e Pathology

Embed Size (px)

Citation preview

  • 8/13/2019 e Pathology

    1/41

  • 8/13/2019 e Pathology

    2/41

    Contents

    Gauss integrationDefinition4-node quadrilateralQuality of the integration

    Patch test

    Rigid body mode

    Locking

    Spurious modes

    http://goforward/http://find/http://goback/
  • 8/13/2019 e Pathology

    3/41

    Contents

    Gauss integrationDefinition4-node quadrilateralQuality of the integration

    Patch test

    Rigid body mode

    Locking

    Spurious modes

    http://find/
  • 8/13/2019 e Pathology

    4/41

    Gauss integration

    r-point Gauss integration on a [-1:+1] segment:

    +11

    f()dr1

    wif(i)

    gives exact result for a (2r

    1) order polynom

    Evaluation at sampling points i, combined with weigthing coefficientswiExample, order 2:

    f() = 1 : 2 = w1+w2f() = : 0 = w11+w22

    f() =2

    : 2/3 = w121+w2

    22

    f() =3 : 0 = w131+w2

    32

    then w1 =w2 = 1, and 1 = 2 = 1/

    3

    Gauss integration 4/41

    http://find/
  • 8/13/2019 e Pathology

    5/41

    Onedimensional Gauss integration

    One integration point

    -1

    0

    1

    2

    3

    4

    5

    -1 -0.5 0 0.5 1

    f(x)

    x

    f(x) =x5 +x3 + 3x2 1/2

    Gauss approximation

    11

    f()d2 f(0)

    Gauss integration 5/41

    http://find/
  • 8/13/2019 e Pathology

    6/41

    Onedimensional Gauss integration

    Two integration points

    -1

    0

    1

    2

    3

    4

    5

    -1 -0.5 0 0.5 1

    f(x)

    x

    f(x) =x5 +x3 + 3x2 1/2

    Gauss approximation

    11

    f()d 1 f(1/

    3) + 1 f(1/

    3)

    Gauss integration 6/41

    http://goforward/http://find/http://goback/
  • 8/13/2019 e Pathology

    7/41

    Onedimensional Gauss integration

    Three integration points

    -1

    0

    1

    2

    3

    4

    5

    -1 -0.5 0 0.5 1

    f(x)

    x

    f(x) =x5 +x3 + 3x2 1/2

    Gauss approximation

    11

    f()d=5

    9f(

    3/5) +

    8

    9f(0) +

    5

    9f(

    3/5)

    Gauss integration 7/41

    http://find/
  • 8/13/2019 e Pathology

    8/41

    Gauss integration in a N-dimensional space

    11

    11

    11

    f( , , )ddd=

    11

    d

    11

    d

    11

    f( , , )d

    Respectively r1, r2, r3 Gauss points in each direction, so that:

    11

    11

    11

    f( , , )ddd=

    r1i=1

    r2j=1

    r3k=1

    wiwjwkf(i, j, k)

    Usually, r1 =r2 =r3

    Special integration rules for triangles

    Gauss integration 8/41

    http://find/
  • 8/13/2019 e Pathology

    9/41

    Contents

    Gauss integrationDefinition4-node quadrilateralQuality of the integration

    Patch test

    Rigid body mode

    Locking

    Spurious modes

    http://find/http://goback/
  • 8/13/2019 e Pathology

    10/41

    4-node quadrilateral (1)

    1

    2

    3

    4

    x

    y

    1 2

    34

    1

    1

    1

    1

    Bilinear interpolation of the geometry and of the unknown functionx=N1x1+ N2x2+ N3x3+ N4x4 y=N1y1+ N2y2+ N3y3+ N4y4

    ux =N1qx1+ N2qx2+ N3qx3+ N4qx4 uy =N1qy1+ N2qy2+ N3qy3+ N4qy4

    Shape functions

    N1(, ) = (1)(1)/4 N2(, ) = (1 +)(1)/4N1(, ) = (1 +)(1 +)/4 N2(, ) = (1)(1 +)/4

    Jacobian matrix

    [J] = 1

    4

    x1+ x2 + x3 x4 + (x1 x2+ x3 x4) y1 + y2+ y3 y4+(y1 y2 + y3 y4)x1 x2+ x3 + x4 + (x1 x2 + x3 x4) y1 y2 + y3+ y4+(y1 y2 + y3 y4)

