31
ECE442: Digital Electronics CSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

Embed Size (px)

Citation preview

Page 1: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

MOS Transistor

ECE442: Digital Electronics

Page 2: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

Review: Design Abstraction Levels

SYSTEM

GATE

CIRCUIT

VoutVin

CIRCUIT

VoutVin

MODULE

+

DEVICE

n+S D

n+

G

Page 3: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

The MOS Transistor

PolysiliconAluminum

Page 4: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

The NMOS Transistor Cross Sectionn areas have been doped with donor

ions (arsenic) of concentration ND - electrons are the majority carriers

p areas have been doped with acceptor ions (boron) of concentration NA - holes are the majority carriers

Gate oxide

n+

Source Drain

p substrate

Bulk (Body)

p+ stopper

Field-Oxide(SiO2)n+

Polysilicon Gate

L

W

Page 5: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

NMOS Transistor Layout

Page 6: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

NMOS Region of Operations

Page 7: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

NMOS Transistor Operation

Page 8: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

NMOS Triode Region-1

Page 9: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

NMOS Triode Region-2

Page 10: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

NMOS Active (Saturation) Region

Page 11: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

Switch Model of NMOS Transistor

Gate

Source(of carriers)

Drain(of carriers)

| VGS |

| VGS | < | VT | | VGS | > | VT |

Open (off) (Gate = ‘0’) Closed (on) (Gate = ‘1’)

Ron

Page 12: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

Switch Model of PMOS Transistor

Gate

Source(of carriers)

Drain(of carriers)

| VGS |

| VGS | > | VDD – | VT | | | VGS | < | VDD – |VT| |

Open (off) (Gate = ‘1’) Closed (on) (Gate = ‘0’)

Ron

Page 13: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

Threshold Voltage Concept

S D

p substrate

B

G VGS +

-

n+n+

depletion region

n channel

The value of VGS where strong inversion occurs is called the threshold voltage, VT

Page 14: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

The Threshold Voltage

VT = VT0 + (|-2F + VSB| - |-2F|)where

VT0 is the threshold voltage at VSB = 0 and is mostly a function of the manufacturing process Difference in work-function between gate and substrate

material, oxide thickness, Fermi voltage, charge of impurities trapped at the surface, dosage of implanted ions, etc.

VSB is the source-bulk voltage

F = -Tln(NA/ni) is the Fermi potential (T = kT/q = 26mV at 300K is the thermal voltage; NA is the acceptor ion concentration; ni 1.5x1010 cm-3 at 300K is the intrinsic carrier concentration in pure silicon)

= (2qsiNA)/Cox is the body-effect coefficient (impact of changes in VSB) (si=1.053x10-10F/m is the permittivity of silicon; Cox = ox/tox is the gate oxide capacitance with ox=3.5x10-11F/m)

Page 15: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

The Body Effect

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

-2.5 -2 -1.5 -1 -0.5 0

VBS (V)

VT (

V)

VSB is the substrate bias voltage (normally positive for n-channel devices with the body tied to ground)

A negative bias causes VT to increase from 0.45V to 0.85V

Page 16: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

Transistor in Linear Mode

S

D

B

G

n+n+

Assuming VGS > VT

VGS VDS

ID

x

V(x)- +

The current is a linear function of both VGS and VDS

Page 17: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

Voltage-Current Relation: Linear Mode

For long-channel devices (L > 0.25 micron)

When VDS VGS – VT

ID = k’n W/L [(VGS – VT)VDS – VDS2/2]

where

k’n = nCox = nox/tox = is the process transconductance parameter (n is the carrier mobility (m2/Vsec))

kn = k’n W/L is the gain factor of the device

For small VDS, there is a linear dependence between VDS and ID, hence the name resistive or linear region

Page 18: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

Transistor in Saturation Mode

S

D

B

GVGS VDS > VGS - VT

ID

VGS - VT- +n+ n+

Pinch-off

Assuming VGS > VT

VDS

The current remains constant (transistor saturates)

Page 19: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

Voltage-Current Relation: Saturation Mode

For long channel devices

When VDS VGS – VT

ID’ = (k’n/2) W/L [(VGS – VT) 2]

since the voltage difference over the induced channel (from the pinch-off point to the source) remains fixed at VGS – VT

However, the effective length of the conductive channel is modulated by the applied VDS, so

ID = ID’ (1 + VDS)

where is the channel-length modulation (varies with the inverse of the channel length)

Page 20: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

Channel Length Modulation

Page 21: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

Channel Length Modulation

Page 22: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

Current Determinates

For a fixed VDS and VGS (> VT), IDS is a function of

the distance between the source and drain – L the channel width – W the threshold voltage – VT

the thickness of the SiO2 – tox

the dielectric of the gate insulator (e.g., SiO2) – ox

the carrier mobility

- for NMOS: n = 500 cm2/V-sec

- for PMOS: p = 180 cm2/V-sec

Page 23: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

Long Channel I-V Plot (NMOS)

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5

I D (

A)

VDS (V)

X 10-4

VGS = 1.0V

VGS = 1.5V

VGS = 2.0V

VGS = 2.5V

Linear Saturation

VDS = VGS - VT

Qu

adr

atic

de

pe

nde

nce

NMOS transistor, 0.25um, Ld = 10um, W/L = 1.5, VDD = 2.5V, VT = 0.43V

cut-off

0.57V

1.07V

2.07V

1.57V

Page 24: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

Short Channel Effects

0

10

0 1.5 3

(V/m)

n (

m/s

)

sat =105

Constant velocity

Constant mobility(slope = )

For an NMOS device with L of .25m, only a couple of volts difference between D and S are needed to reach velocity saturation

c=

Behavior of short channel device mainly due to

Velocity saturation – the velocity of the carriers saturates due to scattering (collisions suffered by the carriers)

5

Page 25: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

Voltage-Current Relation: Velocity Saturation

For short channel devices

Linear: When VDS VGS – VT

ID = (VDS) k’n W/L [(VGS – VT)VDS – VDS2/2]

where

(V) = 1/(1 + (V/cL)) is a measure of the degree of velocity saturation

Saturation: When VDS = VDSAT VGS – VT

IDSat = (VDSAT) k’n W/L [(VGS – VT)VDSAT – VDSAT2/2]

Page 26: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

Velocity Saturation Effects

0

10 Long channel devices

Short channel devices

VDSAT VGS-VT

VDSAT < VGS – VT so the device enters saturation before VDS reaches VGS – VT

and operates more often in saturation

For short channel devices and large enough VGS – VT

IDSAT has a linear dependence w.r.t VGS so a reduced amount of current is delivered for a given control voltage

VGS = VDD

Page 27: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

Short Channel I-V Plot (NMOS)

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

I D (

A)

VDS (V)

X 10-4

VGS = 1.0V

VGS = 1.5V

VGS = 2.0V

VGS = 2.5V

Lin

ear

de

pe

nde

nce

NMOS transistor, 0.25um, Ld = 0.25um, W/L = 1.5, VDD = 2.5V, VT = 0.43V

Early VelocitySaturation

Linear Saturation

Page 28: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

MOS ID-VGS Characteristics

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5VGS (V)

I D (

A)

long-channel quadratic

short-channel linear

Linear (short-channel) versus quadratic (long-channel) dependence of ID on VGS in saturation

Velocity-saturation causes the short-channel device to saturate at substantially smaller values of VDS resulting in a substantial drop in current drive

(for VDS = 2.5V, W/L = 1.5)

X 10-4

Page 29: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

Short Channel I-V Plot (PMOS)

-1

-0.8

-0.6

-0.4

-0.2

00-1-2

I D (

A)

VDS (V)

X 10-4

VGS = -1.0V

VGS = -1.5V

VGS = -2.0V

VGS = -2.5V

PMOS transistor, 0.25um, Ld = 0.25um, W/L = 1.5, VDD = 2.5V, VT = -0.4V

All polarities of all voltages and currents are reversed

Page 30: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

The MOS Current-Source Model

VT0(V) (V0.5) VDSAT(V) k’(A/V2) (V-1)

NMOS 0.43 0.4 0.63 115 x 10-6 0.06PMOS -0.4 -0.4 -1 -30 x 10-6 -0.1

S D

G

B

ID

ID = 0 for VGS – VT 0

ID = k’ W/L [(VGS – VT)Vmin–Vmin2/2](1+VDS)

for VGS – VT 0 with Vmin = min(VGS – VT, VDS, VDSAT) and VGT = VGS - VT

Determined by the voltages at the four terminals and a set of five device parameters

Page 31: ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics

ECE442: Digital Electronics CSUN, Spring-2010-Zahid

MOS Capacitance