37
Dynamics I • 23. Nov.: circulation, thermal wind, vorticity • 30. Nov.: shallow water theory, waves • 7. December: numerics: diffusion-advection • 14. December: computer simulations

Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Embed Size (px)

Citation preview

Page 1: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Dynamics I

• 23. Nov.: circulation, thermal wind, vorticity

• 30. Nov.: shallow water theory, waves

• 7. December: numerics: diffusion-advection

• 14. December: computer simulations

Page 2: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Fluid dynamics

properties of mass, momentum and energy

in a control volume

Substatial or material derivative

Page 3: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Fluid dynamics

properties of mass, momentum and energy

in a control volume

Substatial or material derivative

To Add: Vorticity !

Page 4: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Scale Analysis

Page 5: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Scale Analysis

Page 6: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Scale Analysis

dominant terms: geostrophy

Page 7: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Scale Analysis

Validity of the geostrophic approximation:

Page 8: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Geostrophic approximation:

Page 9: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Geostrophic balance:

Parallelism between wind velocities

and pressure contours (isobars)

Page 10: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Taylor–Proudman theorem (Taylor, 1923; Proudman, 1953)

gConst.

vertical derivative of the horizontal velocity is zero:

Physically, it means that the horizontal velocity field has no vertical shear and that all particles on the same vertical move in concert. Such vertical rigidity is a fundamental property of rotating homogeneous fluids.

Page 11: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Non-Geostrophic Flows

g still suppose that the fluid is homogeneous and frictionless, no vertical structure

Additional terms

Page 12: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Non-Geostrophic FlowsContinuity equation:

Page 13: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Non-Geostrophic Flows

Surface elevation η = b + h − H:

Continuity equation:

Page 14: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Non-Geostrophic Flows

In the absence of a pressure variation above the fluid surface (e.g., uniform atmospheric pressure over the ocean), this dynamic pressure is

Continuity equation

Page 15: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Shallow Water ModelCase b=0

This is a formulation that we will encounter in layered models !

Page 16: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Vorticity

Vorticity:

Elimination of pressure terms:

Continuity:

d/dt [(f+ zeta)/h] = 0Conservation of potential vorticity

ambient vorticity (f) plus relative vorticity zeta

vorticity vector is strictly vertical

(Volume conservation)

Page 17: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Conservation of volume in an incompressible fluid

This implies that if the parcel is squeezed vertically (decreasing h), it stretches horizontally (increasing ds), and vice versa

Vorticity

horizontal divergence (∂u/∂x + ∂v/∂y > 0) causes widening of the cross-sectional area ds

convergence (∂u/∂x + ∂v/∂y < 0) narrowing of the crosssection.

Page 18: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Kelvin’s theorem

(f + zeta)/h : the potential vorticity, is also conserved.

Page 19: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Kelvin’s theorem

(f + zeta)/h : the potential vorticity, is also conserved.

This product canbe interpreted as the vorticity flux (vorticity integrated over the cross-section) and is therefore the circulation of the parcel.

Two-dimensional flows: Kelvin’s theorem conservation of circulation in inviscid fluids

Page 20: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Circulation of a parcel

(f + zeta)/h : the potential vorticity, is also conserved.

This product can be interpreted as the vorticity flux (vorticity integrated over the cross-section) and is therefore the circulation of the parcel.

Two-dimensional flows: Kelvin’s theorem guarantees conservation of circulation in inviscid fluids

Exercise !

Page 21: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Potential Vorticity

Rapidly rotating flows, in which the Coriolis force dominates. In this case, the Rossby number is much less than unity (Ro = U/L << 1),which implies that the relative vorticity (ζ = ∂v/∂x − ∂u/∂y, scaling as U/L) is negligible in front of the ambient vorticity f. The potential vorticity reduces to q =f/h !

if f is constant – such as in a rotating laboratory tank or for geophysical patterns of modest meridional extent – implies that each fluid column must conserve its height h.

Page 22: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Shallow Water ModelCase b=0

This is a formulation that we will encounter in layered models !

Page 23: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Shallow Water ModelCase b=0

Page 24: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:
Page 25: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:
Page 26: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:
Page 27: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:
Page 28: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Schrödinger equation: harmonic oscillator

In the one-dimensional harmonic oscillator problem, a particle of mass m is subject to a potential V(x) = (1/2)mω^2 x^2. The Hamiltonian of the particle is:

where x is the position operator, and p is the momentum operator

we must solve the time-independent Schrödinger equation:

Page 29: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Solution

Page 30: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Ladder operator method

a acts on an eigenstate of energy E to produceanother eigenstate of energy

a† acts on an eigenstate of energy E to produce an eigenstate of energy

a "lowering operator", a† "raising operator„

The two operators together are called "ladder operators".

In quantum field theory, a and a† are alternatively called "annihilation" and "creation" operators because they destroy and create particles, which correspond to our quanta of energy.

Operator a and a† have properties:

Page 31: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:
Page 32: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:
Page 33: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:
Page 34: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Graph

Page 35: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Graph

Rossby

Gravity

Kelvin

Yanai, mixed G-R

Page 36: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December:

Homework

Page 37: Dynamics I 23. Nov.: circulation, thermal wind, vorticity 30. Nov.: shallow water theory, waves 7. December: numerics: diffusion-advection 14. December: