26
MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Long time scale simulations to determine accurate ab initio free energies Jörg Neugebauer, Blazej Grabowski, and Tilmann Hickel Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Department of Computational Materials Design ? { } = I B BOS R T k E e Z / T [°C] C [wt.%] 0 0 400 800 1200 1 2 3 + + + + Partition function Phase diagram

e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

  • Upload
    buinhan

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

Page 1: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Long time scale simulations to determine accurate ab initio free energies

Jörg Neugebauer, Blazej Grabowski, and Tilmann Hickel

Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Department of Computational Materials Design

?

{ }∑ −=

I

BBOS

R

TkEeZ

/

T [°

C]

C [wt.%] 0 0

400

800

1200

1 2 3

+

+

+

+

Partition function

Phase diagram

Page 2: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Do we have to go beyond experiment? Calorimetric measurements

fcc Al fcc/bcc Mg

Fundamental input for all thermodynamic databases → But: Scatter of ~0.3 … 1 kB

Point defects (vacancies): Formation energies and entropies Al

Exp. DFT Ef (eV) 0.7 0.6 S (kB) 2.4 0.2

Page 3: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Do we have to go beyond experiment?

Even chemical trends are hard to derive from existing data

Key quantity to design novel high-strength steels Additional complication → magnetism

Stacking fault energies (fcc Fe-Mn)

Page 4: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Accuracy

Free energy difference between bcc and fcc iron

empirical potentials experiment

fcc bcc bcc

~1meV

Energy resolution better 1 meV! → Can we achieve such accuracy with present day ab initio techniques?

Comp. Mat. Sci. 41, 297 (2008)

Page 5: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Ab initio Thermodynamics

Statistical averages over coordinates, magnetic moments, occupations, chemical compositions

{ }( )xTV

TkfZRE BiIIIBOS

exTVZ,,

/,...,,,),,( σ

−=

{ }( ){ } xTVfZR

TkfZRE

iIII

BiIIIBOS

e,,,...,,,

/,...,,,∑ −=σ

σ

{ }{ }{ }

xTVR

TkifIIZRE

I

Bfixed

IBOS

e,,

/,...,,;

=

σ

Vibrational excitations

{ }{ }{ }

xTVf

TkIIZIRfE

i

Bfixed

iBOS

e,,

/,...,,;

×σ

Electronic excitations

Adiabatic approximation

+ cross terms e.g. electron-phonon interactions

Page 6: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Statistical averages with 1meV accuracy

Accuracy considerations

adiabnonmagT FFFFFFETVF −= ++++++= vacelahqh

K0),(

~0.1 meV/atom ~0.1 meV/atom

challenging < 1 meV/atom

( ) ( ){ }( )dttREt

TEtt

ttI

BOS

t∫∆+

=∞→∆ ∆=

0

0

1lim

a few hours/days 107 configurations (~ 10 temperature steps)

Page 7: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Are contributions beyond quasiharmonic

approximation relevant?

Page 8: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Free energy

Phonons

Expan- sion

Calphad GGA LDA Exp.

20

10

0

ω [

meV

] 0

-80

-160

-240

-320

-400

-480

F [m

eV/a

tom

]

200 400 600 800 T[K]

1.0

0.5

0

C P [

meV

/(K

atom

)]

0 300 600 T[K] 0 300 600

2

1

0

∆ x

[%]

Γ X K Γ L

Al

Example: Bulk (fcc) Aluminum

Heat capacity

Tmelting

Page 9: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Can we use empirical potentials to describe

anharmonic contributions

How to sample over 107 configurations with

ab initio accuracy?

Page 10: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Heat capacity of bulk Aluminum

200 400 600 800 T[K]

3.9

3.6

3.3

3.0

Hea

t ca

paci

ty [

k B]

Ab initio qh,el + Mishin et al.[1] ah

Ab initio qh,el + Ercolessi-Adams[2] ah

Ab initio qh,el + Mei-Davenport[3] ah

Ab initio quasiharmonic + electronic

Experiment[4]

None of the available empirical potentials is able to describe the anharmonic contribution

[1] Y. Mishin, et al., Phys. Rev. B 59, 3393 (1999). [2] F. Ercolessi and J. B. Adams, Europhys. Lett. 26, 583 (1994). [3] J. Mei and J. Davenport, Phys. Rev. B 46, 21 (1992). [4] D. A. Ditmars, et al., Int. J. of Thermophys. 6, 499 (1985).

