Dynamics Ppt

Embed Size (px)

Citation preview

  • 8/17/2019 Dynamics Ppt

    1/52

    1

    Dynamics of viscously

    damped linear MDOF systems

    Dr C S ManoharDepartment of Civil Engineering

    Professor of Structural Engineering

    Indian Institute of Science

    Bangalore 560 012 India

    [email protected] 

    mailto:[email protected]:[email protected]

  • 8/17/2019 Dynamics Ppt

    2/52

    2

    Topics

    Nature of equations of motion and uncoupling

    Classical and non - classical damping models

    Input - output relations in time domainInput - output relations in frequency domain

    Forced vibration analysis using modal expansion

  • 8/17/2019 Dynamics Ppt

    3/52

    3

    A rigid bar supported on two springs

    1 1 1 2 2

    2

    O : Elastic centre

    O : Centre of gravity

    k L k L

    Two DOF-s

     1 Translation

     1 Rotation

    1 2 1 2l l L L L

  • 8/17/2019 Dynamics Ppt

    4/52

    4

    1 1 2 2

    2 2 2 1 1 1

    1 2 1 1 2 2

    2 2

    1 1 2 2 1 1 2 2

    0

    0

    00

    0

    my k y l k y l  

     I k y l l k y l l 

    k k k l k l  m y y

    k l k l k l k l   I 

     

     

     

     is diagonal and is non-diagonal M K 

    Static coupling

  • 8/17/2019 Dynamics Ppt

    5/52

    5

     

    1 2

    2 2

    1 1 2 2

    00

    0

    k k m me z z  

    k L k Lme m    

     is non-diagonal and is diagonal M K 

    Inertial coupling

  • 8/17/2019 Dynamics Ppt

    6/52

    6

    1 1 2 2

    2

    1 2 2

    0m ml k k k L x x

    ml m k L k L  

     is non-diagonal and is non-diagonal M K 

    Static and inertial coupling

  • 8/17/2019 Dynamics Ppt

    7/52

    7

    Remarks

    •Equations of motion for MDOF systems are generally

    coupled

    •Coupling between co-ordinates is manifest in the form of

    structural matrices being nondiagonal

    •Coupling is not an intrinsic property of a vibrating system.

    It is dependent upon the choice of the coordinate system.

    This choice itself is arbitrary.

    •Equations of motion are not unique.

    They depend upon the choice of coordinate system.

  • 8/17/2019 Dynamics Ppt

    8/52

    8

    Remarks (continued)

    •The best choice of coordinate system is the one

    in which the coupling is absent. That is, the structural

    matrices are all diagonal.

    •These coordinates are called the natural coordinates

    for the system. Determination of these coordinates for

    a given system constitutes a major theme in structural

    dynamics. Theory of ODEs and linear algebra help us.

  • 8/17/2019 Dynamics Ppt

    9/52

    9

    0 00 ; 0

    , and , in general, are non-diagonal

    Equations are coupledSuppose we introduce a new set of dependent

    variables ( ) using the transformation

    ( )where is a tra

     MX CX KX F t  X X X X 

     M C K 

     Z t 

     X t TZ t T n n

    nsformaiton matrix, to be

    selected.

    How to uncouple equations of motion?

  • 8/17/2019 Dynamics Ppt

    10/52

    10

    0 00 ; 0

    ( )( )

    ( )

    ( )

    , ,& structural matrices in the new coordinate system.

    ( ) force vector in the new coord

    t t t t  

     MX CX KX F t 

     X X X X 

     X t TZ t  MTZ t CTZ t KTZ t F t 

    T MTZ t T CTZ t T KTZ t T F t  

     MZ t CZ t KZ t F t 

     M C K 

     F t 

    inate system

    Can we select such that , ,& are all ?

    If yes, equation for ( ) would then represent a set of uncoupled

    equations and hence can be solved easily.

    T M C K  

     Z t 

    Question

    DIAGONAL

  • 8/17/2019 Dynamics Ppt

    11/52

    11

    How to select to achieve this?T 

    Consider the seemingly unrelated problem of 

    undamped free vibration analysis

    0

    Seek a special solution to this set of equations in which

    all points on the sturcutre oscillate harmonically at thesa

     MX KX 

    2

    2

    me frequency.

