100
Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN720: High-Speed Links Circuits and Systems Spring 2019 Lecture 11: Clocking Architectures & PLLs

ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

  • Upload
    others

  • View
    5

  • Download
    2

Embed Size (px)

Citation preview

Page 1: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Sam PalermoAnalog & Mixed-Signal Center

Texas A&M University

ECEN720: High-Speed Links Circuits and Systems

Spring 2019

Lecture 11: Clocking Architectures & PLLs

Page 2: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Announcements & Agenda

• Lab 6 Report due Apr. 3

• Clocking Architectures

• PLLs• Modeling• Noise transfer functions

2

Page 3: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

References

• High-speed link clocking tutorial paper, PLL analysis paper, and PLL thesis posted on website

• Posted PLL models in project section• Website has additional links on PLL and

jitter tutorials• Majority of today’s PLL material comes

from Fischette tutorial and M. Mansuri’sPhD thesis (UCLA)

3

Page 4: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

High-Speed Electrical Link System

4

Page 5: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Clocking Terminology

5

Synchronous• Every chip gets same frequency AND phase• Used in low-speed busses

Mesochronous• Same frequency, but unknown phase• Requires phase recovery circuitry

• Can do with or without full CDR

• Used in fast memories, internal system interfaces, MAC/Packet interfaces

Plesiochronous• Almost the same frequency, resulting in slowly

drifting phase• Requires CDR• Widely used in high-speed links

Asynchronous• No clocks at all• Request/acknowledge handshake procedure• Used in embeddded systems, Unix, Linux[Poulton]

Page 6: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

I/O Clocking Architectures

• Three basic I/O architectures• Common Clock (Synchronous)• Forward Clock (Source Synchronous)• Embedded Clock (Clock Recovery)

• These I/O architectures are used for varying applications that require different levels of I/O bandwidth

• A processor may have one or all of these I/O types

• Often the same circuitry can be used to emulate different I/O schemes for design reuse

6

Page 7: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Common Clock I/O Architecture

7

• Common in original computer systems• Synchronous system by design (no active deskew)• Common bus clock controls chip-to-chip transfers• Requires equal length routes to chips to minimize clock skew• Data rates typically limited to ~100Mb/s

[Krauter]

Page 8: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Common Clock I/O Cycle Time

8

[Krauter]

Page 9: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Common Clock I/O Limitations

• Difficult to control clock skew and propagation delay

• Need to have tight control of absolute delay to meet a given cycle time

• Sensitive to delay variations in on-chip circuits and board routes

• Hard to compensate for delay variations due to low correlation between on-chip and off-chip delays

• While commonly used in on-chip communication, offers limited speed in I/O applications

9

Page 10: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Forward Clock I/O Architecture

10

• Common high-speed reference clock is forwarded from TX chip to RX chip• Mesochronous system

• Used in processor-memory interfaces and multi-processor communication• Intel QPI• Hypertransport

• Requires one extra clock channel

• “Coherent” clocking allows low-to-high frequency jitter tracking

• Need good clock receive amplifier as the forwarded clock is attenuated by the channel

Page 11: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Forward Clock I/O Limitations

11

• Clock skew can limited forward clock I/O performance• Driver strength and loading

mismatches• Interconnect length

mismatches

• Low pass channel causes jitter amplification

• Duty-Cycle variations of forwarded clock

Page 12: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Forward Clock I/O De-Skew

12

• Per-channel de-skew allows for significant data rate increases

• Sample clock adjusted to center clock on the incoming data eye

• Implementations• Delay-Locked Loop and Phase

Interpolators• Injection-Locked Oscillators

• Phase Acquisition can be • BER based – no additional

input phase samplers• Phase detector based

implemented with additional input phase samplers periodically powered on

Page 13: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Forward Clock I/O Circuits

13

• TX PLL

• TX Clock Distribution

• Replica TX Clock Driver

• Channel

• Forward Clock Amplifier

• RX Clock Distribution

• De-Skew Circuit• DLL/PI• Injection-Locked Oscillator

Page 14: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Embedded Clock I/O Architecture

14

• Can be used in mesochronousor plesiochronous systems

• Clock frequency and optimum phase position are extracted from incoming data stream

• Phase detection continuously running

• CDR Implementations• Per-channel PLL-based• Dual-loop w/ Global PLL &

• Local DLL/PI• Local Phase-Rotator PLLs

Page 15: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Embedded Clock I/O Limitations

15

• Jitter tracking limited by CDR bandwidth• Technology scaling allows

CDRs with higher bandwidths which can achieve higher frequency jitter tracking

• Generally more hardware than forward clock implementations• Extra input phase samplers

Page 16: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Embedded Clock I/O Circuits

16

• TX PLL

• TX Clock Distribution

• CDR• Per-channel PLL-based• Dual-loop w/ Global PLL &

• Local DLL/PI• Local Phase-Rotator PLLs• Global PLL requires RX

clock distribution to individual channels

Page 17: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

PLLs

• PLL modeling

• PLL noise transfer functions

17

Page 18: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

PLL Block Diagram

18

[Perrott]

• A phase-locked loop (PLL) is a negative feedback system where an oscillator-generated signal is phase AND frequency locked to a reference signal

Page 19: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

PLL Applications

• PLLs applications• Frequency synthesis

• Multiplying a 100MHz reference clock to 10GHz

• Skew cancellation• Phase aligning an internal clock to an I/O clock

• Clock recovery• Extract from incoming data stream the clock frequency and

optimum phase of high-speed sampling clocks

• Modulation/De-modulation• Wireless systems• Spread-spectrum clocking

19

Page 20: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Forward Clock I/O Circuits

20

• TX PLL

• TX Clock Distribution

• Replica TX Clock Driver

• Channel

• Forward Clock Amplifier

• RX Clock Distribution

• De-Skew Circuit• DLL/PI• Injection-Locked Oscillator

Page 21: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Embedded Clock I/O Circuits

21

• TX PLL

• TX Clock Distribution

• CDR• Per-channel PLL-based• Dual-loop w/ Global PLL &

• Local DLL/PI• Local Phase-Rotator PLLs• Global PLL requires RX

clock distribution to individual channels

Page 22: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Linear PLL Model

22

Page 23: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Charge-Pump PLL Linear Model

• Charge-pump supplies current to loop filter capacitor which integrates it to produce the VCO control voltage

• For stability, a zero is added with the resistor which gives a proportional gain term

23

[Mansuri]

Page 24: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Understanding PLL Frequency Response

• Linear “small-signal” analysis is useful for understand PLL dynamics if• PLL is locked (or near lock)• Input phase deviation amplitude is small enough to maintain operation in

lock range

• Frequency domain analysis can tell us how well the PLL tracks the input phase as it changes at a certain frequency

• PLL transfer function is different depending on which point in the loop the output is responding to

24

Input phase response VCO output response

[Fischette]

Page 25: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

PLL Noise Transfer Function

25

[Mansuri]

Page 26: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Input Noise Transfer Function

26

222 2

221

nn

nn

n

outn ss

sN

RCKKss

RCsNK

sHIN

IN

RCKKsss

RCsNKK

sK

vsT

oo

n

out

n

outn

ININ

IN2

1

sKo

Input Phase Noise:

Voltage Noise on Input Clock Source:

[Mansuri]

)1 (assumes 2

:factorgain loop aw/ PDVCOCP KN

RKIK

Page 27: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Input Noise Transfer Function

27

222 2

221

nn

nn

n

outn ss

sN

RCKKss

RCsNK

sHIN

IN

RCKKsss

RCsNKK

sK

vsT

oo

n

out

n

outn

ININ

IN2

1

Input Phase Noise:

Voltage Noise on Input Clock Source:

VCO0

VCOn

,10 ,12

26.1 ,253

1N ,12 ,rad 2

10

10*2 ,1 ,1*2

ParametersSimulation

bufdelay

VCOPD

VpsK

VMHzK

kRpFC

VGHzKAK

GHzMHz

Page 28: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

VCO Noise Transfer Function

28

22

2

2

2

2 nnn

outn ss

s

RCKKss

ssHVCO

VCO

RCKKss

sKs

Kv

sT VCOVCO

n

out

n

outn

VCOVCO

VCO

2

VCO Phase Noise:

Voltage Noise on VCO Inputs:

KVCO is different if the input is at the Vcntrl input (KVCO) or supply (KVdd)

[Mansuri]

Page 29: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

VCO Noise Transfer Function

29

22

2

2

2

2 nnn

outn ss

s

RCKKss

ssHVCO

VCO

RCKKss

sKs

Kv

sT VCOVCO

n

out

n

outn

VCOVCO

VCO

2

VCO Phase Noise:

Voltage Noise on VCO Inputs:

VCO0

VCOn

,10 ,12

26.1 ,253

1N ,12 ,rad 2

10

10*2 ,1 ,1*2

ParametersSimulation

bufdelay

VCOPD

VpsK

VMHzK

kRpFC

VGHzKAK

GHzMHz

Page 30: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Clock Buffer Noise Transfer Function

30

22

2

2

2

2 nnn

outn ss

s

RCKKss

ssHbuf

buf

RCKKss

sK

RCKKss

ss

Ks

Kv

sT VCOdelay

buf

VCOdelay

buf

VCOdelay

n

out

n

outn

bufbuf

buf

2

2

2

2

11

Output Phase Noise:

Voltage Noise on Buffer Inputs:

Kdelay units = (s/V)

[Mansuri]

Page 31: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Clock Buffer Noise Transfer Function

31

22

2

2

2

2 nnn

outn ss

s

RCKKss

ssHbuf

buf

RCKKss

sK

RCKKss

ss

Ks

Kv

sT VCOdelay

buf

VCOdelay

buf

VCOdelay

n

out

n

outn

bufbuf

buf

2

2

2

2

11

Output Phase Noise:

Voltage Noise on Buffer Inputs:

VCO0

VCOn

,10 ,12

26.1 ,253

1N ,12 ,rad 2

10

10*2 ,1 ,1*2

ParametersSimulation

bufdelay

VCOPD

VpsK

VMHzK

kRpFC

VGHzKAK

GHzMHz

Page 32: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

PLL Noise Transfer Function Take-Away Points

• The way a PLL shapes phase noise depends on where the noise is introduced in the loop

• Optimizing the loop bandwidth for one noise source may enhance other noise sources

• Generally, the PLL low-pass shapes input phase noise, band-pass shapes VCO input voltage noise, and high-pass shapes VCO/clock buffer output phase noise

32

Page 33: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Oscillator Noise

33

Jitter

[McNeill]

Page 34: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Oscillator Phase Noise Model

34

dBc/Hz PowerCarrier

Density Spectral Noise

log10fL

f

f

ff

QPFkTfL fo

sig

3/12

12112log10Leeson’s Model:

• For improved model see Hajimiri papers

[Perrott]

Page 35: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Open-Loop VCO Jitter

• Measure distribution of clock threshold crossings• Plot as a function of delay T

35

[McNeill]

T

Page 36: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Open-Loop VCO Jitter

• Jitter is proportional to sqrt(T)• is VCO time domain figure of merit

36

TTOLT

[McNeill]

Page 37: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

VCO in Closed-Loop PLL Jitter

37

• PLL limits for delays longer than loop bandwidth L

LL f 21

[McNeill]

Page 38: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Ref Clk-Referenced vs Self-Referenced

38

[McNeill]

Ref Clock for Frequency Synthesis PLL

• Generally, we care about the jitter w.r.t. the ref. clock (x)• However, may be easier to measure w.r.t. delayed version of output clk

• Due to noise on both edges, this will be increased by a sqrt(2) factor relative to the reference clock-referred jitter

CDR Example

Page 39: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Converting Phase Noise to Jitter

39

• Integration range depends on application bandwidth• fmin set by standard

• Ex. Assumed CDR tracking bandwidth• Usually stop integration at fo/2 or fo due to measurement limitations

and aliasing components

dfTffSo

T

0

22

2 sin8

• RMS jitter for T accumulation

• As T goes to ∞ dffSRoo

T

0

222 402

[Mansuri]

Page 40: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

PLL Linear Phase Model

40

outref

out(s)ref(s)

20log10

3dB = 1.47Mrad/s

out(s)vcon(s)

20log10

Page 41: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

PLL Linear Phase Model:Frequency Step Response

41

outref

ref(s)=Frequency Step Input: s2 = Mrad/sec

32s2

No Cycle Slips Observedwith Linear Model

Page 42: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

PLL Behavioral Model• From my MSc thesis:

http://www.ece.tamu.edu/~spalermo/docs/msc_thesis_sam_palermo.pdf• Written in SpectreHDL• Also look at CppSim: http://www.cppsim.com/

42

// Multi-Band Phase Locked Loop Frequency Synthesizer Macromodel// Main Spectre File// Samuel Palermosimulator lang=spectreinclude "/home/samuel/research/pll/macromodels/pd/dig_pfd/dig_pfd.def"include "/home/samuel/research/pll/macromodels/lpf/lpf.def"ahdl_include "/home/samuel/research/pll/macromodels/vco/vco.def"ahdl_include "/home/samuel/research/pll/macromodels/vco/switch_vco.def"ahdl_include+ "/home/samuel/research/pll/macromodels/divider/divider.def"include "/home/samuel/research/pll/macromodels/vco/reference.def"// Power Supplyvdd dd 0 vsource dc=1// Reference Signalxref 0 control fref referencevcontrol control 0 vsource type=pwl wave=[0 0.64 1u 0.64]// Digital Tri-State Phase/Frequency Comparatorxdig_pfd 0 dd fref fvco up upbar down downbar dig_pfd// Charge Pumpiup dd 1 isource dc=25uidown 2 0 isource dc=25ugup 1 vd up 0 relay vt1=0 vt2=1 ropen=100M rclosed=1mgupbar 1 0 upbar 0 relay vt1=0 vt2=1 ropen=100M rclosed=1mgdown vd 2 down 0 relay vt1=0 vt2=1 ropen=100M rclosed=1mgdownbar dd 2 downbar 0 relay vt1=0 vt2=1 ropen=100M rclosed=1m// Loop Filterxfilter 0 vd lpfgvdgnd vd 0 vd_gnd 0 relay vt1=0 vt2=1 ropen=100M rclosed=10 // Voltage Controlled Oscillator//xvco vd out vco (gain=40e6 fc=256e6)xvco 0 vd out nv_temp vd_gnd+ switch_vco (u=0.8 d=-0.8 gain=40e6 fc=256e6)// Dividerxdivider 0 out fvco buffer n_temp divider (divisor=32)op dc

timedom tran stop=20u step=20p ic=all maxstep=20p skipdc=yes relref=alllocalsimulator lang=spice.ic vd=0save vd control fref fvco nv_temp vd_gnd.OPTIONS rawfmt=psfbin save=selected diagnose=yes vabstol=.01 + reltol=.99

***********************************************************************// Digital Phase Frequency Detector Macromodel// Samuel Palermosubckt dig_pfd (gnd dd fref fvco up upbar down downbar)ahdl_include "/home/samuel/research/pll/macromodels/pd/dig_pfd/dff.def"ahdl_include+ "/home/samuel/research/pll/macromodels/pd/dig_pfd/nand.def"xdffup gnd dd fref up upbar r dffxdffdown gnd dd fvco down downbar r dffxnand gnd up down r nandends dig_pfd

***********************************************************************// D Flip Flop Macromodel// Samuel Palermomodule dff(gnd, D, CLK, Q, QBAR, R) ()node [V, I] gnd, D, CLK, Q, QBAR, R ;{

real Q_temp;real QBAR_temp;initial {

Q_temp=0;QBAR_temp=1;}

analog {if ($threshold (V(CLK, gnd)-1, 1)) {

if (V(D,gnd)==1) {Q_temp=1;

QBAR_temp=0;}else {

Q_temp=0;QBAR_temp=1;

}}if (V(R, gnd)==0) {

Q_temp=0;QBAR_temp=1;

Page 43: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

PLL Frequency Step Response:Linear vs Behavioral Model

43

ref(s)=Frequency Step Input: s2 = Mrad/sec

32s2

No Cycle Slips Observedwith Linear Model

Cycle Slips

Page 44: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Next Time

• CDRs

• The following slides provide more details on PLL circuits. This 620 material may useful for the project, but won’t be covered in detail on Exam 2.

44

Page 45: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Open-Loop PLL Transfer Function

45

ignoring C1:

with C1:

[Mansuri]

(2nd order)

(3rd order)

Page 46: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Open-Loop PLL Transfer Function

46

with C1 (3rd order)w/o C1 (2nd order)

[Mansuri]

Page 47: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Closed-Loop PLL Transfer Function

47

ignoring C1:

[Mansuri]

Page 48: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

PLL Natural Frequency and Damping Factor

48

22 2 nnss Standard 2nd-order denominator:

Damping Factor:

Natural Frequency:

21

23 1 aandB

VCOPD

n

VCOPD

n

KKN

KKNa

412 2

Loop Bandwidth:

Page 49: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Damping Factor Impact

• If damping factor is too low, frequency peaking occurs• Damping factor ~1 is usually preferred

• Excessively high damping also causes peaking• Need 3rd order model to observe this

49

[Fischette]

Page 50: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Damping Factor Impact

• Peaking in frequency domain leads to ringing in the time domain

50

ref(s)=Frequency Step Input: s2

KPD = 25uA/2KVCO = 240MHz/V

N = 32n = 1 (normalized)

= 0.1

= 0.5

= 0.707 = 1

= 2

Page 51: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Charge-Pump PLL Circuits

• Phase Detector

• Charge-Pump

• Loop Filter

• VCO

• Divider

51

ref

fb

out

Page 52: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Phase Detector

• Detects phase difference between feedback clock and reference clock• The loop filter will filter the phase detector output, thus to characterize

phase detector gain, extract average output voltage (or current for charge-pump PLLs)

52

ref

fb

e

Page 53: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Analog Multiplier Phase Detector

• If 1=2 and filtering out high-frequency term

53

tA 11 cos

tA 22 cos

tAAtAA

2121

2121 cos

2cos

2

is mixer gain

cos

221AAty

• Near lock region of /2:

2221AAty

221AAKPD

[Razavi]

Page 54: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

XOR Phase Detector

54

• Sensitive to clock duty cycle[Razavi]

Page 55: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

XOR Phase Detector

55

[Perrott]

Width is same for both leading and lagging phase difference!

Page 56: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Cycle Slipping

• If there is a frequency difference between the input reference and PLL feedback signals the phase detector can jump between regions of different gain• PLL is no longer acting as a linear system

56

[Perrott]

(negative feedback operation)(positive feedback operation)

Page 57: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Cycle Slipping

• If frequency difference is too large the PLL may not lock

57

[Perrott]

Cycle Slipping

Page 58: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Phase Frequency Detector (PFD)

• Phase Frequency Detector allows for wide frequency locking range, potentially entire VCO tuning range

• 3-stage operation with UP and DOWN outputs

• Edge-triggered results in duty cycle insensitivity

58

Page 59: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

PFD Transfer Characteristic

• Constant slope and polarity asymmetry about zero phase allows for wide frequency range operation

59

UP=1 & DN=-1

[Perrott]

Page 60: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

PFD Deadzone• If phase error is small, then short output pulses are produced by PFD• Cannot effectively propagate these pulses to switch charge pump• Results in phase detector “dead zone” which causes low loop gain and

increased jitter• Solution is to add delay in PFD reset path to force a minimum UP and

DOWN pulse length

60

[Fischette]

Page 61: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

PFD Operation

61

[Fischette]

Min. Pulse Width

Page 62: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Charge-Pump PLL Circuits

• Phase Detector

• Charge-Pump

• Loop Filter

• VCO

• Divider

62

Page 63: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Charge Pump

• Converts PFD output signals to charge• Charge is proportional to PFD pulse widths

63

I

I

VCO ControlVoltage

C1

R

C2

Charging

Discharging

VDD

VSS

UP

DOWN

CPI

21

PFD-CP Gain:

Page 64: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Simple Charge Pump

• Issues• Switch resistance can impact UP/DN current matching as a function of Vctrl

• Clock feedthrough and charge injection from switches onto Vctrl

• Charge sharing between current source drain nodes’ capacitance and Vctrl

64

[Razavi]

Page 65: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Charge Pump Mismatch

• PLL will lock with static phase error• Extra “ripple” on Vctrl

• Results in frequency domain spurs at the reference clock frequency offset from the carrier

65

[Razavi]

Ideal locked condition, but CP mismatch Actual locked condition w/ CP mismatch

Page 66: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Charge Pump w/ Improved Matching

• Amplifier keeps current source Vds voltages constant resulting in reduced transient current mismatch

66

[Young JSSC 1992]

Page 67: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Charge Pump w/ Reversed Switches

• Swapping switches reduces charge injection• MOS caps (Md1-4) provide

extra charge injection cancellation

• Helper transistors Mx and My quickly turn-off current source

• Dummy brand helps to match PFD loading

67

[Ingino JSSC 2001]

Page 68: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Charge-Pump PLL Circuits

• Phase Detector

• Charge-Pump

• Loop Filter

• VCO

• Divider

68

Page 69: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Loop Filter

• Lowpass filter extracts average of phase detector error pulses

69

I

I

VCO ControlVoltage

C1

R

C2

Charging

Discharging

VDD

VSSF(s)

Page 70: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Loop Filter Transfer Function

70

• Neglecting secondary capacitor, C2

Page 71: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Loop Filter Transfer Function

71

• With secondary capacitor, C2

Page 72: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Why have C2?

• Secondary capacitor smoothes control voltage ripple• Can’t make too big or loop will go unstable

• C2 < C1/10 for stability• C2 > C1/50 for low jitter

72

Control Voltage Ripple

Page 73: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Filter Capacitors

• To minimize area, we would like to use highest density caps

• Thin oxide MOS cap gate leakage can be an issue• Similar to adding a non-linear parallel resistor to the capacitor• Leakage is voltage and temperature dependent• Will result in excess phase noise and spurs

• Metal caps or thick oxide caps are a better choice• Trade-off is area

• Metal cap density can be < 1/10 thin oxide caps

• Filter cap frequency response can be relatively low, as PLL loop bandwidths are typically 1-50MHz

73

Page 74: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Charge-Pump PLL Circuits

• Phase Detector

• Charge-Pump

• Loop Filter

• VCO

• Divider

74

Page 75: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Voltage-Controlled Oscillator

• Time-domain phase relationship

75

VDDVDD/20

0 1KVCO

tvKtt cVCOoutout 00

dtdt tvKtt cVCOoutout Laplace Domain Model

out(t)

Page 76: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Voltage-Controlled Oscillators (VCO)

• Ring Oscillator• Easy to integrate• Wide tuning range (5x)• Higher phase noise

• LC Oscillator• Large area• Narrow tuning range (20-30%)• Lower phase noise

76

Page 77: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Barkhausen’s Oscillation Criteria

• Sustained oscillation occurs if

• 2 conditions:• Gain = 1 at oscillation frequency 0

• Total phase shift around loop is n360 at oscillation frequency 0

77

jH

jH1Closed-loop transfer function:

1jH

n

[Sanchez]

Page 78: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Ring Oscillator Example

78

[Sanchez]

Page 79: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Ring Oscillator Example

79

[Sanchez]

• 4-stage oscillator• A0 = sqrt(2)• Phase shift = 45

• Easier to make a larger-stage oscillator oscillate, as it requires less gain and phase shift per stage

Page 80: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

LC Oscillator Example

221

22211

221

22

12

11

1

1

1

CRCLLRjsZ

sCRsCLsLRsZ

S

Seq

S

Seq

LC tank impedance

• Oscillation phase shift condition satisfied at the frequency when the LC (and R) tank load displays a purely real impedance, i.e. 0 phase shift

Page 81: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

LC Oscillator Example

• Transforming the series loss resistor of the inductor to an equivalent parallel resistance

81

SPP

SP R

LRCCLRLL

221

1221

2

1 ,,1

PPCL1

1

RP

[Razavi]

Page 82: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

LC Oscillator Example

82

12 PmRg

PPCL1

1

Loop Gain

• Phase condition satisfied at

• Gain condition satisfied when

[Razavi]

• Can also view this circuit as a parallel combination of a tank with loss resistance 2RP and negative resistance of 2/gm

• Oscillation is satisfied when

Pm

Rg

1

Page 83: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Supply-Tuned Ring Oscillator

83

thc

stageDVCO VV

nCnTT

22

stagec

VCOVCO nCV

fK2

[Sidiropoulos VLSI 2000]

Page 84: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Current-Starved Ring Oscillator

84

[Sanchez]

Page 85: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Capacitive-Tuned Ring Oscillator

85

Page 86: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Symmetric Load Ring Oscillator

86

[Maneatis JSSC 1996 & 2003]

• Symmetric load provides frequency tuning at excellent supply noise rejection

• See Maneatis papers for self-biased techniques to obtain constant damping factor and loop bandwidth (% of ref clk)

Page 87: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

LC Oscillator

• A variable capacitor (varactor) is often used to adjust oscillation frequency

• Total capacitance includes both tuning capacitance and fixed capacitances which reduce the tuning range

87

fixedtunePPPosc CCLCL

11

Page 88: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Varactors

• pn junction varactor• Avoid forward bias region to prevent oscillator nonlinearity

88

• MOS varactor• Accumulation-mode devices have better Q than inversion-mode

[Perrott]

n-well[Razavi]

Page 89: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Charge-Pump PLL Circuits

• Phase Detector

• Charge-Pump

• Loop Filter

• VCO

• Divider

89

Page 90: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Loop Divider

• Time-domain model

90

tN

t outfb 1

tN

tN

t outoutfb 1dt1

[Perrott]

out(t) fb(t)

Page 91: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Basic Divide-by-2

• Divide-by-2 can be realized by a flip-flip in “negative feedback”

• Divider should operate correctly up to the maximum output clock frequency of interest PLUSsome margin

91

[Perrott]

[Fischette]

Page 92: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Divide-by-2 with TSPC FF

• Advantages• Reasonably fast, compact size, and no static power• Requires only one phase of the clock

• Disadvantages• Signal needs to propagate through three gates per input cycle• Need full swing CMOS inputs• Dynamic flip-flop may have issues at very low frequency operation (test

mode) depending on process leakage92

True Single Phase Clock Flip-Flop

Divider Equivalent CircuitNote: output inverter not in left schematic

Page 93: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Divide-by-2 with CML FF

93

• Advantages• Signal only propagates through two CML gates per input cycle• Accepts CML input levels

• Disadvantages• Larger size and dissipates static power• Requires differential input• Need tail current biasing

