219
Ecología y gestión de depredadores generalistas: el caso del zorro (Vulpes vulpes) y la urraca (Pica pica) Memoria presentada por Francisco Díaz Ruiz para optar al grado de Doctor VºBº Directores Dr. Pablo Ferreras de Andrés Dr. Miguel Delibes Mateos Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM) Departamento de Ciencia y Tecnología Agroforestal Universidad de Castilla-La Mancha

Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

Embed Size (px)

Citation preview

Page 1: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

Ecología y gestión de depredadores generalistas: el caso del zorro (Vulpes

vulpes) y la urraca (Pica pica)

Memoria presentada por

Francisco Díaz Ruiz

para optar al grado de Doctor

VºBº Directores

Dr. Pablo Ferreras de Andrés Dr. Miguel Delibes Mateos

Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM)

Departamento de Ciencia y Tecnología Agroforestal

Universidad de Castilla-La Mancha

Page 2: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

1

Índice INTRODUCCIÓN GENERAL ................................................................................................. 4

Relación histórica entre hombres y depredadores ................................................................... 4

Impacto de la depredación en las presas: depredadores especialistas y generalistas ................ 6

Factores que favorecen a los depredadores generalistas ......................................................... 8

Ecología del zorro y la urraca: paradigma de especies generalistas ....................................... 11

El control de depredadores como herramienta de gestión y conservación ............................. 12

Efectos derivados del control de depredadores ..................................................................... 14

Efecto sobre las presas .................................................................................................... 14

Efecto sobre los depredadores generalistas objeto de control ............................................ 15

Efecto sobre especies que no son objeto de control .......................................................... 16

El control de depredadores en España .................................................................................. 18

Regulación legal del control de depredadores .................................................................. 20

Métodos de control de depredadores generalistas ............................................................. 21

Efectos del control de depredadores en España ................................................................ 23

OBJETIVOS Y ESTRUCTURA DE LA TESIS ...................................................................... 25

CAPÍTULO 1: Biogeographical patterns in the diet of an opportunistic predator: the red fox Vulpes vulpes in the Iberian Peninsula ..................................................................................... 27

Abstract .............................................................................................................................. 28

Introduction ........................................................................................................................ 29

Material and Methods ......................................................................................................... 32

Results ................................................................................................................................ 35

Discussion .......................................................................................................................... 40

Acknowledgements ............................................................................................................. 45

CAPÍTULO 2: Factors affecting the feeding habits of black-billed magpies Pica pica during the breeding season in Mediterranean Iberia.................................................................................. 46

Abstract .............................................................................................................................. 47

Introduction ........................................................................................................................ 48

Material and Methods ......................................................................................................... 49

Results ................................................................................................................................ 52

Discussion .......................................................................................................................... 58

Acknowledgements ............................................................................................................. 60

Ethical standards ................................................................................................................. 61

Page 3: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

2

CAPÍTULO 3: An evaluation of cage-traps and the Collarum device to capture red foxes (Vulpes vulpes). Can the performance of cage-traps be improved by baits and scent attractants? ............................................................................................................................................... 62

Abstract .............................................................................................................................. 63

Introduction ........................................................................................................................ 65

Material and Methods ......................................................................................................... 67

Results ................................................................................................................................ 73

Discussion .......................................................................................................................... 81

Acknowledgements ............................................................................................................. 84

Ethical standards ................................................................................................................. 84

CAPÍTULO 4: Experimental evaluation of live cage-traps for Black-billed magpies Pica pica management in Spain .............................................................................................................. 85

Abstract .............................................................................................................................. 86

Introduction ........................................................................................................................ 87

Materials and Methods ........................................................................................................ 89

Results ................................................................................................................................ 94

Discussion ........................................................................................................................ 101

Acknowledgements ........................................................................................................... 103

Ethical standards ............................................................................................................... 104

CAPÍTULO 5: Assessing the influence of predator control on target and non-target predator populations using occupancy models ..................................................................................... 105

Abstract ............................................................................................................................ 106

Introduction ...................................................................................................................... 107

Material and Methods ....................................................................................................... 109

Results .............................................................................................................................. 114

Discussion ........................................................................................................................ 120

Acknowledgements ........................................................................................................... 123

Ethical standards ............................................................................................................... 123

CAPÍTULO 6: Drivers of red fox (Vulpes vulpes) daily activity: prey availability, human disturbance or habitat structure? ............................................................................................ 124

Abstract ............................................................................................................................ 125

Introduction ...................................................................................................................... 126

Material and Methods ....................................................................................................... 128

Results .............................................................................................................................. 133

Discussion ........................................................................................................................ 138

Acknowledgements ........................................................................................................... 140

Page 4: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

3

Ethical standards ............................................................................................................... 140

DISCUSIÓN GENERAL ...................................................................................................... 141

Ecología trófica del zorro y la urraca ................................................................................. 141

Evaluación y mejora de los métodos de captura para el control de zorros y urracas ............ 145

Efectos del control de depredadores sobre las poblaciones de zorros y urracas ................... 151

Efectos sobre otras especies no objeto de control ............................................................... 153

Efectos sobre el comportamiento de los depredadores objeto de control ............................. 155

Futuras líneas de investigación .......................................................................................... 156

CONCLUSIONES ................................................................................................................ 159

REFERENCIAS ................................................................................................................... 163

APÉNDICES ........................................................................................................................ 197

Appendix 1.1. ................................................................................................................... 198

Appendix 1.2 .................................................................................................................... 203

Appendix 2.1. ................................................................................................................... 208

Appendix 2.2. ................................................................................................................... 209

Appendix 2.3. ................................................................................................................... 210

Appendix 3.1. ................................................................................................................... 211

Appendix 3.2. ................................................................................................................... 214

Appendix 4.1. ................................................................................................................... 215

Appendix 5.1. ................................................................................................................... 216

Appendix 5.2. ................................................................................................................... 217

Page 5: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

4

INTRODUCCIÓN GENERAL

Relación histórica entre hombres y depredadores El hombre tiene una larga historia de coexistencia con los depredadores que

probablemente comenzó como una relación depredador-presa, en la que los primeros

homínidos habrían sido presas de los grandes depredadores (Headland y Greene 2011;

Njau y Blumenschine 2012). El hombre, como presa, desarrolló en primer lugar un

sentimiento de temor ante los depredadores por riesgo a ser depredado. Con el paso del

tiempo, el hombre se convirtió en un eficiente depredador al aprender a utilizar diversas

herramientas que le confirieron la capacidad de defenderse de los depredadores y la

posibilidad de cazar grandes presas. (McCade y McCade 1984; Vargas 2002). Desde ese

momento, el hombre percibe a otros depredadores como competidores por alimentarse

de presas de interés humano (Conover 2002; Vargas 2002).

La persecución de los depredadores por parte del hombre pudo comenzar, por lo tanto,

hace muchísimos años por lo que se trataría de una actividad muy antigua, y extendida

por todo el mundo. Quizás los casos más conocidos sean los de los grandes carnívoros

como el lobo (Canis lupus) en Europa, Asia y América (Musiani y Paquet 2004; Sillero-

Zubiri y Schwitzer 2004) o los grandes felinos en África, Asia y América (Woodroffe y

Frank 2005; Balme et al. 2009; Inskip y Zimmerman 2009), los cuales consumen

diferentes especies de ganado o incluso atacan a los propios humanos (Treves y Karanth

2003). No obstante, existen también numerosos ejemplos de otros depredadores de

menor tamaño que han sido perseguidos por ser potenciales depredadores de especies de

caza menor, piscícolas, ganado e incluso por ser considerados como perjudiciales para

la agricultura. Entre estos destacan carnívoros de pequeña y mediana talla (Reynolds y

Tapper 1996; Virgós y Travaini 2005), rapaces en general (Villafuerte et al.1998;

Thirgood et al. 2000a; Whitfield et al. 2003, Whitfield et al. 2007) e incluso algunos

córvidos (Hadjisterkotis 2003; Madden et al. en prensa).

En este sentido España no ha sido una excepción, y la persecución de depredadores ha

sido una actividad muy extendida y arraigada desde hace mucho tiempo como así

acreditan diferentes documentos históricos. Archivos históricos constatan una

persecución organizada e impuesta de osos (Ursus arctos), lobos y zorros comunes

(Vulpes vulpes, zorro en adelante) ya desde la Edad Media (Vargas 2002). Pero quizás

Page 6: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

5

el mejor ejemplo de la sistematización de esta persecución sea la creación a mediados

del siglo XX de las conocidas “Juntas provinciales de extinción de animales dañinos y

protección a la caza” promovidas y financiadas por la administración pública. La

finalidad de estas Juntas fue la erradicación de aquellas especies consideradas entonces

como dañinas, entre las que se incluían carnívoros, rapaces y córvidos, para la que no

existía ningún tipo de restricción en cuanto a los métodos utilizados (Vargas 2002;

Corbelle-Rico y Rico-Boquete 2008).

Esta persecución ejercida por el hombre ha contribuido al declive de algunas especies a

lo largo del tiempo (Langley y Yalden 1977; Villafuerte et al. 1998; Ripple et al. 2014).

En España la larga historia de persecución de depredadores contribuyó probablemente a

la regresión y rarefacción de las poblaciones de muchas especies de depredadores, como

el lobo (Valverde 1971; Blanco et al. 1992) o el lince ibérico (Lynx pardinus)

(Rodríguez y Delibes 2002; 2004) e incluso de grandes rapaces necrófagas como el

quebrantahuesos (Gypaetus barbatus), que desapareció por completo del sur de la

Península Ibérica (Hiraldo et al. 1979).

La percepción sobre parte de los depredadores comienza a cambiar entre mediados y

finales del siglo XX, al menos en aquellas regiones del planeta más desarrolladas. Esto

se debe en gran parte a al éxodo de personas del medio rural a las grandes urbes

industrializadas y a el inicio de una conciencia social sobre la conservación de la

biodiversidad (Conover et al. 2002), concepto que no será definido como tal hasta los

años 80 (Kareiva y Marvier 2012). En relación a esta nueva conciencia social de

conservación se crean nuevas medidas de protección para la fauna silvestre mediante

diferentes leyes y normativas que incluyen la protección de un número importante de

depredadores. Por ejemplo, en 1954 se promulgó en Reino Unido la Ley de Protección

de las Aves, según la cual un gran número de rapaces pasaron a ser especies protegidas

(Whitfield et al. 2003). Igualmente, en España este cambio de tendencia se ve reflejado

a finales de los años 60 con la aprobación de la Orden General de Vedas de 1966, que

prohíbe la caza de algunas especies consideradas nocivas hasta entonces como por

ejemplo el lince ibérico. Pocos años después, la de la Ley de caza de 1970 regula y

limita las especies que se pueden cazar así como las épocas y zonas para hacerlo

(Vargas 2002).

Page 7: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

6

Posteriormente, en la Convención de Washington de 1973 sobre Comercio Internacional

de Especies Amenazadas de Flora y Fauna Silvestres (CITES) se redacta el primer

catálogo internacional de especies protegidas frente a la explotación comercial, en el

que se recogen un gran número de especies de depredadores. A pesar de la protección

legal de muchos de estos depredadores, la persecución ilegal de gran parte de ellos ha

continuado hasta nuestros días, como atestigua el reciente repunte del uso de cebos

envenenados para controlar estas especies (Márquez et al. 2013; Martínez-Abraín et al.

2013).

Aunque la percepción de los depredadores por la sociedad actual ha variado

considerablemente en el último siglo (Martínez-Abraín et al. 2008), ésta sigue

dependiendo de los intereses de diferentes grupos sociales o sectores. Así, la percepción

y actitudes hacia los depredadores es diferente entre los grupos interesados en la

conservación (p. ej. conservacionistas) y otros sectores con intereses productivos y de

explotación de especies que son potenciales presas para los depredadores, como los

ganaderos o cazadores (Treves y Bruskotter 2014). Algunos miembros de estos sectores

siguen considerando hoy en día que los depredadores son perjudiciales porque

consumen especies de cierto valor económico (Reynolds y Tapper, 1996; Graham et al.

2005). En ocasiones esto también ocurre porque se considera que los depredadores

pueden ser peligrosos para el propio hombre (Packer et al. 2005; Goodrich et al. 2011).

Hoy en día la problemática derivada de la actividad de los depredadores (es decir, los

daños ocasionados por la depredación) es a menudo gestionada mediante el control letal

de estos depredadores (en adelante, control de depredadores). Este se basa en la

eliminación de individuos de la especie “problemática” con la intención de reducir la

abundancia de sus poblaciones y disminuir de esta forma la presión de depredación

sobre las presas. Esta medida de gestión es fuente de conflicto entre los diferentes

sectores citados anteriormente, ya que su aplicación solo beneficia o satisface las

pretensiones de una de las partes implicadas en el conflicto, lo cual dificulta la

resolución de los mismos (Redpath et al. 2013).

Impacto de la depredación en las presas: depredadores especialistas y

generalistas Como se ha mencionado en la sección anterior, existe la creencia relativamente

extendida entre diferentes sectores de que los depredadores impactan negativamente

Page 8: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

7

sobre las poblaciones de sus presas. Desde este punto de vista es importante conocer el

impacto real de la depredación sobre las presas. Para ello, en primer lugar se deben de

diferenciar los efectos de la depredación sobre el ganado, cuyas poblaciones están

controladas por el hombre, de los efectos sobre las poblaciones de presas silvestres. En

estas últimas, la dinámica poblacional está modulada por diferentes factores, tanto

intrínsecos (p. ej. estado fisiológico, genética, comportamiento social, competencia

intraespecífica) como extrínsecos (p. ej. hábitat, disponibilidad de alimento,

climatología, parásitos, enfermedades y depredación), que a menudo interactúan entre sí

(Sinclair y Pech 1996; Krebs 2002).

Los depredadores son, por lo tanto, un factor más en la dinámica de las poblaciones de

presas silvestres y sus efectos pueden ir desde la regulación (proceso por el que el

depredador devuelve a la población de la presa a su densidad de equilibrio) hasta la

limitación (proceso por el que el depredador establece la densidad de equilibrio de la

presa) de las poblaciones de presas (Krebs 2002). El balance positivo o negativo de

estos efectos sobre las presas depende en gran medida de la biología y abundancia de las

presas, la abundancia del propio depredador/es, así como de la biología y la ecológica

trófica de éste (Sinclair y Pech 1996; Sinclair et al. 2003). La teoría ecológica clasifica a

las especies en dos grandes grupos, especialistas y generalistas, en función de la

amplitud de nicho ecológico que presentan, definido este según varios ejes tanto

bióticos como abióticos (p. ej. alimentación, hábitat, climatología, altitud, etc.)

(Futuyma y Moreno 1988). Según esta teoría las especies especialistas presentarían una

reducida amplitud de nicho ecológico en la cual sus poblaciones pueden conseguir un

rendimiento ecológico óptimo, mientras que el nicho ecológico de las especies

generalistas presenta una mayor amplitud. En el caso concreto de los depredadores, se

distinguen depredadores generalistas, que tienen un amplio nicho trófico (alimentación

variada), y depredadores especialistas, con un nicho trófico reducido (poca variedad de

presas). No obstante, existen grupos ecológicos intermedios, como los denominados

depredadores especialistas facultativos, que pueden adaptar su estrategia a las

condiciones dominantes, cambiando su presa principal cuando otras presas más

rentables están disponibles (Glasser 1982).

Debido a su reducida amplitud trófica, los depredadores especialistas presentan cambios

en el tamaño poblacional asociados a la densidad de su principal presa (i.e. respuesta

numérica). Por ello no suelen representar un riesgo para las poblaciones de sus presas

Page 9: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

8

(Begon et al. 1996), aunque existen algunas excepciones (ver p. ej. Hanski et al 1991).

Estas características les permiten un desarrollo óptimo en condiciones ambientales

estables y homogéneas, pero sin embargo, les limita considerablemente su capacidad de

respuesta ante cambios ambientales.

Por el contrario los depredadores generalistas presentan una serie de características

biológicas que les confieren una gran flexibilidad ecológica (Begon et al. 1996). Se

alimentan de varios tipos de presas en función de su abundancia, cambiando la tasa de

depredación sobre su presa principal ante la variación de la densidad de la misma (i.e.

respuesta funcional). Dicho de otro modo, pueden adaptarse a alimentarse de presas

secundarias cuando su principal presa disminuye de abundancia. Los depredadores

generalistas suelen presentar altas tasas de reproducción por lo que sus poblaciones

pueden llegar a ser abundantes.

El incremento en la abundancia de los depredadores generalistas puede provocar un

notable impacto negativo para algunas poblaciones de presas simplemente por el

aumento en el riesgo de depredación, es decir aumento de la depredación incidental

(Thirgood et al. 2000b; Valkama et al. 2005; Prugh et al. 2009; Eagan et al. 2011;

Ripple et al. 2013). Altas densidades de este tipo de depredadores pueden reducir e

incluso extinguir las poblaciones de ciertas presas, provocando importantes desajustes

en la estructura y estabilidad de las comunidades en las que se encuentran (Prugh et al.

2009).

Factores que favorecen a los depredadores generalistas

Actualmente gran parte de los sistemas naturales han sido fuertemente modificados por

la mano del hombre (Sanderson et al. 2002), lo que parece haber beneficiado a muchos

depredadores generalistas. Esto se debe principalmente al efecto combinado de la

rarefacción de depredadores apicales (del inglés top predators, depredadores claves en

la regulación de los procesos ecológicos de las comunidades de los que forman parte;

Sergio et al. 2008), a la modificación y fragmentación de hábitats y al incremento de

recursos alimentarios derivados de la actividad humana (Prugh et al. 2009).

Durante el pasado siglo las poblaciones de muchas especies de depredadores apicales se

han visto reducidas a escala mundial, debido principalmente a la persecución humana y

a la modificación y pérdida de sus hábitats o el de sus principales presas. Tal ha sido el

Page 10: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

9

caso de grandes carnívoros como osos, lobos y grandes felinos en todo el mundo

(Ripple et al. 2014) y grandes rapaces como el águila real (Aquila chrysaetos)

(Whitfield et al. 2007) o el búho real (Bubo bubo) en algunas zonas de Europa

(Penteriani y Delgado 2010). En la Península Ibérica también existen dos casos muy

reconocidos, el lince ibérico y el águila imperial ibérica (Aquila adalberti) (Rodríguez y

Delibes 2002; 2004; González et al. 2008). Los depredadores apicales, muchos de ellos

considerados como especialistas, actúan como especies clave en los ecosistemas

limitando las poblaciones de otros depredadores menores, ya sea por depredación

directa o por exclusión competitiva (Palomares y Caro 1999; Sergio e Hiraldo 2008).

De esta manera, la presencia de depredadores apicales puede resultar beneficiosa para

sus presas al disminuir la tasa de depredación por depredadores de tamaño medio (los

llamados “mesodepredadores”) (Palomares et al. 1995; Sergio e Hiraldo 2008).

Ante este escenario de ausencia de depredadores apicales, los mesodepredadores a

menudo generalistas, pueden beneficiarse aumentando su abundancia y rango de

distribución según la denominada Hipótesis de “liberación de mesodepredadores” (del

inglés Mesopredator Release Hypothesis; Crooks y Soulé 1999). Numerosos estudios

han encontrado evidencias por todo el mundo que confirman esta hipótesis (Prugh et al.

2009; Ritchie y Johnson 2009). Algunos ejemplos son el aumento de coyotes en

Norteamérica tras la regresión de la poblaciones de lobos (Ripple et al. 2013), la

limitación de las poblaciones de zorro por el lince boreal (Lynx lynx) en Suecia (Helldin

et al. 2006), o la limitación de meloncillos (Herpestes ichneumon) por el lince ibérico

en España (Palomares et al 1995). De esta forma la regresión de las poblaciones de lince

ibérico en el siglo pasado (Rodríguez y Delibes 2003) probablemente haya contribuido

al aumento de la abundancia y distribución de algunos carnívoros generalistas de

tamaño medio como el observado recientemente para el meloncillo (Recio y Virgós

2010). Existen también ejemplos en aves como el descrito en Alemania para el búho

real y dos rapaces de tamaño medio como el azor (Accipiter gentilis) y el busardo

ratonero (Buteo buteo) (Chacarov y Krüger 2010).