    That is

    exp ; 1,2, ,

    or, exp where is a 1 vector.

    exp & exp

    exp 0

    k k  x t r i t k n

     X t R i t R n

     X t i R i t X t R i t 

     MR KR i t 

     

     

     

     

  • 8/17/2019 Dynamics Ppt

    12/52

    12

    2

    2

    2

    exp 0

    0

    This is a algebraic eigenvalue problem.

    ;

     is positive semi-definite

     is positive definite

    Eigensolutions would be real valued

    and eigenvalues w

    t t 

     MR KR i t 

     RM KR

     KR MR

     K K M M 

     K 

     M 

     

     

     

    Note

    ould be non-negative.

  • 8/17/2019 Dynamics Ppt

    13/52

    13

    2

    2

    12

    12 2

    12

    12

    0

    Let exist.

    0

    0 0

    If exists, =0 is the solution.

    Condition for existence of nontrivial solution is that

     should not exist

     KR MR

     K M R

     K M 

     K M K M R

     IR R

     K M R

     K M 

     

     

     

     

     

     

    2

    2 2 2

    1 2

    1 2

    .

    0

    This is called the characteristic equaiton.

    This leads to the characteristic values

     and associated eigenvectors

    , , , .

    n

    n

     K M 

     R R R

     

     

  • 8/17/2019 Dynamics Ppt

    14/52

    14

    2

    2

    2

    Consider - th and -th eigenpairs.

      (1)

      (2)

    (1)

      (3)

    (2)

    r r r 

     s s s

     s

    t t 

     s r r s r 

    r s s

    r s

     KR MR

     KR MR

     R

     R KR R MR

     R R KR

     

     

     

     

    Orthogonaility property of eigenvectors

    2

    2

    2

    2 2

      (4)

    Transpose both sides of equation (4)

    Since & , we get

      (5)

    Substract (3) and (5)

    0

    r s

    t t t t  

     s r s s r 

    t t 

    t t 

     s r s s r 

    r s s r  

     R MR

     R K R R M R

     K K M M 

     R KR R MR

     R MR

     

     

     

    0

    0

    t  s r 

     s r 

     R MR r s

     R KR r s

    2

     Normalization

    1t 

     s s

    t  s s s

     R MR

     R KR    

  • 8/17/2019 Dynamics Ppt

    15/52

    15

    21 ( )

    2 2 2

    1 2

    Introduce

    Diag

    nn n

    n

     R R R

     

     M I 

     K 

    Orthogonality relations

    Select T  

  • 8/17/2019 Dynamics Ppt

    16/52

    16

    0 0

    2

    0 ; 0

    ( )( )

    ( )

    ( )

    ; 1, 2, ,

    How about initial conditions?(0) 0

    (0) 0 0

    0 (0) & 0 (0)

    t t t 

    r r r r  

    t t 

    t t 

     MX KX F t 

     X X X X 

     X t Z t  M Z t K Z t F t 

     M Z t K Z t F t 

     IZ t Z t F t 

     z z f t r n

     X Z 

     MX M Z Z 

     Z MX Z MX 

     

    Consider

    Undamped

    Forced

    Vibration Analysis

  • 8/17/2019 Dynamics Ppt

    17/52

    17

     

     

    0

    1

    1 0

    0 10 cos sin sin

    010 cos sin sin

    t r 

    r r r r r r  

    r r 

    n

    k kr r  

    t n

    r kr r r r r r  

    r    r r 

     z  z t z t t t f d 

     X t Z t 

     x t z t 

     z  z t t t f d 

       

       

     

  • 8/17/2019 Dynamics Ppt

    18/52

    18

    0 00 ; 0

    ( )

    ( )

    ( )

    ( )

    If is not a diagonal matrix, the

    equations

    t t t t  

     MX CX KX F t 

     X X X X 

     X t Z t 

     M Z t C Z t K Z t F t 

     M Z t C Z t K Z t F t 

     IZ t C Z t Z t F t 

    How about damped forced response analysis?

    of motion would still remain coupled.

  • 8/17/2019 Dynamics Ppt

    19/52

    19

    If the damping matrix is such that

     is a diagonal matrix, then equaitons would

    get uncoupled.

    Such matrices are called classical damping matrices.

    Rayleigh's proport

    Classical damping models

    Example

    ional damping matrix

    t t t 

    C M K 

    C M K 

     I 

     

     

     

  • 8/17/2019 Dynamics Ppt

    20/52

    20

    2

    2

    [ ]

    [ ] [ ]

    2 2

    T T 

    T T 

    i

    n n

    nn

    n

    C M K 

    C M K 

     I K 

     I Diag 

    c

     

     

     

     

     

        

     

    •Rayleigh damping model imposes prescribed variations

    •on modal damping values as function of the mode count

    •There are only two free parameters.

