 3.2g C L P 2 cos Â/ sin  

L.1 C 3 sin2 Â/

7.50 (a)

N r D 1

4W c

Â1 C 2hac

g`

ÃD 736 lb;

N f  D1

4W c

Â1 2hac

g`

ÃD 549 lb;

F r D W cac2g

D 503 lb

(b)

Ax D acW wg

F r D 485 lb

Ay D W r N r D 689 lb

M A D F rd 

2C 2acI B

d D 522 ftlb

7.52 Computer problem.

m

1 C k2G

r2

!Rx C kx D mg sin  C kL0

7.54 ˛AB Dg

2L

cos  13 C cos2 Â.cos = sin /2 C sin  cos Â.cos = sin / D 3:74 rad=s

2

7.56 aAx D 60

181g and ˛b D 45g

181R

7.58 EaG D 57g sin Ou ; ˛b D 5g sin

7; and EF due to bowl D mg cos Our C 2

7mg sin Ou

7.60 R C 5g

7.R /sin D 0

7.62 (a) EaG D .1 k/PR2

m.R2 C k2G/O{; and .s/min D kR2 C k2G

R2 C k2G

kP  C mg

(b)

EaG

D ÄP 

m

.1

2

k

/

kg O

{; and ˛d D

kR

k2GÄP 

m

.1

k/

g

7.64

R.2mAR2 C I O/ P!s C 2mA`. P C R!s/2 D 0;

` R C P2 C `R P!s R2!2s D 0

7.66 (a) Ay D 34mg and By D 5

4mg

(b)   D 2 tan1Â

mg

Ã;  0 D 0; and  1 D

7.68 T CD D 2060 lb; and EaE D .5:65 ft=s2/ O|

23 Last modified: November 2, 2009

Page 24: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 24/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

7.70 EaE D .13:2 O{ 25:9 O| / ft=s2

Ax D 3g.mb C mr /Œ.d C h/mb C 2d mr � sin  cos  C g.h d /mbmr tan  

2.d  C h/.2mb C 3mr /D 437 lb;

Ay D gŒmbh C d.mb C mr /�Œmb C 3.mb C 2mr / cos2  � C 3ghmbmr sin2  

2.d  C h/.2mb C 3mr /D 256 lb;

C x D 3g.mb C mr /Œ.d C h/mb C 2hmr � sin  cos   g.h d /mbmr tan  2.d  C h/.2mb C 3mr /

D 629 lb;

C y D gŒmbd  C h.mb C mr /�Œmb C 3.mb C 2mr / cos2  � C 3gdmbmr sin2  

2.d  C h/.2mb C 3mr /D 353 lb

7.72 EaE D .7:00 O{ C 7:06 O| / ft=s2

Ax D 229 lb; Ay D 1330 lb; C x D 336 lb; and C y D 1330 lb

7.74 P max D 1600 lb

7.76   D tan1

v2cgR

!

7.78 ˛AC  D R  D 1:46 rad=s2 and ˛CE D R  D 1:46 rad=s2

7.80 Computer problem.

tclosure D 1:29 s

.vE /at closure D 1:87 m=s

7.82

R D gR sin   g cos R cos. Â/ P2R2 C 2 C k2

GC 2R sin. Â /

;

F  D mg sin  C maGx

D mg sin   m

ŒRC sin.Â/�ŒgR sin Âg cosR cos.Â/ P2�

R2C2Ck2GC2R sin.Â/

C P2 cos. Â /

;

N  D mg cos  C maGy

Dmg cos  

Cm cos.Â/ŒgR sin Âg cosR cos.Â/ P2�

R2C2Ck2GC2R sin.Â/

P2 sin.

Â/

7.84

.mAB C mC / RxA C 12 .mAB C 2mC /L cos  R C 1

2 .2d  C h/mC  cos R12 .mAB C 2mC /L sin  P 2 1

2 .2d  C h/mC  sin P2 D 0;

12LmC  cos  RxA C Œ 112mAB C 1

2mC  cos2  C . 14mAB C mC / sin2 Â�L2 R 

C14 .2d  C h/LmC .2 sin  sin C cos  cos / R

C14 .mAB C 2mC /L2 sin  cos  P 2

C14 .2d  C h/LmC .2 sin  cos sin cos  / P2

C12 .mAB C 2mC /gL sin   D 0;

12 .2d 

Ch/mC  cos

RxA

C12 .2d 

Ch/LmC  cos. 

/ R 

CŒ 112 .h2 C w2/ C 14 .2d  C h/2�mC  R

12 .2d  C h/LmC .sin  cos sin cos Â/ P 2

C12g.2d C h/mC  sin D 0:

7.86 (a) F  D 34mg.3 cos   2/ sin   and N  D 1

4mg.1 3 cos Â/2

(b) Given any (finite) value of  s , there always is a value of Â  for which the rod will slip.

7.88 P max D mcgs

1 C md 

mc

C R2

k2G

!; aCx D g

1 C R2

k2G

!; and aGx D sg

7.90 P  D 7:59 N and .s/min D 0:0462

24 Last modified: November 2, 2009

Page 25: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 25/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

Chapter 8

8.2 T A D T B D 518 J

8.4 T R1 D 7760 ftlb and T R2 D 15;000 ftlb

8.6 T  D 324;000 ftlb

8.8 T  D1

2H 2 ŒI DR

2

C H 

2

.I A C mBC R

2

/�!

2

AB D 25:3 J

8.10 T  D 28:9 ftlb

8.12 Computer problem.

8.14 Lf  D 34:1 ft

8.16 Concept problem.

8.18 !2 Ds 

.2Md=R/ kd 2

m.k2G C R2/

d s D 2M 

kR

8.20 M  D 2:06106

ftlb

8.22 vperson D vG Dp 

2gH.1 C cos  /

vperson

ˇÂD0ı

D 10:8 m=s

8.24 vO D 10:9 ft=s

8.26 nmin D 26

(a) vperson D 26:5 ft=s

8.28 U fracture D 12gŒLA.mA C 2mS / C 2mSrS �.cos  f  cos  i / D 318 J

8.30 U friction D 364 ftlb

8.32 k

D W 

2g

v2max C g.L C d  2H /

.H  d/.H  C 2ı0 d / D11:3 lb=ft

8.34 ı D 1:03 ft

8.36 W P  D3gH  v2A2

3gH  C 6v2A2W  D 800 lb

8.38 vmax D 6:39 ft=s

8.40 vC  D 4:96 m=s and E!D D .44:1 rad=s/ Ok8.42 vS D 7:53 m=s

8.44 vB D 2:21 m=s

In � B is moving to the left.

8.46 M  D 32:9 NmP max D 132 W

8.48 .s/max D 0:371 and  slide D 35:1ı

8.50 Concept problem.

8.52EhAAB D 1

3mABR2!AB

Ok D .1:72 kgm2=s/ Ok

(a)EhABC  D mBC !ABR2 Ok D .7:20 kgm2=s/ Ok

(b)EhDCD D 1

3mCDHR!ABOk D .7:75 kgm2=s/ Ok

25 Last modified: November 2, 2009

Page 26: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 26/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

8.54EhC W  D .91:9106 kgm2=s/ Ok @ EhOW  D .669106 kgm2=s/ Ok @ 

8.56ˇ EpAB ˇ D W ABvA

2g cos  D 3:23 lbs

EhG D W ABLvA12g cos  

Ok D .2:42 ftlbs/ Ok

8.58 EF avg D W vfinal

gtO{ D .878 lb/ O{

EM avg D 2I Gvfinal

dtOk D .10:7 lbft/ Ok

8.60 Concept problem.

8.62 tr D v02kg

8.64 !Aˇ

end of slipD 61:3 rad=s and !B

ˇend of slip

D 40:3 rad=s

8.66 (a) Collar modeled as a particle: vimpact D 0:990 ft=s,

(b) Collar modeled as a rigid body: vimpact

D0:943 ft=s,

8.68 E!.t/ D"

g.1 C w/g

.1 C gw/rt !0

#Ok

8.70 vGˇtD2 s

D 21:7 ft=s

.s/min D 0:0588

8.72 Concept problem.

8.74 The system rotates clockwise.

  D mBa0e

2I Ot2f  ; (clockwise)

8.76 d 

D4r2d 

.2r b/2

8.78 Concept problem.

8.80 Concept problem.

8.82 d  D 23`

8.84 d  D 2:09 ft

E!B D .26:6 rad=s/ Ok and vCb

D 226 ft=s

8.86 E!Cb

D .10:7 rad=s/ Ok

8.88

EvCG

D.