La fragmentación y degradación de hábitats debido al creciente desarrollo de diferentes

actividades humanas (p. ej. agricultura, explotación maderera, infraestructuras, etc.) han

sido reconocidas entre los factores con mayor impacto sobre la biodiversidad (Sala et al.

2000). Aparte de la anteriormente citada disminución de depredadores apicales, la

transformación de algunos hábitats ha facilitado el incremento de recursos alimentarios

Page 11: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

10

para muchos depredadores generalistas, como por ejemplo diferentes especies de

roedores (Thirgood et al. 2000b; Šálek et al. 2010; Luque-Larena et al. 2013). Thirgood

y colaboradores (2000b), por ejemplo, mostraron cómo en Escocia los aguiluchos

pálidos (Circus cyaneus) se beneficiaron del incremento en la abundancia de pequeños

roedores debido al aclarado de los brezales por el pastoreo, lo que supuso el incremento

de depredación incidental sobre el lagópodo escocés (Lagopus lagopus scoticus). La

actividad agrícola también puede incrementar la abundancia de ciertas presas

consumidas habitualmente por numerosos depredadores generalistas, como son algunos

micromamíferos (Luque-Larena et al. 2013) o el caso de algunos invertebrados y

pequeñas aves, asociados a los linderos entre cultivos (Vickery et al. 2002). Igualmente

los productos derivados de los cultivos agrícolas también pueden beneficiar a ciertos

depredadores generalistas omnívoros que incluyen de forma frecuente alimentos como

frutos y semillas en su alimentación. Este es el caso de algunos carnívoros de tamaño

medio y algunos córvidos (Soler et al. 1993; Rosalino y Santos-Reis 2009).

Por otro lado en ambientes fuertemente antropizados la actividad humana genera un

importante volumen de desperdicios (p. ej. basureros, merenderos, restos de granjas,

etc) que son fuente de alimentación suplementaria para muchos de estos depredadores

generalistas. De esta forma se ha observado cómo los zorros que habitan las periferias

de pueblos en entornos rurales, o incluso en las grandes ciudades, incluyen en su dieta

una importante proporción de alimentos de origen antrópico como basura o carroña de

ganado (Contesse et al. 2004; Webbon et al. 2006). Esta fuente de alimentación puede

suponer un aumento de la supervivencia y, por tanto, de la abundancia de las

poblaciones de zorros en estos ambientes (Bino et al. 2010). De forma similar algunos

córvidos también pueden verse beneficiados por estas fuentes de alimentación

antrópicas. Por ejemplo, se ha observado cómo la reducción de alimento subsidiario tras

el cierre de varias piscifactorías provocó una reducción de la densidad de nidos de

urraca (Pica pica) en una región de Norteamérica (Stone y Trost 1991). Más

recientemente se ha señalado que una alta disponibilidad de alimento de origen

antrópico puede favorecer la reproducción, supervivencia de adultos y abundancia local

de diferentes especies de córvidos (Marzluff y Neatherlin 2006).

Page 12: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

11

Ecología del zorro y la urraca: paradigma de especies generalistas

El zorro y la urraca representan el paradigma de especies generalistas debido a su gran

flexibilidad ecológica en cuanto a requerimientos de hábitat, alimentación, parámetros

reproductivos y capacidad de adaptación a los cambios en el medio, como los

producidos por la actividad humana. Por todo ello, pueden llegar a alcanzar elevadas

abundancias (Birkhead 1991; Sillero-Zubiri et al. 2004).

El zorro es el carnívoro de tamaño medio más abundante y ampliamente distribuido en

todo el mundo. Especie de distribución holártica, se encuentra en grandes áreas del

Paleártico, incluida la Península Ibérica (Blanco 1998; Sillero-Zubiri et al. 2004). No

presenta requerimientos específicos de hábitat, estando presente tanto en ambientes

naturales como en ambientes fuertemente antropizados e incluso en el centro de grandes

ciudades (Contesse et al. 2004; Sillero-Zubiri et al. 2004; Webbon et al. 2006). Se

considera un depredador oportunista y omnívoro, que incluye en su dieta alimentos

vegetales, animales y desperdicios de origen antrópico (Díaz-Ruiz et al. 2013). Presenta

respuestas funcionales ante la disminución en la disponibilidad de su principal fuente de

alimento en cada situación, adaptándose al consumo de otros alimentos secundarios

(Ferreras et al. 2011). Se trata de una especie monoestra, es decir, que solo tiene un

ciclo reproductor al año (Voigt y Macdonald 1984), presentando una alta tasa de

reproducción, con tamaños de camada variables en función de los recursos disponibles,

que oscilan entre 1 y 12 cachorros (López-Martín 2010). El zorro dispone de

mecanismos de reproducción compensatoria, aumentando su productividad en

situaciones de alta mortalidad (Heydon y Reynolds 2000). Por lo general, una parte

importante de su población está compuesta por individuos no reproductores sin

territorios definidos, por lo que el proceso de recolonización de territorios vacíos puede

ser rápido cuando hay una mortalidad alta de adultos territoriales (Reynolds et al. 1993;

Cavallini 1996).

La urraca también es una especie ampliamente distribuida y abundante en muchas zonas

de Asia, el oeste de Norteamérica y Europa, incluida la Península Ibérica (Birkhead

1991; Martínez 2011). Aunque se encuentra en diferentes tipos de hábitats, que van

desde áreas naturales a zonas urbanas, suele alcanzar las mayores densidades en

ambientes agrícolas humanizados (Martínez 2011). La urraca es un generalista

omnívoro en cuanto a sus hábitos alimentarios que consume un amplio espectro de

Page 13: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

12

alimentos de origen vegetal y animal, pudiendo beneficiarse a su vez de recursos

alimenticos de origen antrópico (Birkhead 1991). A diferencia del zorro, su papel como

depredador de aves, tanto protegidas como cinegéticas, no está claro, aunque algunos

trabajos indican que puede consumir huevos, pollos e incluso adultos de algunas

especies de estas aves (Groom 1993; Herranz 2000; Fernández-Juricic et al. 2004; Roos

y Pärt 2004). Presentan un solo ciclo reproductor al año, y una alta tasa de reproducción,

con puestas de entre 4 y 10 huevos (Birkhead 1991; Martínez 2011). En caso de pérdida

de la puesta pueden efectuar una puesta de sustitución como mecanismo de

compensación de pérdidas en la población (Pónz y Gil-Delgado 2004). Una parte

importante de sus poblaciones está formada por individuos no reproductores que pueden

reemplazar rápidamente cualquier pérdida de algún miembro de las parejas

reproductoras, y completar de forma exitosa la reproducción (Birkhead 1991).

Tanto zorro como urraca están considerados por algunos sectores de la sociedad como

especies perjudiciales para diferentes intereses humanos, como la agricultura, la

actividad cinegética o la ganadería, en prácticamente todo su rango de distribución; lo

cual hace que a menudo sean objeto de control (Birkhead 1991; Sillero-Zubiri et al.

2004).

El control de depredadores como herramienta de gestión y conservación Actualmente los impactos de los depredadores sobre algunos intereses humanos se

gestionan de forma diferente según el grado de protección de los mismos. De esta

forma, los impactos o daños generados por especies amenazadas suelen gestionarse a

través de compensaciones y subvenciones a los afectados o mediante translocaciones de

individuos, evitando la eliminación legal de los depredadores amenazados. Este tipo de

gestión está normalmente asociado a los daños producidos al ganado por grandes

depredadores como los lobos (pagos de indemnizaciones; aunque en algunas zonas

también se autoriza su caza), o que pueden afectar a la integridad física de las personas

como es el caso de los grandes felinos en algunas zonas (translocaciones de individuos

conflictivos) (Boitiani et al. 2010; Goodrich et al. 2011; Treves y Bruskotter, 2014).

En cambio, el control letal de depredadores es una medida habitual de gestión de la

depredación causada por depredadores generalistas abundantes (Treves y Naughton-

Treves 2005). Se utiliza como herramienta de gestión en la conservación de ecosistemas

y especies amenazadas, como medida sanitaria para el control de zoonosis, como

Page 14: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

13

protección del ganado o en la gestión cinegética (Prught et al. 2009; Beja et al. 2009;

Saunders et al. 2010; Baesley et al. 2013). El control de depredadores introducidos, por

ejemplo, es una herramienta utilizada a menudo en acciones de conservación en zonas

donde estas especies han causado un gran impacto ecológico o pueden llegar a hacerlo.

Un claro ejemplo es el control de las poblaciones de zorro en Australia, donde el cánido

ha contribuido a la extinción de varias especies de vertebrados autóctonos,

representando un grave problema para la conservación de la fauna nativa (Saunders et

al. 2010). Igualmente el control de gatos domésticos asilvestrados (Felis catus) es una

acción de gestión habitual para la recuperación de fauna en numerosas islas de todo el

mundo, ya que su depredación ha contribuido al declive poblacional e incluso extinción

de numerosas especies (Medina et al. 2011).

La eliminación de algunos depredadores generalistas que actúan como reservorios de

enfermedades ha sido una herramienta empleada para el control y erradicación de

algunas zoonosis. Algunos ejemplos son el control poblacional de tejones (Meles meles)

empleado en Reino Unido para minimizar el riesgo de trasmisión de la tuberculosis

bovina (Smith et al. 2001; Bielby et al. 2014), el control de las poblaciones de zorros

para limitar el avance de la rabia en gran parte de Europa (Holmala y Kauhala 2006) o

el control de mapaches (Procyon lotor) en Norteamérica por ser reservorio de estas y

otras enfermedades infecciosas (Baesley et al. 2013). Sin embargo, el control de

depredadores generalistas por motivos de conservación y sanidad, solo se realiza en

casos excepcionales y bajo un estricto seguimiento por parte de la administración.