    •These parameters can be determined using known values of damping ratios

    for two modes.

  • 8/17/2019 Dynamics Ppt

    21/52

    21

    100

    101

    102

    103

    10-4

    10-3

    10-2

    10-1

    100

    frequency rad/s

          e       t      a

    mass and stiffness proportional

    stiffness proportional

    mass proportional

  • 8/17/2019 Dynamics Ppt

    22/52

    22

    2

    0

    ( )

    0 (0) & 0 (0)

    2 ; 1,2, ,

    with 0 & 0 specified.

    exp cos sin

    1 exp

    t t 

    r r r r r r r  

    r r 

    r r r r dr r dr  

    r r r 

    dr 

     IZ t C Z t Z t F t 

     Z MX Z MX 

     z z z f t r n

     z z 

     z t t a t b t 

    t f d 

     

     

      

  • 8/17/2019 Dynamics Ppt

    23/52

    23

     

     

    0

    1

    1 0

    1exp cos sin exp

    1exp cos sin exp

    1,2, ,

    r r r r dr r dr r r r  

    dr 

    n

    k kr r  r 

    t n

    kr r r r dr r dr r r r  

    r    dr 

     z t t a t b t t f d 

     X t Z t 

     x t z t 

    t a t b t t f d  

    k n

      

      

     

  • 8/17/2019 Dynamics Ppt

    24/52

    24

    MDOF system with -th dof driven by an unit harmonic force s

    exp0 0 1 0 0

     MX CX KX F i t  F 

     

    th entry s

     response of the -th coordinate due tounit harmonic driving at -th coordinate.

    rs X t r 

     s

    lim ?rst 

     X t 

  • 8/17/2019 Dynamics Ppt

    25/52

    25

    0

    0

    2

    0

    2

    0 0 0

    2

    0

    2

    0

    exp

    0 0 1 0 0

    lim exp

    exp

    exp

    exp exp exp exp

    exp exp

     MX CX KX F i t 

     F 

     X t X i t 

     X t X i i t 

     X t X i t 

     MX i t CX i i t KX i t F i t 

     M i C K X i t F i t 

     M i C K X F 

     

     

     

     

     

     

  • 8/17/2019 Dynamics Ppt

    26/52

    26

    2

    0

    0 0

    2

    0

    2

    0

    2

    0

    2

    0

    exp exp

    &

     is classical (Diagonal) with 2

    t t 

    nn n n

    t t 

    t t t t  

     M i C K X F 

     X t X i t Z i t 

     M I K 

    C C 

     M i C K Z F 

     M i C K Z F 

     M i C K Z F 

     I i Z F 

     

     

     

     

     

     

     

    Diagonal

  • 8/17/2019 Dynamics Ppt

    27/52

    27

    2

    0

    1 1

    0 2 2 2 2

    0 2 2

    0 0

    1

    2 21

    2 2

    Recall

    0 0 1 0 0 ( -th entry=1; rest=0)

    2

    lim exp exp

    2

     N N t 

    nk k kn k  

    k k 

    nn n n n n n

     sn

    n

    n n n

     N 

    r rn nt 

    n

     N rn sn

    n n n n

     I i Z F 

     F F 

     Z i i

     F s

     Z  i

     X t Z i t X t Z i t 

    i

     

     

     

     

     

     

    2 2

    1

    exp

    exp

    2

    rs rs

     N rn sn

    rs

    n n n n

    i t 

     X t H i t 

     H 

    i

     

     

     

     

    N

  • 8/17/2019 Dynamics Ppt

    28/52

    28

     

    2 21

    2 21

    12

    2 21

    exp2

    2

     is symmetric but not Hermitian

    2

     N rn sn

    rs

    n n n n

     N 

    rn snrs

    n n n n

    rs sr  

    rs sr  

    rs

     N rn sn

    n n n n

     X t i t i

     H i

     X t X t  H H 

     H H 

     H 

     H M i C k i

       

       

     

     

     

       

     

    Remarks

  • 8/17/2019 Dynamics Ppt

    29/52

    29

    *

    12

    2 21

      Conceptually simple

      Computationally difficult to implement

    2

      Computationally easier to implement

      Not al

     N N rn sn

    n n n n

     H M i C k 

     H i

     

       