    Gauss integration 10/41

    http://find/
  • 8/13/2019 e Pathology

    11/41

    4-node quadrilateral (2)

    Determinant of the Jacobian matrix: terms in and

    8J=(y4 y2)(x3 x1) (y3 y1)(x4 x2)

    + ((y3 y4)(x2 x1) (y2 y1)(x3 x4))

    + ((y4 y1)(x3 x2) (y3 y2)(x4 x1))

    Inverse of the jacobian matrix: homographic function in and

    [J]1 =4

    J

    y1 y2 + y3 +y4 + (y1 y2 +y3 y4 ) x1 x2 + x3 +x4 + (x1 x2 +x3 x4 )+y1 y2 y3 +y4 (y1 y2 +y3 y4) +x1 x2 x3 +x4 (x1 x2 +x3 x4)

    Derivative of the shape functions:N1/xN1/y

    = [J]1

    N1/N1/

    = [J]1

    (1 )/4(1 )/4

    Terms in

    N1/xN1/y

    = 1

    J

    (1, ) (1, )(1, ) (1, )

    (1 )/4(1 )/4

    =

    0BB@

    (1, , , , 2)

    (1, , )(1, , , , 2)

    (1, , )

    1CCA

    Gauss integration 11/41

    http://find/
  • 8/13/2019 e Pathology

    12/41

    4-node quadrilateral (3)

    The jacobian is an homographic function for a generic quad.

    [K] is obtained by Gauss integration, [K] =R

    [B]T[D][B]d

    [K] =

    Z 11

    Z 11

    [B]T

    [D][B]Jdd =

    pXi=1

    pXj=1

    wiwjJ((i, j)[B]T

    (i, j)[D][B](i, j)

    The stiffness matrix includes terms like (1, ,,,2,...,4, 4, 22)

    (1, , )For a generic quad, the integration of[K] is never exact

    The internal forces are computed as:

    [Fint] =

    Z

    [B]T[]d =

    pXi=1

    pXj=1

    wiwjJ((i, j)[B]T(i, j)[(i, j)]

    The determinant at the denominator of [B] vanishes with thedeterminant due to elementary volumeThe internal forces ( constant) include terms like(1, ,,,2,...,2, 2, 2,2)Internal forces are integrated with a 2 2 rule

    Gauss integration 12/41

    http://find/
  • 8/13/2019 e Pathology

    13/41

    4-node quadrilateral (4)

    If the real world quad is a parallelogram, the relation (x, y), are linear andnot bilinear, so that the partial derivatives x/ , etc. . . are constant. Thejacobian is also constant.

    The following terms are present in the interpolation functions and theirderivatives:

    [N] 1

    [N/] 0 1 0 [N/] 0 0 1

    [K] is obtained by Gauss integration, using a constant J.

    The product [B]T(i, i)[D][B](j, j), and also the stiffness matrix,include terms like ij with i+j 2

    [K] is exactly integrated with a 2

    2 rule

    The internal forces present only linear terms

    Only one Gauss point is needed for constant stress state, and2 2 for linear stresses

    Gauss integration 13/41

    http://find/
  • 8/13/2019 e Pathology

    14/41

    Contents

    Gauss integrationDefinition4-node quadrilateralQuality of the integration

    Patch test

    Rigid body mode

    Locking

    Spurious modes

    http://find/
  • 8/13/2019 e Pathology

    15/41

    Number of Gauss points for an exact integration (1)

    The following terms are present in the interpolation functions and theirderivatives:

    For generic geometries, the computation of [B] involves derivativesof the shape functions and partial derivative of the coordinate of thephysical space wrt the reference coordinates:

    Ni

    x =

    Ni

    x

    A typical space derivative term is .....................

    x =

    1

    J

    y

    A typical term of [B] is then . . . . . . . . . . . . . . . . . . . . . . . . . . .1

    J

    Ni

    y

    A typical term of [K] is then . . . . . . . . . . . . . . . . . . . . . .1

    J

    Ni

    y

    2

    A typical term of [Fint] is then . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ni

    y

    Gauss integration 15/41

    ( )

    http://find/
  • 8/13/2019 e Pathology

    16/41

    Number of Gauss points for an exact integration (2)

    For linear geometries, and constant jacobian matrix (introducing theconstanta):

    Nix

    =aNi

    A typical term of [B] is then . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ni

    A typical term of [K] is then . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Ni

    2

    A typical term of [Fint] is then . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ni

    Gauss integration 16/41

    R l C2D8 l

    http://find/
  • 8/13/2019 e Pathology

    17/41

    Rectangular C2D8 element

    Uniform jacobianThe following terms are present in the interpolation functions and theirderivatives:

    [N] 1 2 2 2 2

    [N/] 0 1 0 2 0 2 2

    [N/] 0 0 1 0 2 2 2

    The product [B]T[D][B] includes terms like ij with i+j 43

    3 points for a full integration (too much, exact until 5)

    2 2 points are for reducedintegration

    Gauss integration 17/41

    N b f G i d d

    http://find/
  • 8/13/2019 e Pathology

    18/41

    Number of Gauss points needed

    Element Geometry Loading [K] [Fint]C2D4 Linear Constant 4 1C2D4 Bilinear Constant NO 1C2D4 Linear Linear 4 4C2D4 Bilinear Linear NO 4

    C2D8 Linear Constant 4 4C2D8 Bilinear Constant NO 4

    C2D8 Bilinear Linear NO 4C2D8 Generic Constant NO 4

    C3D8 Linear Constant 8 1C3D8 Trilinear Constant NO 8

    C3D20 Linear Constant 27 8

    C3D20 Trilinear Constant NO 8C3D20 Trilinear Linear NO 27C3D20 Generic Constant NO 27

    Gauss integration 18/41

    P i i f th G i t ti th d

    http://find/
  • 8/13/2019 e Pathology

    19/41

    Precision of the Gauss integration method

    a

    a

    x

    y

    a

    Compute I =

    +11

    +11

    1

    Jdd

    Using a mapping on a square[0..1]:

    x= (1 + ( 1))ay=a

    [J] =a(1 + (

    1)) a(

    1)

    0 a

    I= 1

    a2

    10

    d

    1 + ( 1)

    Order = 2 = 5 = 101 0.66666 0.33333 0.181822 0.69231 0.39130 0.234043 0.69312 0.40067 0.24962

    exact 0.69315 0.40236 0.25584

    Analytic expression:

    I = log

    a2( 1)(afterDhattandTouzot)

    Gauss integration 19/41

    Gl b l l ith

    http://find/
  • 8/13/2019 e Pathology

    20/41

    Global algorithm

    For each loading increment, do while{R}iter >EPSI:iter= 0; iter

  • 8/13/2019 e Pathology

    21/41

    Convergence

    Value of the residual forces

  • 8/13/2019 e Pathology

    22/41

    The concept ofpatch (engineering version)

    Apply a given displacement field on the external (blue) nodes

    Check the results in the internal (red) nodes

    For instance, uniform strain; or shear, or bending

    Check with a bending displacement field: ux=xy anduy =0.5(x

    2 +y2), assuming bilinear geometry (with term)

    The resulting displacement for uy should have terms like (a+b+ c+ d)2. Anine node quad will pass, but not an eight-node quad (missing 22 term in thepolynomial base).The eight-node pass, provided the edges are straightThis demonstrates also the limitations of high order elements. For them, a complexshape (terms in 3, 3 for a cubic interpolation introduces terms like 62,etc. . . for a correct patch test simulation. They are not in the polynomial basis...

    Patch test 22/41

    Rigid body mode (1)

    http://find/
  • 8/13/2019 e Pathology

    23/41

    Rigid body mode (1)

    Example of a 2D plane element

    Zero strain:

    u1,1 = 0 ; u2,2 = 0 ; u1,2+u2,1= 0

    Possible displacement field:

    u1 =A Cx2 ; u2 =B+Cx1

    3 rigid body modes:2 translations

    10

    and

    01

    ; 1 rotation

    x1x2

    Patch test 23/41

    Rigid body mode (2)

    http://find/
  • 8/13/2019 e Pathology

    24/41

    Rigid body mode (2)

    Example of a 2D axisymmetric element

    Zero strain:

    r =ur,r= 0 ; =

    ur

    r = 0 ; uz,z= 0

    Possible displacement field:

    uz=A

    Only 1 rigid body modes: 1 translation

    01

    Rigid body mode 24/41

    Rank sufficiency/deficiency

    http://find/
  • 8/13/2019 e Pathology

    25/41

    Rank sufficiency/deficiency

    No zero-energy mode other than rigid body modesris the rank of the elementary stiffness matrix (number ofevaluations)

    Check rwith respect to nF nR (nF is the number of element DOF,nR is the number of rigid body modes)

    Rank sufficient element iffr nF nRRank deficiency, d in the case d=nF nR r 0Each Gauss point adds nEto the rank of the matrix (nE is the orderof the stress-strain matrix, nGthe number of Gauss points),

    r=nEnGRULE: nEnG nF nR

    Rigid body mode 25/41

    Rank-sufficient Gauss integration

    http://find/
  • 8/13/2019 e Pathology

    26/41

    Rank-sufficient Gauss integration

    Element n nF nF nR Minng rule3-node triangle 3 6 3 1 1-pt6-node triangle 6 12 9 3 3-pt4-node quadrilateral 4 8 5 2 2x2

    8-node quadrilateral 8 16 13 5 3x39-node quadrilateral 9 18 15 5 3x38-node hexahedron 8 24 18 3 2x2x220-node hexahedron 20 60 54 9 3x3x3

    Rigid body mode 26/41

    Stiffness matrix of a rectangular element

    http://find/
  • 8/13/2019 e Pathology

    27/41

    Stiffness matrix of a rectangular element

    rectangle [a,a/2]; E=96; =1/3

    [K] =

    0

    BBBBBBBBBB@

    42 18 6 0 21 18 15 018 78 0 30 18 39 0 696 0 42 18 15 0 21 18

    0 30 18 78 0 69 18 3921 18 15 0 42 18 6 018 39 0 69 18 78 0 3015 0 21 18 6 0 42 18

    0 69 18 39 0 30 18 78

    1

    CCCCCCCCCCA

    Eigenvalues ={223.4 90 78 46.36 42 0 0 0}(three rigid body modes)

    Carlos Felippa

    Rigid body mode 27/41

    Stiffness matrix of a trapezoidal element

    http://find/
  • 8/13/2019 e Pathology

    28/41

    Stiffness matrix of a trapezoidal element

    a

    a

    2a1 2

    34

    E=4206384; =1/3

    Rule Eigenvalues obtained with different Gauss rules (scaled by 106)

    1x1 8.77276 3.68059 2.26900 0 0 0 0 02x2 8.90944 4.09769 3.18565 2.64523 1.54678 0 0 03x3 8.91237 4.11571 3.19925 2.66438 1.56155 0 0 0

    4x4 8.91246 4.11627 3.19966 2.66496 1.56199 0 0 0Three rigid body modes, but a rank deficiency by TWO is too few Gauss points

    are used

    Carlos Felippa

    Rigid body mode 28/41

    Analysis of the locking penomenon

    http://find/http://goback/
  • 8/13/2019 e Pathology

    29/41

    Analysis of the locking penomenon

    For bad reasons, the element becomes too stiff

    Shear locking

    Volumetric locking

    Trapezoidal locking

    Locking in fields

    Locking 29/41

    Alias functions

    http://find/
  • 8/13/2019 e Pathology

    30/41

    Alias functions

    Function which tries to mimic a given function in one element

    Basis for a C2D3: (1, , ), for a C2D4: (1, , , ),for a C2D8: (1, , , 2, , 2, 2,2).