Por el contrario, el control de depredadores generalistas con fines cinegéticos es una

medida ampliamente extendida en diferentes zonas de todo el mundo (Reynolds y

Tapper 1996) debido a que los cazadores lo consideran con frecuencia fundamental para

aumentar la abundancia de las especies cinegéticas (Delibes-Mateos et al. 2013; Ljung

et al. 2014). Aunque en algunas zonas se controlan grandes depredadores para fomentar

especies de caza mayor (Musiani y Paquet 2004), el control orientado a depredadores de

pequeña o mediana talla, para el fomento de especies de caza menor, es probablemente

mucho más común y extendido. En Reino Unido, por ejemplo, es muy común el control

de zorros, tejones, pequeños mustélidos y córvidos como la urraca y la corneja negra

(Corvus corone) para fomentar las poblaciones de aves cinegéticas como la perdiz gris

(Perdix perdix) o los lagópodos (Tapper et al. 1996, Thirgood et al. 2000a). En Francia

el trampeo de pequeños y medianos carnívoros como zorros, garduñas (Martes foina) y

Page 15: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

14

martas (Martes martes) es una práctica habitual (Ruette et al. 2003). También se

controla la urraca de forma sistemática en gran parte del país al considerarse una especie

dañina para la caza (Chiron et al. 2013). Igualmente en Suecia el control de zorros,

tejones y urracas es una medida muy extendida para fomentar las poblaciones de varias

especies de caza menor como los lagópodos y las liebres (Lepus sp.) (Ljung et al. 2014).

En Portugal el control legal de zorros, meloncillos y urracas es una medida muy

empleada para fomentar las poblaciones de perdiz roja (Alectoris rufa), conejo de monte

(Oryctolagus cuniculus) y liebre ibérica (Lepus granatensis) (Beja et al. 2009).

Efectos derivados del control de depredadores Los diferentes efectos derivados del control de depredadores son uno de los principales

puntos de controversia que genera esta actividad. Esto es debido en parte a la falta de

conocimiento científico, pero también a que los resultados obtenidos en los trabajos que

han estudiado estos efectos son a menudo contrapuestos o poco concluyentes. Como se

ha indicado anteriormente, con el control de depredadores se pretende un efecto

beneficioso sobre las presas que se quieren fomentar. Sin embargo, por lo general no se

consideran los efectos sobre especies no relacionadas directamente con el control. En

este sentido podríamos agrupar los efectos derivados del control de depredadores en tres

categorías: 1) Efecto sobre las presas que se pretenden fomentar, 2) Efecto sobre los

depredadores objeto del control y 3) Efecto sobre otras especies que no son objeto de

control.

Efecto sobre las presas

Existe gran controversia en cuanto a la efectividad del control de depredadores para

fomentar las poblaciones de ciertas presas. Por un lado, diversos trabajos no encuentran

un efecto significativo del control de depredadores sobre el incremento de las presas

(Kauhala et al. 2000; Keedwell et al. 2002). Por ejemplo, el control de múltiples

depredadores durante 20 años en una zona de Nueva Zelanda provocó cierto efecto

positivo a corto plazo en las poblaciones de kaki (Himantopus novaezelandiae), un ave

amenazada, pero dicho efecto desapareció posteriormente pese a mantener el control

(Keedwell et al. 2002). Por el contrario, varias revisiones indican que el control de

depredadores puede producir mejoras en las poblaciones de presas bajo ciertas

condiciones (Holt et al. 2008; Salo et al. 2010; Smith et al. 2010). Estas revisiones

coinciden en señalar que la eficacia del control depende de varios factores como la

Page 16: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

15

duración e intensidad de las extracciones, el número de especies de depredadores

controlados, el tipo de depredador (autóctono o exótico), el tipo de presa que se intenta

recuperar, etc. Estos trabajos también señalan la importancia de los métodos de

seguimiento de las poblaciones de presas como algo fundamental para poder determinar

los efectos del control de sus depredadores.

Efecto sobre los depredadores generalistas objeto de control

La mayor parte de trabajos científicos existentes sobre control de depredadores evalúan

el efecto que éste tiene sobre las poblaciones de presas que se pretende fomentar (ver

apartado anterior), mientras que pocos evalúan el efecto sobre las poblaciones de la

especie objeto del control. Normalmente se asume que la extracción de un número de

animales conlleva una reducción del tamaño de la población. Sin embargo, no siempre

es así debido a que algunas especies que se pretenden controlar, como los depredadores

generalistas, presentan mecanismos para compensar reducciones en sus poblaciones. El

zorro y la urraca son un claro ejemplo en ese sentido, como se ha señalado

anteriormente.

Una parte importante de las poblaciones de zorro y urraca está constituida por

individuos no reproductores que contribuyen a la rápida respuesta demográfica frente a

actuaciones de control (Birkhead 1991; Cavallini 1996). Se ha descrito que una

eliminación de individuos adultos territoriales, sin reducir la disponibilidad de alimento,

va seguida de la ocupación de los territorios vacíos por individuos flotantes (Reynolds

et al. 1993; Chiron y Juliard 2013). Además de la rápida ocupación de territorios, las

poblaciones de estos depredadores pueden responder a la extracción con mecanismos de

reproducción compensatoria, aumentando la productividad (Heydon y Reynolds 2000) o

haciendo puestas de reposición (Pónz y Gil-Delgado 2004).

Varios trabajos han puesto de manifiesto la dificultad de reducir las poblaciones de

zorro, incluso empleando métodos de control masivos como cebos envenenados

específicos (Saunders et al. 2010). A menudo el control sólo es eficaz a corto plazo

(Harding et al. 2001), y en algunos casos ineficaz para reducir las densidades (Baker y

Harris 2006). Por el contrario, en un estudio observacional realizado a gran escala en

Inglaterra se comprobó que el control de zorros mediante distintos métodos puede

reducir sustancialmente la abundancia de este carnívoro en un amplio rango de

circunstancias (Heydon y Reynolds 2000). En cualquier caso, la evaluación

Page 17: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

16

experimental de la efectividad de los métodos de captura de zorros para reducir sus

poblaciones es complicada, debido en parte a la dificultad de realizar estimas fiables de

su abundancia. Estas suelen requerir en el caso de los carnívoros metodologías costosas

y sofisticadas (Heydon et al. 2000; Schauster et al. 2002).

La efectividad del control de depredadores para reducir la densidad de urracas ha sido

menos estudiada que en el caso del zorro. No obstante, diferentes trabajos encuentran

como el control de urracas puede ser efectivo en la reducción de sus poblaciones a

escala local y regional (Stoate y Szuczur 2001, 2005; Chiron y Julliard 2007).

Recientemente se ha descrito cómo el control intensivo de urracas continuado en el

espacio y en el tiempo propiciaba el descenso de las poblaciones así como la

desestructuración de la población reproductora, que estaba dominada por individuos

jóvenes en zonas donde el control era más intensivo (Chiron y Julliard 2013).

Aparte de los efectos sobre la abundancia y la dinámica poblacional de la especie

controlada, las extracciones realizadas mediante el control de depredadores también

puede tener efectos a nivel comportamental cuando este es una importante causa de

mortalidad para la especie. En Australia, por ejemplo, se ha observado como los dingos

modifican sus ritmos de actividad diarios de acuerdo a si sus poblaciones son o no

controladas; son más nocturnos en zonas con que en zonas sin control (Brook et al.

2012).

Efecto sobre especies que no son objeto de control

El control de depredadores puede tener efectos negativos sobre otras especies que no

son objeto del control, tanto cuando el control es selectivo, es decir, solo se extrae la

especie objeto de control, como cuando no lo es, extrayéndose también otras especies.

La hipótesis de la liberación de competidores (del inglés “Competitor Release

Hypothesis”) propone como la eliminación de una especie dominante dentro de una

comunidad puede ser aprovechada por otra especie subordinada que, ante la falta de su

competidor, incrementa su abundancia (Caut et al. 2007). Aunque esta hipótesis se basa

en una aproximación teórica realizada para una comunidad de roedores sometida a

control, este efecto puede darse también en las comunidades de depredadores como por

ejemplo en los mesocarnívoros (Barrull et al. 2014). Cuando el control es selectivo se

puede producir un aumento de otros depredadores subordinados. En Reino Unido, por

ejemplo, se observó cómo, tras el control selectivo de un depredador dominante como el

Page 18: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

17

tejón, realizado para frenar la expansión de la tuberculosis, la abundancia de zorros

(competidor subordinado) incrementó (Trewby et al. 2008).

Sin embargo, el control de depredadores desarrollado en algunas fincas de caza no es

selectivo y se eliminan ilegalmente especies de mesocarnívoros, que a priori no son

objeto de control (Duarte y Vargas 2001; Barrull et al. 2011). Estudios recientes

basados en modelos teóricos de simulación han puesto de manifiesto que diferentes

niveles de control no selectivo de las poblaciones de zorros podrían alterar las

comunidades de carnívoros con un aumento en la abundancia de la especie objetivo, es

decir el zorro. Por el contrario, las poblaciones de otras especies no objetivo

(competidores del zorro) como el tejón, la garduña y la marta (Martes martes) podrían

reducirse notablemente o incluso desaparecer debido a las menores tasas reproductivas

de estas especies (Casanovas et al. 2012; Lozano et al. 2013).

Pero el control de depredadores no solo puede tener efectos sobre otros depredadores

que a priori no son objeto de control sino que puede afectar de forma indirecta a otras

especies no relacionadas directamente con el control. El control intensivo de

depredadores puede perjudicar a la diversidad y estructuración de algunos grupos de

presas secundarias, como se ha comprobado en Norteamérica para el control de coyotes

y las comunidades de micromamíferos (Henke y Bryant 1999). En dicho estudio se

observó que en zonas de baja abundancia de coyote debido a su intenso control, las

comunidades de roedores eran menos diversas y estaban dominadas por pocas especies

que se libraron de la depredación de los coyotes, y desplazaron por competición a otras

especies de la comunidad. Otro ejemplo del posible efecto indirecto del control de

depredadores sobre otras especies sería el del control de urracas y el críalo (Clamator

glandarius). El críalo es un ave parásita de los nidos de urraca que en gran medida

depende de ésta para completar su ciclo reproductor (Martínez 2011; Soler 2012). Por lo

tanto, tanto el críalo como otras aves que utilizan para criar los nidos abandonados de

urraca, podrían verse perjudicados cuando éstos son destruidos como medida de control

(Birkhead 1991).