     

    l modes need to be included

      (Nor it is advisable to include all modes)

  • 8/17/2019 Dynamics Ppt

    30/52

    30

    MDOF system with -th dof driven by an unit impulse force s

    0 0; 0 0

    0 0 1 0 0

     MX CX KX F t 

     X X 

     F 

     

    th entry s

     response of the -th coordinate due to

    unit impulse driving at -th coordinate.

    rs X t r 

     s

  • 8/17/2019 Dynamics Ppt

    31/52

    31

    0 0 1 0 0

    &

     is classical (Diagonal) with 2

    t t 

    nn n n

    t t t t  

     MX CX KX F t 

     F 

     X t Z t 

     M I K 

    C C 

     M Z t C Z t K Z t F t 

     M Z t C Z t K Z t F t 

     IZ Z Z F t 

     

     

     

     

     

  • 8/17/2019 Dynamics Ppt

    32/52

    32

    2

    1

    1

    1

    2

    0 0; 0 0

    exp sin

    1exp sin

     N 

    n n n n n n jn j ns

     j

    n n

     snn ns n n n dn

    dn

     N 

    r rn n

    n

     N 

    rs rn sn n n dn

    n   dn

     IZ Z Z F t 

     z z z F t t 

     z z 

     z t h t t t 

     X Z 

     X t z t 

    h t t t  

     

     

      

      

    1N

  • 8/17/2019 Dynamics Ppt

    33/52

    33

    1

    1exp sin

    Remarks

    Matrix of impulse response functions

     Not all modes need to be included in the summation

    If an arbitrary load

     N 

    r rs rn sn n n dn

    n   dn

    rs sr  

    rs

     s

     X t h t t t 

    h t h t  

    h t h t  

    h t h t  

     f  

      

    0

    10

     is applied at the -th dof (instead of 

    unit impulse excitation)

    1exp sin

    rs rs s

    t    N 

     s rn sn n n dn

    n   dn

     s

     X t h t f d 

     f t t d 

     

     

     

     

  • 8/17/2019 Dynamics Ppt

    34/52

    34

    2

    2 1 1

    Are & the only two orthogonality relations?

    .

    Consider

    (It may be noted that is the flexibility matrix)

    Pre-multiply both

    t t 

    n n n

    n n n

     M I K 

     K M 

     I K M K 

     

     

    More on orthogonality relat

    N

    ions

    o

    2 1

    1

    2 1

    1

    1 2 1 1

    1 1

    sides by

    0 for

    is orthogonal to .

    Consider

    Pre-multiply both sides by

    0 foris orthogonal to

    thi

    t t 

    k n n k n

    n n n

    t t 

    k n n k n

     M 

     M MK M n k 

     MK M 

     I K M 

     MK M 

     MK M MK MK M n k  MK MK M 

     

     

     

     

     

    s leads to an infinite family of orthogonality relations.

  • 8/17/2019 Dynamics Ppt

    35/52

    35

    2

    1

    2

    1

    2

    1

    1

    2

    1

    1

    Consider

    1

    Pre-multiply both sides by

    1  0 for

    is orthogonal to

    1Consider

    Pre-multiply both sides by

    n n n

    n n

    n

    t t 

    k n k n

    n

    n n

    n

     M K 

     I M K 

     K 

     K KM K n k 

     KM K 

     I M K 

     KM K 

     KM 

     

     

     

     

      

      

     

     

    nd2 family

    1 1

    2

    1 1

    1 0 for

    is orthogonal to

    this leads to an infinite family of orthogonality relations.

    n k n

    n

     K KM KM K n k 

     KM KM K 

      

  • 8/17/2019 Dynamics Ppt

    36/52

    36

    matrix satisfies two infinite families of orthogonality relations

    with & being two special cases of these

    family of orthgonality relations.

    t t  M I K 

    1 1 1

    1 2 3

    1 1 1

    1 2 3

    Do these additional orthogonality relations help is modeling

    damping better?

    : Rayleigh's damping model

    C=

    By virtue of d

    C M K 

     M MK M MK MK M 

     K KM K KM KM K 

     

     

       

    Yes.

    RecallGeneralization

    iscussions in the preceding slides,

    would be diagonal.

    t C 

  • 8/17/2019 Dynamics Ppt

    37/52

    37

    The generalization admits as many free parameters as is neededto model damping. This number can match the number of modes for

    which damping ratio is known.