• Additional speedup (>50%) can be achieved with shunt peaking inductors

[Razavi]

Page 94: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Binary Dividers:Asynchronous vs Synchronous

94

Asynchronous Divider

Synchronous Divider

• Advantages• Each stage runs at lower frequency,

resulting in reduced power• Reduced high frequency clock

loading

• Disadvantage • Jitter accumulation

• Advantage• Reduced jitter

• Disadvantage • All flip-flops work at maximum

frequency, resulting in high power• Large loading on high frequency

clock[Perrott]

Page 95: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Jitter in Asynchronous vs Synchronous Dividers

95

Asynchronous

Synchronous

• Jitter accumulates with the clock-to-Q delays through the divider

• Extra divider delay can also degrade PLL phase margin

• Divider output is “sampled” with high frequency clock

• Jitter on divider clock is similar to VCO output

• Minimal divider delay[Perrott]

Page 96: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Dual Modulus Prescalers

96

2/3

MC=0 3MC=1 2

15/16

Synchronous 3/4 Asynchronous 4• For /15, first prescaler circuit divides by 3 once and 4 three times

during the 15 cycles

[Razavi]

Page 97: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Injection-Locked Frequency Dividers

• Superharmonic injection-locked oscillators (ILOs) can realize frequency dividers

• Faster and lower power than flip-flop based dividers• Injection locking range can be limited

97

LC-oscillator type (/2) Ring-oscillator type (/3)

[Verma JSSC 2003, Rategh JSSC 1999] [Lo CICC 2009]

Page 98: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Example PLL Design Procedure

• Design procedure for a 100-300MHz frequency synthesizer• Step 1 – Determine VCO Tuning Range

• Needs to be at least the output frequency range plus some margin (10-20%) dependent on PVT tolerance

98

*300MHz - 100 Range Tuning VCO

• *Note if you want the frequency extremes (100 or 300MHz) you probably want to add some margin here

• Step 2 – Determine Loop Division Ratio, N• This is a function of what reference clocks you have access to,

loop bandwidth, dominant noise sources32N

• Step 3 – Determine Damping Factor• Damping factors between 0.5 and 2 are reasonable, with 0.7 or 1

commonly chosen707.0

21

Page 99: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Example PLL Design Procedure

• Step 4 – Determine natural frequency, n• This is a function of the desired loop bandwidth and also the

damping factor• Maximum loop bandwidth should be less than 1/10th the

input reference clock for the loop to act as a continuous-time system

99

MHz125.332

100MHz Frequency ReferenceInput Lowest

• Set the loop bandwidth with some margin - 75% of max value

sMrad

dB 47.1kHz5.312275.03

• For a damping factor of 0.707

skrads

MraddB

n 71406.2

47.1

06.23

Page 100: ECEN720: High-Speed Links Circuits and Systems Spring 2019ece.tamu.edu/~spalermo/ecen689/lecture11_ee720_clocking... · 2019-03-28 · • Used in fast memories, internal system interfaces,

Example PLL Design Procedure• Step 5 – Determine KVCO

• This is a function of the VCO and charge pump operating voltage range

• Here I use a combination of discrete tuning caps, resulting in multiple frequency bands over the total frequency range

100

Freq

uenc

y (M

Hz)

VCO Control Voltage

Channel 4 (235 - 300MHz)

Channel 2 (145 - 210MHz)

Channel 1 (100 - 165MHz)

Kvco = 40MHz/V

100

145

190

235

165

210

255

300

Channel 3 (190 - 255MHz)

Voltage Range = 1.6V

sV

MradKVCO 2551.6V

MHz652

• Step 6 – Determine Charge Pump Current & Filter Cap

pF

skrad

sVMradA

C

AI

2.62714322

25525

25Set

21

• Step 7 – Determine Filter R and Secondary Cap

kpF

skradC

Rn

8.312.62714

707.022

1

pFCpFCC 622.610 2

12