1:31 m=s/

O{ and

E!CA

D.3:43 rad=s/ Ok

8.90 v0 Ds 

4g` sin ˇ

3 cos2 ˇD 7:48 ft=s

8.92 E!CAB D .0:851 rad=s/ Ok and E!CBD D .2:55 rad=s/ Ok

8.94 E!CA

D .0:000 715 rad=s/ Ok and E!CB

D .0:0000241 rad=s/ Ok8.96 T  D 0:0257 ftlb

8.98 d  D 1:98 m

26 Last modified: November 2, 2009

Page 27: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 27/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

8.100 Concept problem.

8.102 Concept problem.

8.104 EvCP 

D 2v0 O{ D .12 ft=s/ O{

8.106 E!CA D .1:03 rad=s/ Ok max D 14:8

ı

Chapter 9

9.2 I O D mgL 2

42

9.4   D 2

s 7L

6g

9.6 ` Dr 

I Gm

9.8 !n Ds Gr4LR4t

9.10   D 2d 

h

r m

k

9.12   D 2

s 13.h3 C d 3/ C md 2

kh2

9.14 W payload D 90;700 lb

9.16 f  D !n2

D d 

4

r g

mD 0:566 Hz

9.18 (a) m

Ry

Cky

D0

(b) m R C k  D 0

9.20 mn D 35:6 g

9.22 RxG C 17k

6mxG D 0

9.24 RxG C 8k

3mxG D 0

  D 2

!nD 2

r 3m

8kD 2:22 s

9.26 !n Ds 

2g

3.R r/

  D 2

s 3.R r/

2g

9.28   D 2

!nD 2

s L

2g

9.30   D 2

s .3 2/R

3g

9.32 x.t/ D A sin !nt C B cos !nt C F 0=k

1 .!0=!n/2cos !0t

27 Last modified: November 2, 2009

Page 28: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 28/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

9.34

mu D 0:01 kg ) jymj Dq 

2:19106 cos.4:37t/ C 1:89105 m;

mu D 0:1 kg ) jymj Dq 

1:10105 cos.4:37t/ C 1:11105 m;

mu D 1 kg ) jymj Dq 

9:80104 cos.4:37t/ C 1:01103 m

9.36  amp D 0:001 76 rad=s

9.38 !n Ds 

3EI 

.mu C me/d 3 C 43mwh2d 

D 312 rad=s

f  D !n2

D 49:7 Hz

 MF D j pj.mu C me/d 

muRD .!p=!n/2

1 .!p=!n/2D 0:820

9.40 Concept problem.

9.42 x.t/ D 0:000 501 sin 10t C 0:100 cos 10t 2:51105 sin 200t

m

9.44 m Ry C 2kÂ1 L0

L Ãy D F 0 sin !0t

y.t/ D F 0=keq

1 .!0=!n/2

Ä!0!n

sin !nt C sin !0t

;

where keq D 2k

Â1 L0

L

Ãand !n D

s 2k

m

Â1 L0

L

Ã

9.4623mB C 1

2mA Rx C 2kx D 1

2F 0 sin !0t

xamp D F 0

4k 43mB C mA

!20

9.48 Concept problem.

9.50 Concept problem.

9.52 no peak in MF  for   p 

1=2

9.54 Ry C 2!n Py C !2ny D mu"!2rm

sin !r t

9.56 jymj D 0:002 19 m

9.58 I GR C cr2o

P C k1r2o C k2r2i

  D 0

Â.t/ Dh

0:0504e3:80t 0:000386e496ti

rad

9.60 x.t/ D e0:5t .A sin 3:12t C B cos 3:12t/

9.62 m Rx C c Px C 2k

Äq L2 C .L C x/2

p 2L

L C x

p L2 C .L C x/2

D F 0 sin !0t

mRx

CcPx

Ckx

DF 0

sin !0

t

D D F 0=kp Œ1 .!0=!n/2�2 C .2!0=!n/2

; where !n Dr 

k

mand  D c

2p 

km

9.64 k > 1:35109 N=m and c D 0

9.66 (a) mRs C c Ps C ks D mA!20 sin !0t

(b) y.t/ D"