    In fact, damping can be specified i

    Remarks

    ndependently for all the modes

    without worrying about the underlying matrix. Thus, for example,we can say that damping is 5% for all modes. A C matirx can be derived,

    if needed, consistent with this

    information, using generalized Rayleigh

    damping model.

    N

  • 8/17/2019 Dynamics Ppt

    38/52

    38

    1

    1

    1

    1 1

    1

    1 1

    1

     

    Diagonal 2

     Naive approach: C=

    More helpful approach:

    Similarly

     N 

    i   i

    i i

    t t 

    t t t 

     M I M 

     M 

     M 

     M 

    C M M 

     

     

    Determination of a classical matrix given

    This can be used even when all modes are

    not included in the analysis (which invariably is the case).

  • 8/17/2019 Dynamics Ppt

    39/52

    39

    Damping depends upon material, details of joints and supports.

    Energy disspated in a cycle when a structure is oscillating harmonical

    Modal damping when the sturcture is

    made up of different materials

    ly

    is proportional to KE (or PE) in a cycle

    (Excercise: show this for a sdof system).

    Consider a structure that is oscillating in its -th mode. Let the structure

     be made up of s number of mat

    n

    erials (e.g., RCC, steel, soil,...).

    Let damping ratio for -th material in the -th mode.

    (e.g., RCC~5%, steel ~2%, soil~10%).

    Let equivalent damping ratio for the structure in the -th mode

    n

    n

    eq

    r n

    n

     

     

    .

    Let total KE (or PE) stored in structral parts made up of r-th material

    in the -th mode.

    n

    r  E 

    n

  • 8/17/2019 Dynamics Ppt

    40/52

    40

    1

    1

     can be computed based on undamped normal mode shapes.

     sn n

    r r n   r eq   s

    nr 

    n

     E 

     E 

     E 

     

       

  • 8/17/2019 Dynamics Ppt

    41/52

    41

    What happens if is not diagonal?t C 

    0 0; 0 ; 0

    The matrix does not uncouple this set of equations.

    We augment the above equation by the identity - 0

    and write

    - 0

    0 - 0

    0

     MX CX KX F t X X X X 

     MX MX 

     MX CX KX F t 

     MX MX 

     M M  X 

     M C K  X 

     

    2 2 2 2 2 12 1

    0

    Introduce

    00 - 0; ; ;

    0 N N N N    N  N 

     X 

     F t  X 

     M M  X  y A B p t 

     F t  M C K  X   

     

     

     

     

    A

  • 8/17/2019 Dynamics Ppt

    42/52

    42

     is the new 2 1 response vector (state vector)

     and B are the new structural matrices of size 2 2

     and are symmetric ;

     and are not positive defninite

     and B are in gene

    t t 

     Ay By p t 

     y t N 

     A N N 

     A B A A B B

     A B

     A

    ral non-diagonal equations are coupled.

    : Transform

    2 2 transformation matrix to be selected such that

    the transformation would uncouple the above equations of motion.

     

     y Tz 

    T N N 

     y Tz ATz BTz p t 

    Strategy

     (equations in the transformed coordinate system)

    Aspiration: to select such that and are both diagonal so that

     represents a set of 2 uncoupled equations wh

    t t t  ATz T BTz T p t q t 

     Az Bz q t 

    T A B

     Az Bz q t N 

    ich can

     be solved easily.

    Ay By p t

  • 8/17/2019 Dynamics Ppt

    43/52

    43

    : Determine T by determining the

    eigensolutions associated with and matrices.

    Free vibration analysis

    0

    Seek solutions of the form exp( )

    exp( ) exp( ) 0

    The

     Ay By p t 

     A B

     Ay By

     y t R t 

     AR t BR t 

     BR AR

     

     

     

    Strategy

     required transofrmation matrix would be obtained by solving

    this eigenvalue problem.