Además, la extracción intensa de estos depredadores generalistas puede tener efectos

sobre diferentes procesos ecológicos en los que estas especies desempeñan diferentes

funciones. Por ejemplo el zorro es un importante dispersor de semillas de ciertas plantas

y también puede regular las poblaciones de ciertas presas consideradas como plaga por

Page 19: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

18

el hombre (Hanski et al. 1991; Fedriani y Delibes 2009). Igualmente la urraca juega un

papel de control biológico sobre ciertos grupos de invertebrados potencialmente

perjudiciales para los cultivos (Birkhead 1991).

El control de depredadores en España En España el control de depredadores es una práctica bastante extendida que se usa

tanto como parte de la gestión cinegética como para la conservación de ecosistemas y

especies amenazadas. En relación al segundo de los casos, existen varios ejemplos de

control de depredadores introducidos, como el visón americano (Neovison vison) por su

impacto sobre diferentes presas así como por ser competidor del autóctono y amenazado

visón europeo (Mustela lutreola) (Zuberogoitia et al. 2010). Más reciente es el control

de mapaches, el cual ha colonizado varias zonas de España a partir de las liberaciones

de particulares, y tiene un gran potencial como depredador, como competidor de otros

depredadores autóctonos y como reservorio de enfermedades (García et al. 2012).

Aparte del control de depredadores exóticos, en España también se han controlado

depredadores autóctonos como medida para la conservación de especies amenazadas.

Por ejemplo, en los Pirineos se han controlado zorros y translocado otros

mesocarnívoros generalistas para la protección del urogallo (Tetrao urogallus)

(Fernández-Olalla 2011). Sin embargo, el control de depredadores generalistas por

motivos de conservación se realiza en España de forma puntual, en casos excepcionales

y bajo un estricto seguimiento por parte de la administración, siendo el control ligado a

la gestión cinegética mucho más común y extendido a lo largo de gran parte del país.

La caza menor es un recurso económico importante en muchas áreas rurales de España

(Bernabeu, 2000). Las principales especies de caza menor son la perdiz roja, el conejo

de monte y la liebre. En las últimas décadas la abundancia de las poblaciones silvestres

de estas especies ha sufrido una importante disminución en gran parte de la Península

Ibérica, siendo más acusada en la perdiz roja y el conejo (Blanco-Aguiar et al. 2003;

Blanco-Aguiar 2007; Delibes-Mateos et al. 2009). Esto parece haber provocado un

incremento en el uso de métodos para el control de depredadores (tanto legales como el

ilegales) con la intención de recuperar estas especies (Villafuerte et al. 1998; Márquez et

al. 2012). Al igual que lo descrito anteriormente, en España el control de depredadores

es una medida muy extendida en gran parte de los cotos de caza, principalmente de caza

Page 20: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

19

menor, como así lo confirman varios estudios (Tabla 1). El zorro y la urraca son las

especies en las que se suele centrar este control (Tabla 1) (Díaz-Ruiz y Ferreras 2013).

Tabla 1. Trabajos que han estudiado la extensión del uso del control de depredadores en

España como herramienta de gestión cinegética. N es el tamaño muestral de cada trabajo. a

porcentaje de provincias en las que el control se realiza con una intensidad media-alta; el resto

de los encuestados reconoció un baja intensidad en el control de depredadores. b Información no

disponible. c porcentaje de los cotos que realizan control en los que se realiza sobre cada especie

o grupo de especies

Referencia Zona de

estudio Datos

Tipo de

Áreas N Control Zorro Córvidos

Angulo 2003 Andalucía

Entrevistas

personales con los

gestores de los cotos

95%Cotos

de caza

menor-

mayor

5% áreas

protegidas

307 48% - b - b

Piorno 2006 España

Peninsular

Encuestas a técnicos

de caza de las

Administraciones

Provinciales

Cotos de

caza

menor-

mayor

47 66%a - b - b

Delibes-Mateos

2008 Centro-Sur

Entrevistas

personales con

Cazadores-Gestores

Cotos de

caza

menor-

mayor

60 70% 95%c 5% c

Rios-Saldaña

2010

Castilla-La

Mancha

Planes técnicos de

caza

Cotos de

caza

menor-

mayor

5365 94.4% 82% c 56% c

Delibes-Mateos

et al. 2013 Centro

Entrevistas

personales con los

gestores de los cotos

Cotos de

caza menor 59 90% 85% c 80% c

Page 21: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

20

A pesar de tratarse de una actividad legal y regulada, el control de depredadores, y

especialmente el desarrollado en la gestión cinegética, es una actividad que genera gran

controversia en la sociedad española con posicionamientos opuestos entre diferentes

grupos sociales: ecologistas, conservacionistas, científicos, administración, cazadores y

ganaderos (Herranz 2000; Lozano et al. 2006; Virgós et al. 2010). Esto es debido, al

menos en parte, a la poca información disponible sobre diferentes aspectos relacionados

con esta actividad, como son la idoneidad de los métodos de control empleados así

como los efectos derivados del control de depredadores (Díaz-Ruiz y Ferreras 2013).

Regulación legal del control de depredadores

Actualmente el control de depredadores en España está regulado por cuatro

ordenamientos: el internacional, el comunitario, el estatal y el autonómico, a través de

diferentes normativas (Tabla 2). La mayor parte de estas normativas se refieren a los

métodos de control, prohibiendo de forma general aquellos masivos y/o no selectivos, e

incluyen anexos donde se enumeran los diferentes métodos que quedan completamente

prohibidos, como por ejemplo el uso de cebos envenenados (p. ej. Convenio de Berna

1979) o el de cepos (Reglamento (CEE) nº 3254/91 de 1991). Estas normativas

coinciden en dejar una vía de excepción a la norma general, merced a la cual se pueden

autorizar determinados métodos bajo unos supuestos que justifiquen su uso (entre ellos

daños a la fauna).

Las diferentes normativas autonómicas vigentes en España son las que establecen las

especies que pueden ser objeto de control (Gálvez 2004). Por lo general solamente se

permite el control de ciertos depredadores generalistas, que en su mayoría están

catalogados como especies cinegéticas. En concreto, y salvo algunas excepciones según

cada región, se permite controlar cuatro especies silvestres: el zorro, la urraca, la grajilla

(Corvus monedula) y la corneja negra. También se suele permitir de forma excepcional

el control de otras dos especies de depredadores domésticos asilvestrados: el gato y el

perro (Canis lupus familiaris). Generalmente los depredadores cinegéticos pueden ser

cazados con armas de fuego durante la época hábil de caza. Además, se permite el uso

excepcional de otros métodos de captura fuera de la temporada cinegética para controlar

tanto estas dos especies domésticas como las cinegéticas. Los permisos de control

excepcional son concedidos por la administración regional según diferentes criterios,

que no siempre son los establecidos en estas normativas (Bernard 2008).

Page 22: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

21

Tabla 2. Normativas vigentes en España sobre control de depredadores.

Nivel

Legislativo Normativas vigentes

Internacional

- Convención sobre la conservación de la vida silvestre y el medio

natural de Europa (“Convenio de Berna”. Berna, 19-IX-1979)

- Acuerdo entre la Unión Europea, Canadá y la Federación Rusa sobre

métodos de captura no cruel (Decisión 98/142/CE del Consejo de 26 de

Enero de 1998)

- Acuerdo ente la Unión Europea y los Estados Unidos de América sobre

métodos de captura no cruel (Decisión 98/487/CE de 13 de Julio de

1998)

Unión Europea

- Directiva 79/409/CEE, relativa a la conservación de las aves silvestres

(“Directiva de Aves”).

- Directiva 92/43/CEE relativa a la conservación de los Hábitats naturales

y de la fauna y flora silvestres (“Directiva Hábitats”).

- Reglamento (CEE) nº 3254/91 del Consejo, de 4 de noviembre de 1991,

por el que se prohíbe el uso de cepos en la Comunidad

- Reglamento (CE) nº 1771/94 de la Comisión, de 19 de julio de 1994,

sobre comercialización de pieles de animales salvajes

- Reglamento (CE) nº 35/97 de la Comisión de 10 de enero de 1997,

sobre la certificación de pieles

- 97/602/CE: Decisión del Consejo de 22 de julio de 1997

Estatal

- Ley 42/2007 de Conservación del Patrimonio Natural y de la

Biodiversidad. Título III. Capítulo IV – De la protección de las especies

en relación con la caza y la pesca continental

- Directrices técnicas para la captura de especies cinegéticas predadoras:

homologación de métodos de captura y acreditación de usuarios.

Aprobadas por la Conferencia Sectorial de Medio Ambiente. 13 de julio

de 2011

Autonómica - Leyes y Reglamentos Autonómicos de Ordenación de la Caza

Métodos de control de depredadores generalistas

Uno de los principales motivos de controversia en relación al control de depredadores es

la efectividad y selectividad de los métodos utilizados. Por lo general los cazadores

consideran que los métodos permitidos por la legislación vigente son pocos eficaces

Page 23: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

22

para controlar a los depredadores (Delibes-Mateos et al. 2013). En los últimos años

algunas comunidades autónomas han iniciado el proceso legal de homologación de

determinados métodos de control de depredadores generalistas basándose en ensayos de

campo, en sendos acuerdos internacionales sobre métodos de captura no cruel (Ver

Tabla 2), y en una Norma ISO (International Organization for Standardization 1999)

sobre evaluación de métodos de captura y retención de mamíferos (Díaz-Ruiz y Ferreras

2013).

Como se ha señalado anteriormente, el zorro y la urraca son las dos principales especies

en las que se centra el control de depredadores en España. En este sentido, actualmente

los principales métodos de captura utilizados con carácter excepcional para el control

poblacional de estas especies son los lazos y jaulas-trampa para la captura de zorros y

jaulas-trampa para la captura de urracas (Delibes-Mateos et al. 2013). Diferentes

trabajos han evaluado de forma empírica la eficiencia de captura de las especies

objetivo, la selectividad y los daños relacionados con la captura de varios de estos

métodos utilizados habitualmente para controlar zorros y urracas en España (Díaz-Ruiz

et al. 2013).