    Alias for various functions:Function 2 2 3 2 2 3

    C2D3 0 0 0 C2D4 1 OK 1 C2D8 OK OK OK OK OK

    Locking 30/41

    Shear locking

    http://find/
  • 8/13/2019 e Pathology

    31/41

    g

    C2D4,L x1 L,1 x2 1Actual field

    u1 = x1x2u2 = x21 /2

    Aliased field u1 = x1x2

    u2 =

    L2/2 !!

    Computed shear for the alias, 12 =x/2 !! (actual solution: 0)Computed stored elastic energy Wefor the real field and Wa for the alias:

    WaWo

    = 1 +1

    2 L2

    Solve the problem by computing shear on the middle of the element

    Locking 31/41

    Shear locking (2)

    http://find/
  • 8/13/2019 e Pathology

    32/41

    g ( )

    Analytic solution

    11 =u1,1 =x2 11 =Ex2/(1 2)22 =u2,2 = 0 22 =Ex2/(1 2)

    212 =u2,1+u1,2 = 0 12 =0

    Solution with the alias

    11 =u1,1 =x2 11 =Ex2/(1 2)22 =u2,2 = 0 22 =Ex2/(1 2)

    212 =u2,1+u1,2 =x1 12 =(1/2)Ex1/(1 +)

    Wo=1

    2

    :

    d

    Locking 32/41

    Dilatational locking

    http://find/
  • 8/13/2019 e Pathology

    33/41

    g

    C2D4,L x1 L,1 x2 1

    Actual fieldu1 = x1x2

    u2 = x21

    2

    2(1 ) x22

    Aliased fieldu1 = x1x2

    u2 =

    L2

    2

    2(1 ) !!

    The computed stored elastic energy Wa for the alias tends to infinity iftends to 0.5

    Wa = E2(1 +)

    1 1 2x

    22 + x

    21

    2

    instead of: We= E

    2(1 2)x22

    Solve the problem by adding a non conform. displacement (x21 L2, x22 1)

    Locking 33/41

    Dilatational locking (2)

    http://find/
  • 8/13/2019 e Pathology

    34/41

    g ( )

    Analytic solution

    11 =u1,1 =x2 11 =Ex2/(1 2

    )22 =u2,2 = x2/(1 ) 22 =033 =u3,3 = 0 33 =

    212 =u2,1+u1,2 = 0 12 =0

    Solution with the alias

    11 =u1,1 =x2 11 =E(1 )x2/(1 +)(1 2)22 =u2,2 = 0 22 =Ex2/(1 +)(1 2)

    212 =u2,1+u1,2 =x1 12 =(1/2)Ex1/(1 +)

    Wo=1

    2

    :

    d

    Locking 34/41

    Locking of the 8-node rectangle

    http://find/http://goback/
  • 8/13/2019 e Pathology

    35/41

    Consider a rectangle of length 2 and width 2 (with > 1)

    Displacement basis: 1, , , 2, , 2, 2, 2

    Try u1 =x21 x2, u2 = x31 /3, so that 11 = 2x1x2, 22 = 0, 12 = 0.