Tmelting

Page 11: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Coarse graining configuration space

Thermodynamic integration

( ) ( ){ }( )∑=N

iiI

BOS tREN

TU1

Main challenge: Reduce number of (ab inition) configurations by several orders of magnitude

from MD or MC

Two major concepts

Free energy perturbation

Page 12: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Thermodynamic Integration

Key idea: Compute free energy change between reference system A and real system B

( ) ( )∫ ∂

∂=→∆

1

0

λλλ

λ

dUBAF ( ) ( )ABA UUUU −+= λλwith

0 2000 4000

12

11

10

9

8

Ener

gy [

meV

/ato

m]

MD steps

MD simulation in TI-step Application straightforward if good reference is available Typically the number of configurations can be reduced by 1-2 orders of magnitude → several 104 configurations Not affordable on highest ab initio level

Page 13: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Free energy perturbation

Key idea: Compute free energy change between reference system A and real system B

( )AB

ABB Tk

EETkBAF

−−−=→∆ expln

Performance increases with quality of reference For large differences to reference the method becomes inefficient/ fails For the targeted accuracy less efficient than thermodynamic integration

P

{ }IR

A

B

Page 14: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

How to boost coarse graining?

Cycles in thermodynamic integration ( ) ( )∫ ∂

∂=→∆

1

0

λλλ

λ

dUBAF

λ integration (2-10 steps)

Thermodynamic average (103…104 MD steps)

→ Improved ref. reduces step number

0 2000 4000

12

11

10

9

8

Ener

gy

MD steps

Performance bottleneck

Page 15: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Solution

λ integration (2-10 steps)

Thermodynamic average (103…104 MD steps)

→ Improved reference reduces step number → Here: Quasiharmonic reference

0 2000 4000

12

11

10

9

8

Ener

gy

MD steps

→ Use free energy perturbation approach → Use low/medium converged DFT as reference

→ Typically reduces number of configurations by 102

Page 16: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Performance of the new approach • Wavefunction extrapolation • Thermodyn. integr. (TI) with Langevin dynamics • Ensemble average instead of time average (parallelization) • Up-sampling in λ−ΤΙ step • etc.

0 2000 4000

12

11

10

9

8

Ener

gy [

meV

/ato

m]

MD steps

Low convergence parameters efficient calculation

MD simulation in TI-step

0 40 80 MD steps

16

15

14

13

12 Ener

gy [

meV

/ato

m]

High convergence parameters few MD steps

Up-sampling

uncorrelated

Grabowski et al., Phys. Rev. B79, 134106 (2009).

Required CPU time (logarithmic)

Molecular dynamics

Thermodyn. Integration UP-TILD

110

year

s

1.1

year

s

20 d

ays

Efficient coarse graining reduces number of configurations from 107 to a few 102 !

→ Opens the way to a fully ab initio determination of free energies

Page 17: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Benchmark against experiment

Page 18: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Thermal expansion coefficient

Excellent agreement with experiment Systematic trend: LDA and GGA provide approximate measure of error bars

Temperature (K)

Experiment

Thermal expansion coefficient of Al

F (V,T) = Fel(V,T)+Fqh(V,T) + Fqh,el(V,T) + Fah(V,T) + Fvac(V,T) + Fint(V,T)

Grabowski,Ismer, Hickel, Neugebauer, Phys. Rev. B 79, 134106 (2009)

Page 19: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Heat Capacity

DFT gives lower bound to all recent experiments

F (V,T) = Fel(V,T)+Fqh(V,T) + Fqh,el(V,T) + Fah(V,T) + Fvac(V,T) + Fint(V,T)

Heat capacity of Al

Page 20: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Applications

Page 21: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Assessment of experimental data

Page 22: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Calcium: Heat capacity

Page 23: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Calcium: Heat capacity

Page 24: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Newly developed approaches allow to systematically improve performance of DFT to describe finite temperature properties

Ab initio thermodynamics (Conclusions)

Accuracy often exceeds experimental data even of stable phases

→ Provide excellent basis to compute thermodynamic data

Page 25: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Thanks to the department

CM Department (2011)

Page 26: e E k T BOS Z B - Max Planck Societybemod12/Slides/Neugebauer_Bemod12.pdf · MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012 Do we have to go beyond

MPIE, Dept. Computational Materials Design BEMOD, Dresden, March 26 - 29, 2012

Thanks for your attention