Recientemente se ha aprobado un documento, consensuado entre las administraciones

central y autonómicas, que recoge las directrices para establecer qué métodos pueden

homologarse para realizar control de depredadores (Conferencia Sectorial de Medio

Ambiente 2011). Sin embargo, la citada Norma ISO y su interpretación han suscitado

controversia y críticas entre científicos que la consideran insuficiente e incluso errónea

en algunos de sus planteamientos, tanto en lo relativo a bienestar animal como en

algunos conceptos aplicados a los dispositivos de captura (Iossa et al. 2007; Virgós et

al. 2010).

Métodos para el control de zorros

Las jaulas-trampa para zorros consisten en un compartimento de captura con una o dos

puertas de entrada, que se cierran mediante un balancín al ser pisado por el animal, y un

compartimento opcional para el cebo (Fig. 1). Pueden utilizarse con cebo vivo o muerto

(Ferreras et al. 2003; 2007; Muñoz-Igualada et al. 2008). Tanto los lazos tradicionales

actuales como dos versiones norteamericanas más complejas (“Lazo Americano” y

“Lazo Wisconsin”) consisten en un cable de acero en el que en uno de sus extremos

presenta un lazo corredizo con un tope (salvo en el modelo “sin tope”) para que este no

Page 24: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

23

se cierre totalmente sobre el cuello del animal, fijándose el otro extremo al terreno para

retener al animal capturado (Muñoz-Igualada et al. 2010). En España se han evaluado

también dos nuevos sistemas diseñados en Estados Unidos para la captura de cánidos,

las trampas Belisle y Collarum (Shivik et al. 2000). Las trampas Belisle (Edouard

Belisle, Saint Veronique, PQ, Canadá) consisten en un lazo de acero propulsado que

retiene al animal por la extremidad al accionar una pletina central de disparo (Shivik et

al. 2000; Muñoz-Igualada et al. 2008). La trampa Collarum (Wildlife Control Supplies,

East Granby, CT, USA) es también un lazo de acero propulsado que retiene al animal

por el cuello (Shivik et al. 2000; Ferreras et al. 2007; Muñoz-Igualada et al. 2008). En

este último caso, el sistema de disparo precisa de una respuesta activa del animal ante

un atrayente oloroso. Ambos lazos propulsados se instalan enterrados, quedando tan

sólo visible en la superficie, en el caso del Collarum, el disparador con el atrayente

(Ferreras et al. 2007; Muñoz-Igualada et al. 2008).

Métodos para el control de urracas

Las jaulas-trampa para capturar urracas son el método más empleado para controlar

urracas en España ya que los cazadores las consideran eficaces para reducir las

abundancias del córvido (Delibes-Mateos et al. 2013). Por lo general estas trampas

tienen un compartimento central donde se coloca una urraca viva que actúa como

reclamo y una serie de compartimentos de captura (2 o 4) alrededor que se accionan de

forma independiente (Ferreras et al. 2007).

Efectos del control de depredadores en España

En España existen pocos trabajos que hayan estudiado los diferentes efectos del control

de depredadores. De esta forma la efectividad del control de depredadores para

fomentar las presas en España está poco clara. El único trabajo experimental de este tipo

realizado en España evaluó la efectividad del control selectivo de depredadores (zorro y

urraca) para mejorar la supervivencia de la perdiz roja (Mateo-Moriones et al. 2012). El

control de depredadores mejoró la supervivencia de los pollos, especialmente de

aquéllos de más de un mes de edad, pero no mejoró la supervivencia de los adultos ni de

los nidos, ni el tamaño de las poblaciones de perdiz. Herranz (2000) describe resultados

similares referidos al control de urracas en un coto de caza de Castilla-La Mancha,

donde tras el control se incrementó el tamaño de bando de las perdices pero no se

consiguió incrementar sus poblaciones ni las de paloma torcaz (Columba palumbus).

Del mismo modo, en un trabajo reciente realizado en el centro de España no se encontró

Page 25: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

24

ninguna relación entre la intensidad de control de zorros y las densidades de perdiz roja

(Díaz-Fernández et al. 2013). Por el contrario, Delibes-Mateos et al. (2008c) hallaron

que el control de depredadores y el manejo de hábitat fueron las dos únicas medidas de

gestión relacionadas con la tasa de cambio en la abundancia de conejo en cotos de caza

del centro-sur de España entre 1993 y 2002. Igualmente, Virgós y Travaini (2005)

observaron mayores abundancias de conejo en cotos de caza con gestión cinegética

intensiva que en zonas donde no se realizaba este tipo de gestión.

Varios estudios han evaluado también la efectividad del control de depredadores para

incrementar especies de interés para la conservación en España. Por ejemplo, en un

experimento realizado en el Pirineo el control de zorro y las translocaciones de marta,

garduña y gato montés (Felis silvestris) no produjeron mejoras en el éxito reproductor

del urogallo en Pirineos (Fernández-Olalla 2011). Por el contrario, la declaración de un

área protegida en Almería, y la consiguiente prohibición de utilizar control de

depredadores, repercutió negativamente en las poblaciones de paseriformes esteparios

(Suárez et al. 1993). Estos resultados concuerdan con los obtenidos más recientemente

por Estrada et al. (2012), quienes observaron mayores densidades de ciertas aves

esteparias en cotos de caza donde se realizaba control de zorros. Por lo tanto, la

efectividad del control de depredadores para fomentar las presas en España está poco

clara.

El efecto de las extracciones sobre las poblaciones de los depredadores controlados

igualmente ha sido poco estudiado en España, encontrando resultados dispares. Así en

Doñana no se encontró ninguna respuesta poblacional clara a las extracciones de zorros

realizadas por personal del Parque Nacional durante cuatro años, probablemente debido

a una baja intensidad y gran variabilidad interanual de extracción (Palomares et al.

2010). Igualmente Virgós y Travaini (2005) no encontraron diferencias en la presencia

de zorros entre zonas cinegéticas (donde se asumía el uso de métodos de control de

depredadores) y zonas sin caza del centro de la Península Ibérica. En un experimento

realizado en Pirineos se consiguió reducir la densidad de zorros en una de las zonas de

estudio durante uno de los años de estudio. No obstante, esto no se consiguió en otras

dos zonas de trabajo ni en la misma zona durante los otros dos años que duró el estudio

(Fernández-Olalla 2011). De forma similar las extracciones experimentales realizadas

en dos localidades en Navarra redujeron la abundancia en una de las localidades de

Page 26: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

25

estudio, mientras que este efecto no fue tan evidente en la otra localidad (Mateo-

Moriones et al. 2012).

Prácticamente no existen estudios que hayan evaluado experimentalmente el efecto de

las extracciones de urraca sobre sus poblaciones. Herranz (2000) observó una reducción

significativa de la población de urracas en un coto de caza tras una campaña de control

mediante destrucción de nidos y caza de adultos; sin embargo, no aportó información

sobre la evolución tras cesar el control. Un experimento realizado en Navarra, no pudo

evaluar el efecto de las extracciones sobre las poblaciones de urracas por ser éstas muy

poco abundantes (Mateo-Moriones et al. 2012).

Por último, en España no se ha estudiado de forma experimental el efecto del control de

depredadores sobre otras especies no relacionadas directamente con el control. Hasta la

fecha solamente un estudio observacional ha evaluado el efecto del control no selectivo

de zorros en otras especies de mesocarnívoros como el tejón y la garduña (Barrull et al.

2014). No existe ningún trabajo similar en el caso de las urracas ni estudios sobre el

efecto potencial del control de depredadores sobre el comportamiento de la especie

objetivo del control.

OBJETIVOS Y ESTRUCTURA DE LA TESIS Como queda patente en lo anteriormente dicho, el conocimiento científico en materia de

control de depredadores es escaso, especialmente en España (Díaz-Ruiz y Ferreras

2013). El objetivo principal de esta tesis es, por tanto, contribuir al conocimiento

científico sobre la gestión del zorro y la urraca, mediante el estudio de diferentes

aspectos relacionados como la ecología trófica de estas especies, la adecuación y mejora

de los métodos empleados para su control y las implicaciones ecológicas derivadas del

control de sus poblaciones. Esta tesis pretende aportar avances en el conocimiento

científico para mejorar la gestión de los depredadores generalistas y, por lo tanto, de las

especies que pueden verse afectadas por el control de dichos depredadores. Para la

consecución del objetivo principal, en esta tesis se plantean los siguientes objetivos

parciales:

1) Analizar la ecología trófica de las dos especies seleccionadas como modelo de

estudio, el zorro y la urraca, por ser la alimentación el principal motivo en el que se basa

el control de sus poblaciones. En el capítulo 1 se plantea un estudio de la alimentación

Page 27: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

26

del zorro a escala biogeográfica de la Península Ibérica, una perspectiva espacial más

amplia a la descrita hasta ahora, para definir patrones de su alimentación que ayuden a

una mejor compresión de la flexibilidad trófica del cánido. El objetivo del capítulo 2 es

caracterizar la dieta de las urracas durante su época de reproducción en zonas agrícolas

del centro de España para determinar la frecuencia de consumo de ciertos alimentos

como huevos y aves, y estudiar la influencia de diferentes factores intrínsecos (sexo-

edad) y extrínsecos (localidad) en la composición de su alimentación.

2) Evaluar la efectividad y selectividad de los métodos de captura usados con mayor

frecuencia en España para controlar zorros y urracas. Además, se pretende analizar

diferentes formas de mejorar la efectividad y selectividad de estos métodos de captura.

En concreto se evalúa el uso combinado de diferentes cebos y atrayentes para mejorar la

eficiencia de captura y selectividad de las jaulas-trampa para zorros, así como la

evaluación de nuevos sistemas de captura alternativos como el sistema Collarum

(capítulo 3). Igualmente se evalúan las jaulas-trampas habitualmente empleadas para el

control de las poblaciones de urraca, ensayando diferentes variantes de uso con la

intención de mejorar este método de control (capítulo 4).