    0

    For nontrivial soutions the inverse of must not exist

    characteristic equation 0

     B A R

     B A

     B A

     

     

     

    If is an eigenpair we haveR

  • 8/17/2019 Dynamics Ppt

    44/52

    44

     

    * * * * *

    * *

    1

    If , is an eigenpair we have

    Taking conjugation on both sides we get

      Note: and are real valued and &

    If , is an eigenpair, , is also an eigenpair 

    Eigenvalues: ,

     R

     BR AR

     BR AR A B A A B B

     R R

     

     

     

     

     

    * * *

    2 1 2

    * * *

    1 2 1 2

    , , , , , ,

    Eigenvectors: , , , , , , ,

    Recall

    if exp exp

    exp

     N N 

     N N  R R R R R R

     X  y X t t X t t  X 

     y t R

     

     

      

     

    Orthogonality relations

  • 8/17/2019 Dynamics Ppt

    45/52

    45

    Consider the th and th eigenpairs , & ,

    Transpose both sides of the first of the above equations

    S

    m m n n

    m m m

    n n n

    t t 

    n m m n m

    t t 

    m n n m n

    t t t t  

    m n m m n

    m n R R

     BR AR

     BR AR

     R BR R AR

     R BR R AR

     R B R R A R

     

     

     

     

     

     

    Orthogonality relations

    ince &

    Subtracting the above equations, we get 0

    0 & 0

    t t t t  

    m n m m n

    t t 

    m n m m n

    t t 

    m n n m n

    m n m n

    t t 

    m n m n

     A A B B R BR R AR

     R BR R AR

     R BR R AR

     R AR

     R AR m n R BR m n

     

     

     

     

  • 8/17/2019 Dynamics Ppt

    46/52

    46

    * * *1 2 1 2

    * * * * * *

    1 1 2 2 1 1 2 2

    * * *

    1 2 1 2

    1

    2

    1 2

    * *

    Define the modal matrix

      =

    Let

    0 0

    0 0

    = &

    0

    k k 

     N N 

     N N N N 

     N N 

     N 

     N 

     R R

     R R R R R R

      

      

     

     

     

     

     

     

     

     

     

  • 8/17/2019 Dynamics Ppt

    47/52

    47

    * * *

    1 2 1 2

    1 1 2

    We have

    0 & 0

    Select the normalization constant such that

    1 so that .

    We also have

    Define the modal matrix

      =

    t t 

    m n m n

    t t 

    n n n n n

    k k 

     N N 

     R AR m n R BR m n

     R AR R BR

     R R

     R R R R R R

     

      

      

     

     

    * * * * * *

    2 1 1 2 2

    * * *

    1 2 1 2

     N N N N 

     N N 

     

     

  • 8/17/2019 Dynamics Ppt

    48/52

    48

    1

    2

    1 2

    * *

    *

    *

    0 0

    0 0Let = &

    0

    The orthogonality relations can now be written as

    0

    0

    Use the transformation matirx .

     N 

     N 

     A I 

     B

     

       

     

     

  • 8/17/2019 Dynamics Ppt

    49/52

    49

    0

    *

    *

    ; 0

     Transform

    By virtue of orthogonality relations we have

    0&

    0

    0

    0

    This represents a set of

    t t t 

    t t 

     Ay By p t y y

     y z 

     A z B z p t 

     A z B z p t q t 

     A I B

     I z z q t 

    Forced response analysis

    2 uncoupled first order equations.

    Missions accomplished!

     N 

  • 8/17/2019 Dynamics Ppt

    50/52

    50

    * *

    * *

    * * * *

    * *

    00

    0

    Let

    00

    0

    ( )

    ( )Initial conditions

    0 0 0 0

    t t 

    t t 

     I z z  F t 

    u z 

    v

    u u

     F t v v

    u u F t  

    v v F t  

     y z z Ay

         

       

     

       

    Response when -th dof is driven by a unit harmonic excitationr 

  • 8/17/2019 Dynamics Ppt

    51/52

    51

     

    * *

    1

    * * *

    1

    0 0 1 -th dof 1 exp

    ( )

    ( )

    ( ) exp ; 1,2, ,

    ( ) exp ; 1,2, ,

    li

     N 

     j j j nj jr 

    n

     N 

     j j j nj jr 

    n

     F t r i t 

    u u F t  

    v v F t  

    u u F t i t j N  

    v v F t i t j N  

     

     

     

     

     

    *

    *

    * **

    *

    * *

    *

    *

    1 1

    exp expm & lim

    lim exp

     jr jr 

     j jt t 

     j j

     N N kj jr kj jr  

    k kj j kj j k  t 

     j j   j j

    i t i t  u t v t  

    i i

     x u x t u v

     x v

     x t u t v t x t i t 

    i i

     

     

     

     

  • 8/17/2019 Dynamics Ppt

    52/52

    52

    * *

    *1

    * *

    *1

    lim exp exp

    Frequency response function

     N kj jr kj jr  

    k kr t 

     j   j j

     N kj jr kj jr  

    kr 

     j   j j

     x t i t i t i i

    i i