21
Eutrophication and Oligotrophication Processes in the Seto Inland Sea and their relationships to the Satoumi concept Tetsuo YANAGI Principal Investigator, International EMECS Center Professor of Emeritus, Kyushu University

Dynamics of Eutrophication and Oligotrophication

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dynamics of Eutrophication and Oligotrophication

Eutrophication and Oligotrophication Processes in the Seto Inland Sea and their

relationships to the Satoumi concept

Tetsuo YANAGI

Principal Investigator, International EMECS Center Professor of Emeritus, Kyushu University

Page 2: Dynamics of Eutrophication and Oligotrophication

Seto Inland Sea

Page 3: Dynamics of Eutrophication and Oligotrophication

TN・TP concentrations and Fish catch

1978

1978:Total Loads Control Law

1963:New Industrial City Law

Fish catch

TN TP(x

10)

Page 4: Dynamics of Eutrophication and Oligotrophication

Hysterisis

Multiple equilibrium solutions

Clarify the different mechanisms of eutrophication and oligotrophication

Nutrients-

low high

1980

20101990

1960

1955 -1970 Rapid economic growth

1979 Total Load Regulation

1985 Fish catch max

1990 DIN decrease

Biodiversity, productivity

High low

Red tide, hypoxiaEutrophication

Nutrient concentration

Biodiversity, Productivity

Oligotrophication

Page 5: Dynamics of Eutrophication and Oligotrophication

• Phytoplankton cell density(X’) (Michaelis-Menten kinetics)

)1(''

'

XXKN

NGdt

dX

S

α=+

=

Ks=1

)2(' teX α=

Page 6: Dynamics of Eutrophication and Oligotrophication

• Phytoplankton population (X) dynamics (sigmoid (logistic) function)

)3(pp

p

hXcX

dtdX

+=

DX/dt

c=h=1

Page 7: Dynamics of Eutrophication and Oligotrophication

• Growth and Death・Grazing

• dX/dt=0(quasi-steady) 1stterm = (2nd+3rd)term

)5(' teXX αδδ ==

)4()(

1γβ +−

+= X

XX

dtdX

p

p

(p=1、 =0.1、γ=0.5)

5 6 7

8

1 2

4 3

Double intersections=multi-equilibrium solutions

β

Page 8: Dynamics of Eutrophication and Oligotrophication

Nutrient concentration(N) and Phytoplankton population(X)

Regime shift

Red tide, hypoxiaEutrophication

Nutrient concentration

Biodiversity, Productivity

Oligotrophication

1

2 3 4

5 6 7 8

X

Another regime shift

Hypoxia

Disappearance of Hypoxia ?

Page 9: Dynamics of Eutrophication and Oligotrophication

Nutrient concentration and fish catch

Nutrient concentration

Fish catch

In the beaker(linear)

death・sinking

Bait of benthos and fish

Red tide

stratification

death・sinking

Oxygen consumption hypoxia

Red tide

stratification

Accumulated organic matter

A B

Yanagi(2014) Nutrinet concentration

Fish catch

eutrophication

oligotrophication B

Seto Inland Sea(non-linear)

Page 10: Dynamics of Eutrophication and Oligotrophication

Two ways from B to A (Regime Shift)

• Wait for the disappearance of hypoxia by decreasing the nutrient concentration

• Create “satoumi”

Page 11: Dynamics of Eutrophication and Oligotrophication

L.Mee(2006)

1960:National Planed Agliculture 1973:Hypoxia 1998:Collapse of Siviet-Union 2002:Disappearance of Hypoxia Recovery of Benthos

Page 12: Dynamics of Eutrophication and Oligotrophication

Nutrient concentration and fish catch

Nutrient concentration

Fish catch

In the beaker(linear)

death・sinking

Bait of benthos and fish

Red tide

stratification

death・sinking

Oxygen consumption Hypoxia

Red tide

stratification

Accumulated organic matter

A B

Yanagi(2014) Nutrinet concentration

Fish catch

eutrophication

oligotrophication B

Seto Inland Sea(non-linear)

Satoumi creation

Page 13: Dynamics of Eutrophication and Oligotrophication

Satoumi: coastal sea with high bio-diversity and productivity under the

human interaction (Yanagi, 1998)

2007 2012

Page 14: Dynamics of Eutrophication and Oligotrophication

Biodiversity and human interaction

Creation of new habitat

Stop transfer to climax stage

under-use

under-use

Sea-grass bed in Japan

Ishihimi Satoumi

High biodiversity over-use

over-use l.b.

l.b.

l.b.

l.b.

l.b. = low biodiversity

wise-use

Page 15: Dynamics of Eutrophication and Oligotrophication

Decrease of eel-grass bed → Decrease of fish catch by set net

Creation of eel-grass bed by local Fishermen (1985~)

1945 1970 1985

Page 16: Dynamics of Eutrophication and Oligotrophication

Increase of eel-grass bed and fish catch by set net

1985 2010

Set net

Page 17: Dynamics of Eutrophication and Oligotrophication

Suitable space distribution

We can observe few fish at the central part (climax) in the eel grass bed and much fish in the spot or the boundary between the eel grass bed and the sand area by scuba diving.