3) Analizar posibles efectos del control de depredadores sobre las especies objeto de

control así como sobre otras especies. Por un lado estudiar los efectos de las

extracciones de estos depredadores sobre la abundancia de sus poblaciones. En

concreto, estudiar el efecto a corto plazo de las extracciones experimentales de urracas

sobre sus poblaciones (capítulo 4). Por otro lado estudiar si el gradiente de intensidad de

control de depredadores está relacionado con la probabilidad de ocupación y detección

de depredadores objeto de control, como el zorro, y de otros que a priori no lo son,

como la garduña (capítulo 5). Por otro lado, se pretende evaluar si el control de zorros

tiene algún efecto sobre el comportamiento de esta especie (capítulo 6).

La Tesis está estructurada en 6 capítulos en formato de artículos científicos. Alguno de

ellos está publicado en revistas incluidas en el “Science Citation Index”, otros están

actualmente en revisión o en preparación para su publicación. Se incluye una discusión

general en la que se destacan los resultados más significativos obtenidos en los

diferentes capítulos de esta tesis. Finalmente se proponen futuras líneas de investigación

surgidas de este trabajo y las principales conclusiones obtenidas en cada capítulo.

Page 28: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

27

CAPÍTULO 1: Biogeographical patterns in the diet of an opportunistic predator: the red fox Vulpes vulpes in the Iberian Peninsula

Díaz–Ruiz F, Delibes–Mateos M, García–Moreno JL, López–Martín JM, Ferreira C, Ferreras P (2013) Biogeographical patterns in the diet of an opportunistic predator, the red fox Vulpes vulpes in the Iberian Peninsula. Mammal Review 43: 59-70

Page 29: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

28

Abstract Biogeographical diversity is central to the trophic ecology of predators. Understanding

the biogeographical trophic patterns of generalist predators, such as the red fox Vulpes

vulpes, is particularly challenging because of their wide distributions, broad trophic

spectra and high ecological plasticity, which often generate conflicts with humans. We

reviewed 55 studies from the Iberian Peninsula concerning the diet of the red fox to

describe its trophic patterns from a biogeographical perspective. We considered the

frequency of occurrence of seven food groups and characterized each study site

according to environmental variables. We tested relationships between geographical

variables and each food group independently, and assessed the consumption of

lagomorphs in relation to the other food groups. We also tested the relationships

between trophic diversity, the main food groups, latitude and altitude, and finally

investigated changes in the consumption of all food groups in relation to habitat type

and seasonality. We found a latitudinal pattern in the diet of the red fox, which was

characterized by a greater consumption of lagomorphs and invertebrates in southern

areas, and a higher intake of small mammals and fruits/seeds in northern regions.

Additionally, the consumption of invertebrates increased from east to west, while

fruit/seed consumption increased from west to east. Consumption of lagomorphs

decreased, and of small mammals increased, with altitude. Trophic diversity was not

associated with geographical variables. The intake of lagomorphs and small mammals

was greatest in Mediterranean scrub and forest, respectively. Reptiles and invertebrates

were consumed mostly during summer; fruits/seeds in autumn. Iberian red foxes show

variation in their feeding habits associated with environmental variables, which are in

turn associated with the availability of their main prey. Foxes select rabbits where they

are abundant, and feed on small mammals and fruits/seeds where lagomorphs are

scarce.

Keywords: carnivore, feeding patterns, generalist predator, Portugal, Spain

Page 30: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

29

Introduction Feeding habits have been one of the most studied features of carnivore ecology. The

traditional approach to studies ofcarnivore diets is to investigate the feeding habits of

species (mainly in terms of diet composition) at local or regional scales (e.g. Brand et

al. 1976; Zapata et al. 2007; Wang and Macdonald 2009). Comprehensive studies of

carnivore trophic ecology at broader geographical scales have only recently been

undertaken (e.g. Clavero et al. 2003; Lozano et al. 2006; Zhou et al. 2011). The study of

trophic biogeographical patterns of predators is fundamental to understanding their

ecology and life history strategies (Daan and Tinbergen 1997). For instance, defining a

species as a trophic generalist or specialist is only relevant in the context of extensive

ecological studies in which variation in feeding behaviour among populations over a

broad range of environmental conditions is considered (Lozano et al. 2006).

Investigations of the diet of medium-sized carnivores at large biogeographical scales

have included studies of the Eurasian badger (Meles meles) (Roper and Mickevicius

1995; Goszczynski et al. 2000; Hounsome and Delahay 2005); the polecat (Mustela

putorius) (Lodé 1997); the common genet (Genetta genetta) (Virgós et al. 1999); the

Eurasian otter (Lutra lutra) (Clavero et al. 2003); the European wildcat (Felis silvestris)

(Lozano et al. 2006); and the Holarctic martens, (Martes sp.) (Zhou et al. 2011).

Surprisingly, this type of study is lacking for the red fox (Vulpes vulpes), which is the

world’s most widespread member of the order Carnivora (Sillero- Zubiri et al. 2004)

and one of the most abundant carnivore species in the Iberian Peninsula (Blanco 1998;

Palomo et al. 2007) and elsewhere.

Environmental and climatic conditions affect food availability, and can have an impact

on dietary composition and diversity (Hill and Dunbar 2002). Thus, variations in the

distribution of potential prey species across biogeographical regions have been

postulated to affect the feeding habits of medium-sized carnivores. For instance, dietary

diversity in wildcats increases at lower latitudes (i.e. Mediterranean areas; Lozano et al.

2006), where potential prey richness is greater (Rosenzweig 1995). Latitudinal gradients

have also been observed in relation to dietary diversity and in the consumption of

particular prey. For example, the Eurasian otter’s diet is more diverse in southern

localities, while further north the species is more piscivorous, predating upon a large

diversity of fish families (Clavero et al. 2003). Similarly, food availability can vary

along altitudinal gradients, and this can affect the dietary composition of carnivores. For

Page 31: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

30

instance, small mammals (mice, voles and shrews) are the primary food of martens, but

are less frequently consumed at lower altitudes, where other food resources are more

abundant and are available throughout the year (Zhou et al. 2011).

Diet is one of the most studied aspects of the ecology of the red fox. Most studies

indicate that the red fox is a generalist predator that uses resources according to their

availability and hence is opportunistic in its behaviour (e.g. Webbon et al. 2006;

Dell’Arte et al. 2007). However, most studies were undertaken at local or regional

scales, and specific studies describing biogeographical patterns in the red fox diet are

lacking. Although some studies have shown variations in the feeding habits of foxes

based on environmental variables including habitat type (Fedriani 1996; Gortázar 1999),

the effects of latitude, longitude and altitude on the composition of fox diets at a larger

scale remain unknown. Similarly, there is a lack of information about how the

consumption by foxes of some preferred prey, such as lagomorphs or small mammals,

varies spatially at biogeographical scales.

The ecological features of red foxes can bring them into conflict with human activities

where their prey is of economic or conservation concern (Baker and Harris 2003). For

example, predation by foxes is often regarded as one of the factors preventing the

recovery of small game (Reynolds and Tapper 1995; Smedshaug et al. 1999; Beja et al.

2009; Knauer et al. 2010), and farmers consider predation of livestock by foxes to cause

economic losses (Moberly et al. 2004). Furthermore, several researchers have reported

negative impacts of fox predation on species of conservation concern (Yanes and Suárez

1996; Ruiz-Olmo et al. 2003; Dickman 2010). However, predators, including

generalists such as red foxes, play major roles in ecological processes by limiting

populations of pest species (O’Mahony et al. 1999; Newsome et al. 2001), reducing the

transmission of disease (Hudson et al. 1992; Millán et al. 2002) and acting as seed

dispersers (Guitián and Munilla 2010; Rosalino et al. 2010). Our ability to understand

biogeographical patterns is crucial for developing efficient management programs in the

context of human usage (Whittaker et al. 2005). From this perspective, a large-scale

study of the trophic ecology of the red fox could provide valuable knowledge

concerning its ecosystem functions and improve management of this predator.

The Iberian Peninsula is included in the Mediterranean Basin hotspot (Myers et al.

2000) and is thereby an interesting site for the study of biogeographical patterns (e.g.

Page 32: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

31

Carvalho et al. 2011). It includes distinct Atlantic (Northern Iberia), Mediterranean

(Central and Southern Iberia) and Alpine (Pyrenees mountains) biogeographical regions

(Rivas-Martínez 1987; Figure 1.1.), and is characterized by high environmental

heterogeneity because of its climatic and physiographical complexity (the altitude

ranges from 0m at sea level to 3479m above sea level at Sierra Nevada, Granada,

Spain). The variability in environmental conditions underpins the diversity in

community composition and structure in this region (Blondel and Aronson 1999,

Stefanescu et al. 2004). Several patterns in the distribution and abundance of the main

prey species of Iberian predators have been described. For instance, wild rabbits

Oryctolagus cuniculus, which are a key prey for red foxes and other Iberian predators

(Delibes and Hiraldo 1981; Calzada 2000; Ferreras et al. 2011), are most abundant at

central–southern latitudes (Villafuerte et al. 1998), and small mammals show a gradient

in abundance and species richness from south to north (Soriguer et al. 2003). The theory

of feeding specialization predicts an increase in dietary diversity when the preferred

prey becomes scarce (Futuyma and Moreno 1988). In this study, we tested this

prediction in relation to the red fox and rabbits as its preferred prey. Although the

Iberian Peninsula is a relatively small biogeographical area, its high environmental

variability and biodiversity justifies a biogeographical analysis of the diet of resident

generalist carnivores such as the red fox.

Our main objective was to describe the trophic biogeographical patterns of the red fox

in the Iberian Peninsula, based on a comprehensive literature review. Specifically, we:

(i) evaluated changes in consumption by red foxes of main food groups in relation to

geographical variables (latitude, longitude and altitude); (ii) analysed the relationships

between red fox dietary diversity, consumption of its main prey and geographical

variables; (iii) assessed the relationships between the consumption of different food

groups and habitat type and season; and (iv) interpreted patterns in the diet of this

generalist predator from a biogeographical perspective.

Page 33: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

32

Figure 1.1. Geographical distribution in the Iberian Peninsula of studies of the diet of the red

fox (Vulpes vulpes) included in this review. Biogeographical regions are shown, and the

numbers represent study site identifiers (ID; see Appendix 1.1.).