mA!20

k m!20

k m!20

2 C c2!20

C A

#sin !0t

"mcA!3

0k m!2

0

2 C c2!20

#cos !0t

(c) DT Dv uut k2 C c2!20

k m!20

2 C c2!20

28 Last modified: November 2, 2009

Page 29: Dynamics Answers 2009-11-2

8/3/2019 Dynamics Answers 2009-11-2

http://slidepdf.com/reader/full/dynamics-answers-2009-11-2 29/29

Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha

9.68 m Rx C k1k2k1 C k2

x D 0

9.70 k D 5:91%

9.72 .mm C mp/ Rym C keqym D mu"!2r sin !r t

9.74

mu D 0:01 kg W F t D 14:8mu sin.125:7t C 0:842/ C 17:7mu cos.125:7t C 0:842/ N;

mu D 0:1 kg W F t D 148mu sin.125:7t C 0:842/ C 177mu cos.125:7t C 0:842/ N;

mu D 1 kg W F t D 1480mu sin.125:7t C 0:842/ C 1770mu cos.125:7t C 0:842/ N

9.76 m Ry C 2k

1 L0p 

y2 C L2

!y D 0

9.78 m Ry C 2k

Â1 L0

L

Ãy D 0

Chapter 10

10.2 EvE D R!arm cos  O{ C .d C ` cos /!arm O| .d  C ` cos /!arm OkEaE D !2arm cos .d  C ` cos / O{ !2arm sin .d C ` cos / O| !2arm

R

hd 2 C 2d ` cos  C `2 C R2

cos2  

i Ok

10.4 EvP  D 2.d  C ` cos /!armOk

EaE D !2arm cos .d  C ` cos / O{ !2arm sin .d  C ` cos / O|(

.d C ` cos /˛arm C !2arm

R

hd 2 C 2d ` cos  C `2 C R2

cos2  

i) Ok

10.6 EaA D

231 O| C 108 OkÁ

ft=s2

EAB D

18:3 O{ C 15:1 O| C 34:9 OkÁ

rad=s2

10.8

EvP 

D R!d  cos ˇ

O{

.h!b

CR!d  sin ˇ/

O|

CR!b cos ˇ Ok

EaP  D R

!2d  sin ˇ P!d  cos ˇÁ O{ R

h!2b C !2d 

Ácos ˇ C P!d  sin ˇ

i O|C

R P!b cos ˇ h!2b 2R!b!d  sin ˇ

Á Ok

10.10 EvA D 2L!0 cos2 ˇ OkEaA D 2L!2

0 cos2 ˇ O{ L!20 cot ˇ O| 2L˛0 cos2 ˇ Ok

10.12 E!AB D !s O| P OkEAB D P!s O{ R OkEaG D

ÄL

2R sin ˇ C

Âd  C L

2cos ˇ

Ã!2s C L

2P2 cos ˇ

O{ C L

2

P2 sin ˇ R cos ˇÁ

O| L P!s sin ˇ Ok

10.14 EvA D 1:432 O| 0:6677 Okm=s

10.16 EaA D 103 O| C 47:8 Okm=s2

10.18 E!AB D 0:0161 O{ C 2:69 O| C 0:917 Ok rad=s

EAB D 1:73 O{ 4:59 O| C 15:8 Ok rad=s2

10.20 E!bit D !d  O{ C !a O| C !bOk

Ebit D . P!d  !a!b/ O{ C . P!a C !d !b/ O| C . P!b !d !a/ Ok

10.22 EaB Dh

at C h P!a .` C rt /

!2a C !2b

ÁiO{ C Œ2.vt C h!a/ !b C .` C rt / P!b � O|

Œ.2v C h! / ! C .` C r / P! � Ok