Tanimoto(2009)

Page 18: Dynamics of Eutrophication and Oligotrophication

Gill net experiment(2009/8/26~27) spot or boundary:Stas 1、2、5 central part:Stas 3、4

central part boundary

2009/8/4 Mitukuchi Bay (217ha)

132.75 132.755 132.76 132.765 132.77 132.775 132.78 132.78534.255

34.26

34.265

34.27

34.275

34.28

34.285

132.75 132.755 132.76 132.765 132.77 132.775 132.78 132.78534.255

34.26

34.265

34.27

34.275

34.28

34.285

0 to 2 2 to 4 4 to 6 6 to 8 8 to 10 10 to 12 12 to 141

234

5

132.75 132.755 132.76 132.765 132.77 132.775 132.78 132.78534.255

34.26

34.265

34.27

34.275

34.28

34.285

2009/8/27 Mitukuchi Bay

132.757 132.758 132.759 132.76 132.761 132.762 132.763 132.764 132.765 132.766 132.76734.26

34.261

34.262

34.263

34.264

34.265

34.266

34.267

132.757 132.758 132.759 132.76 132.761 132.762 132.763 132.764 132.765 132.766 132.76734.26

34.261

34.262

34.263

34.264

34.265

34.266

34.267

1

2

3

4

5

132.757 132.758 132.759 132.76 132.761 132.762 132.763 132.764 132.765 132.766 132.76734.26

34.261

34.262

34.263

34.264

34.265

34.266

34.267

0 100 200 300 400 500

Tanimoto(2009)

Page 19: Dynamics of Eutrophication and Oligotrophication

2009年8月27日

0

5

10

15

20

25

30

35

1 2 3 4 5

測点

個体数

アマモ場内

0

2

4

6

8

10

12

1 2 3 4 5測点

種類数

アマモ場内

2.H21研究進捗状況 (2)新たな里海方策の提案 アマモ場内外における刺し網結果(魚介類の種類数と個体数) 藻場外(藻場の切れ目)3地点における魚介類の平均種類数:10、個体数:10 藻場内2地点における平均種類数:5、個体数:4 魚介類は藻場内より藻場の切れ目(ある程度空間のある場所)を利用

魚種 数量 魚種 数量 魚種 数量 魚種 数量 魚種 数量ギザミ 1 ギザミ 1 メバル 1 オコゼ 1 メバル 1メバル 3 メバル 4 フグ 2 フグ 2 コノシロ 8コノシロ 1 コノシロ 1 コノシロ 3 コチ 2アイナメ 1 コチ 1 ネコサメ 2 サバ 1タイ 1 タイ 1 ハゼ 1 キス 2ハゼ 1 ハゼ 3 イシガニ 3 コイワシ 1エソ 1 オコゼ 1 イシガニ 13イシガニ 5 タナゴ 1 シャコ 1ウニ 2 イシガニ 2 ニシ 1ニシ 1 ナマコ 1 ヒトデ 1

51 2 3 4

Tanimoto(2009)

individuals

species

Central part Central part

Page 20: Dynamics of Eutrophication and Oligotrophication

Synthesis Philosophy for coastal sea management Measures for establishment of sustainable coastal sea area Integrated model as a support tool for policy makers

Development of Coastal Management Method to Realize the Sustainable Coastal Sea (2014-2018)

1.Seto Inland Sea Nutrients concentration High biodiversity and production Total load control

2.Sanriku coastal sea Environment recovery from Tsunami Satoumi creation Material flux from forest to coastal sea

3.Japan Sea coastal area MPA for biodiversity MPA and fisheries International management

4.Social and Human sciences Economic value of ecosystem service Sustainability and ICM Satoumi story for citizen

Integrated Coastal Sea Model

Realize clean, rich and prosperous coastal sea

Environmental Policy

Committee(Three types)

visualization

Theme1 Theme2 Theme3 Theme4

Integrated numerical model development

Theme5

Global dispatching 1.5 million US$/year

Special Project by the Ministry of Environment

Page 21: Dynamics of Eutrophication and Oligotrophication

Conclusions

• The relation between fish catch and nutrient concentration is not linear but has some hysteresis due to the sediment pollution.

• Satoumi creation is very effective for the recovery of fish catch.