    In fact, u2 represented by its alias,

    x1

    2/3, so that the shear is

    x21 2/3No lockingif the shear is evaluated at the second order Gauss point(x1 = 1/

    3)

    Underintegration is a good remedy to locking

    Locking 35/41

    Locking of the 8-node rectangle (2)

    http://find/
  • 8/13/2019 e Pathology

    36/41

    ( )

    Analytic solution

    11 =u1,1 = 2x1x2 11 =2Ex1x2

    22 =u2,2 = 0 22 =0

    33 =u3,3 = 0 33 =

    212 =u2,1+u1,2 = 0 12 =0

    Solution with the alias(u1

    =x21

    x2

    and u2

    =

    x1

    2/3)

    11 =u1,1 = 2x1x2 11 =2Ex1x2

    22 =u2,2 = 0 22 =0

    33 =u3,3 = 0 33 =0

    212 =u2,1+u1,2 =x

    2

    1 2

    /3 12 =(1/2)(x

    2

    1 2

    /3)/(1 +)

    Wo=1

    2

    :

    d

    Locking 36/41

    Trapezoidal locking

    http://find/
  • 8/13/2019 e Pathology

    37/41

    2 (1+ )

    2 (1 )

    x

    y

    Geometry: x1 = (1), and x2 =; =x1/(1x2).Displacement basis: 1, , , 2, , 2, 2, 2

    Try u1 =x21 x2, u2 =x

    21/2, so that 11=x2, 22 = 0, 12 = 0.

    In fact, the solution with the alias is:

    11=

    1

    22 =2 212 = 1 +

    ()

    1

    All components are affected

    Error on shear component suppressed if the evaluation is made at = 0only.

    Error on 22 cannot be easily suppressed

    Locking 37/41

    Dilatational locking on triangles

    http://find/
  • 8/13/2019 e Pathology

    38/41

    triangle C2D3

    Incompressible,BL TR mesh....... xy

    z

    Incompressible,TL BR mesh....... xy

    z

    Compressible,BL TR mesh......... xy

    z

    Locking 38/41

    Spurious modes of a C2D4

    http://com/Zescalier-comphttp://com/Zescalier-comphttp://com/Zescalier-comphttp://com/Zescalier-comphttp://com/Zescalier2http://com/Zescalierhttp://find/
  • 8/13/2019 e Pathology

    39/41

    Find a displacement field which does not produce any strain on the Gausspoints

    u12 =u22 =u

    32 =u

    42 = 0

    u11 = +a ; u21 = a

    u31 = +a ; u41 = a 2

    34

    1

    C2D4C2D4rC2D8C2D8r

    Spurious modes 39/41

    Spurious modes

    http://com/Zpoteau_linhttp://com/Zpoteau_lin_rhttp://com/Zpoteau_quadhttp://com/Zpoteau_quad_rhttp://com/Zpoteau_quad_rhttp://com/Zpoteau_quadhttp://com/Zpoteau_lin_rhttp://com/Zpoteau_linhttp://find/
  • 8/13/2019 e Pathology

    40/41

    An element has internal degrees of freedom which allow deformationprocess to occur in the element

    Rigid body mode {o} such as: [K] {o}= 0 everywhere

    Spurious mode {o} such as: [K] {o}= 0 in some places

    The number of independent states is given by the total number of dof in

    the elementNumber of independent states - Rigid body mode - Number of evaluationof the strain components = Number of spurious modes

    For an element of degree p, the number of strain evaluations is:3p2 (reduced integration, 2D); 3(p+ 1)2 (full integration, 2D); 6p2

    (reduced integration, 3D); 6p

    2

    (reduced integration, 3D).The number of strain states is:8p3 (Serendip, 2D); 2(p+ 1)2 (Lagrange, 2D); 36p6 (Serendip, 3D);3(p+ 1)3 6 Lagrange, 3D).

    Spurious modes 40/41

    Spurious modes

    http://find/http://goback/
  • 8/13/2019 e Pathology

    41/41

    Polynomial Serendip 2D Lagrange 2D Serendip 3D Lagrange 3Ddegree p

    1 2 2 12 122 1 3 6 27

    For the 8-node underintegrated element, the following is a spurious mode:

    u1 =k1(2 1/3)

    u2= k2(2 1/3)

    Spurious modes 41/41

    http://find/http://goback/