Material and Methods Literature compilation and standardization of dietary data

Various sources of information were used to review the available literature

comprehensively, as recommended by Pullin and Stewart (2006). Search engines (ISI

Web of Science and Google Scholar) were used to identify relevant scientific studies

containing information about the trophic ecology of the red fox in the Iberian

Peninsula.We searched for terms that were identified using the following combinations

of keywords: ‘red fox’ or ‘Vulpes vulpes’ and ‘diet’ or ‘feeding’ and ‘Iberian

Peninsula’, ‘Spain’ or ‘Portugal’. We consulted several zoological bibliographical data

bases including the Zoological Record (http://scientific.thomson.com/products/zr/) and

the bibliographical data set of the Spanish Society for the Conservation and Study of

Mammals (http://www.secem.es/Secem_la_biblioteca.htm). We also sought information

on the topic from informal contacts with expert researchers (colleagues working in

Page 34: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

33

different institutions – universities and environmental public administration – in Spain

and Portugal). This provided us with less readily accessible sources of information,

including unpublished or unedited studies (e.g. PhD theses, MSc and BSc dissertations,

and public administration data bases).

We compiled a total of 55 published and unpublished studies concerning the diet of the

red fox in Portugal and Spain, spanning the period 1971–2008. Some authors reported

data pooled annually, others reported data pooled seasonally, and several provided both

annual and seasonal data. To simplify the statistical procedures, two independent data

bases were created for analysis: one comprising annual data and the other seasonal data.

These data bases were analysed independently (see Statistical analyses).

To standardize data from different geographical areas (for later comparison and

analysis), we excluded studies: (i) with small sample sizes (scat or stomachs; n < 30 for

anual studies and n < 15 for seasonal studies); (ii) reporting data for only one prey

group; (iii) containing duplicated information, e.g. academic dissertations later

published as scientific articles; and (iv) reporting only relative frequency of occurrence

(RF, expressed as the percentage of times one food ítem occurs in relation to the total

times all food items occur) or percentage biomass. This last exclusion meant that we

only considered studies reporting the frequency of occurrence (FO, expressed as the

percentage of scats/stomachs containing a particular food item) for the various food

groups. RF values are considered to be highly suitable for interpopulation comparisons

in diet studies (Clavero et al. 2003), and biomass is considered a direct measure of the

energetic value of prey items consumed (Reynolds and Aebischer 1991), and therefore

the best approximation to the true diet (Klare et al. 2011). However, only a small

proportion of the reviewed studies presented RF or biomass information, while FO is

widely used in carnivore diet studies and was used in most of the red fox studies

considered in this review. Moreover, FO can be used to assess whether a predator

behaves as an opportunist or as a specialist forager (Klare et al. 2011), and it is

considered a valid parameter for comparative purposes (Reynolds and Aebischer 1991;

Klare et al. 2011).

The application of the four exclusion criteria above resulted in a final set of 37 studies

that were further analysed to describe red fox feeding patterns in the Iberian Peninsula.

These studies were carried out in 39 locations distributed throughout the region (Figure.

Page 35: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

34

1; for more detailed information, see Appendices 1.1. and 1.2.). The data were highly

heterogeneous among the variables, which reflected the diversity of environmental

conditions in the Iberian Peninsula. For example, a broad altitudinal range (20– 1425m)

was included, and various habitat types were represented, including several types of

Mediterranean scrub, agricultural lands, dehesas (savannah-like formations that

combine pastures with intermittent cereal cultivation in park-like oak woodlands;

Blondel and Aronson 1999) and forests containing various tree species (e.g. Pinus sp.

and Quercus pyrenaica).

Variable selection

From each study we derived the following parameters: respective geographical variables

(latitude and longitude, in degrees; and altitude, in metres) either from the study itself

or, if they were not provided in the study, from Google Earth (http://earth.google.com);

the source of food materials analysed (scats or stomach contents); and the simple size,

study duration, season, habitat, and FO of each food group (see Appendices 1.1. and

1.2.). We categorized dietary items into the following main groups: lagomorphs (mainly

European wild rabbits; see Results), small mammals (rodents and insectivores), birds,

reptiles, invertebrates, fruits/seeds, and carrion/garbage (mainly large mammals and

leftover food of anthropogenic origin). Four seasons were considered: spring (March–

May), summer (June–August), autumn (September–November) and Winter (December–

February). The habitat type at each location was categorized as Mediterranean scrub,

forest or agricultural–dehesa (agricultural land and dehesas), according to the

descriptions given in each study. We calculated Herrera’s trophic diversity index (D;

Herrera 1976) from the FO data as an index of the trophic diversity for each diet. The

index is computed according to the formula 퐷 = −∑ logpi, where p is the

frequency of occurrence of the various prey categories (i). This index is recommended

for presence–absence food data, because other diversity indices such as the Shannon

index cannot be calculated from this type of data (Herrera 1976).

To test for bias caused by the study duration, sample size or source of analysed food

material (scats or stomach contents; Putman 1984), we followed the approach of earlier

authors (Lozano et al. 2006; Zhou et al. 2011) and used multivariate analysis of

covariance with the study duration and simple size as covariates, food material as a

fixed factor and the FO of each of the seven food groups as response variables.

Page 36: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

35

To avoid temporal pseudo-replication, we considered only those studies in which annual

information on the Iberian fox diet was provided: 30 studies and localities, including a

total of 9459 samples (stomachs and scats; see Appendix 1.1. and 1.2.). Therefore,

analyses of the relationship of the consumption of various food groups to geographical

variables and habitat type were performed using the anual data base. The testing of

seasonal variation was based only on those studies in which seasonal data were

reported: 18 studies and 20 localities, including a total of 5027 samples (stomachs and

scats; see Appendices 1.1. and 1.2.).

The relationships between geographical variables (latitude, longitude and altitude) and

the FO of each food group were tested using simple regression analyses. In view of the

potential importance of wild rabbits in the diet of red foxes, we used a simple regression

analysis to investigate the relationships between the lagomorph FO (mainly wild

rabbits; see Results) and the FO of other food groups. To evaluate whether trophic

specialization occurred in Iberian red foxes, we tested the relationships between diet

diversity (Herrera D index) and the FO of each of the four main food groups

(lagomorphs, small mammals, invertebrates and fruits/ seeds) using data from annual

studies. We applied general linear models (GLMs) using a normal distribution for errors

of the response variable (Herrera D index) and an identity link function. One-way

analysis of variance was used to test the effect of habitat type on the FO of each food

group. We assessed seasonal variations in the diet by performing separate one-way

analyses of variance with the FO of each food group as a dependent variable. We

conducted Tukey’s post-hoc tests to assess differences between pairs of habitat types

and seasons.

Prior to statistical analyses, the FO for each food group and the Herrera D index values

(dependent variables) were arc sine and log transformed, respectively, to achieve

normality (Zar 1984), which was assessed visually from normal probability plots. All

statistical analyses were performed using Statistica 6.0 software (StatSoft 2001).

Results We found no significant effect of study duration (F7,26 = 0.86, P = 0.55), sample size

(F7,26 = 0.73, P = 0.64), source of analysed food material (scats or stomach contents;

F7,26 = 0.43, P = 0.11) or the interaction between sample size and food material (F7,26 =

1.04, P = 0.42) on the FO of food groups in the diet. Thus, for further analyses we

Page 37: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

36

pooled data from studies with differing durations, sample sizes and sources of analysed

food material.

Overal diet

Iberian red foxes consume a wide range of food items. Invertebrates were the most

frequent food group in their diet (mean FO±SD, 40.1±25.5%), followed by fruits/ seeds

(38.9±22.0%), small mammals (34±20.9%), lagomorphs (20.6±22.0%), carrion/garbage

(15.3±14.2%), birds (13.4±15.3%) and reptiles (1.8±2.8%).

Coleoptera and Orthoptera species were the most common among the invertebrates, and

both wild and cultivated fruits were included among the fruits/sedes consumed. The

most common small mammal prey was Apodemus sylvaticus, followed by Microtus

spp., Crocidura spp. and Eliomys quercinus. Wild rabbit was the dominant species

among the lagomorphs, while hares Lepus spp. Were rare in the red fox diet (only

identified in 6 of the 27 studies that recorded lagomorphs; FO = 1.2±0.43%). For this

reason, we will use indistinctly ‘rabbits’ and ‘lagomorphs’ from now on in the text. The

large mammals reported as fox food items included Cervus elaphus, Dama dama, Sus

scrofa, Bos taurus, Ovis aries and Capra hircus, and were presumably consumed as

carrion. Among birds in the fox diet, the most common species consumed were

Columba spp., Alectoris rufa, Galerida spp. and Anas spp. Several reptile species were

consumed, including Psammodromus spp., Malpolon monspessulanus and Elaphe

scalaris.

Geographical patterns (latitude, longitude and altitude)

We found a negative and statistically significant relationship between latitude and the

FO of lagomorphs (R2 = 0.19, F1,35 = 8.47, P = 0.006; Figure 1.2a.) and invertebrates

(R2 = 0.11, F1,35 = 4.37, P = 0.04; Figure 1.2b.), and a positive and significant

relationship between latitude and the FO of small mammals (R2 = 0.16, F1,35 = 6.78, P =

0.01; Figure 1.2c.) and fruits/sedes (R2 = 0.12, F1,35 = 5.04, P = 0.03; Figure 1.2d.).

Therefore, at lower latitudes, lagomorphs and invertebrates were more frequently eaten,

while at higher latitudes small mammals and fruits/seeds were more commonly

consumed.

Only the FO of invertebrates and fruits/seeds were significantly related to longitude.

The consumption of invertebrates increased towards the east (R2 = 0.12, F1,35 = 4.95, P =

0.03), whereas that of fruits/seeds increased towards the west (R2 = 0.16, F1,35 = 6.99, P

= 0.01).

Page 38: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

37

Figure 1.2. Relationships between latitude and the frequency of occurrence (FO; arc sine

transformed) of (a) lagomorphs (b) invertebrates (c) small mammals and (d) fruits/seeds in the

diet of the red fox. Each point represents one study site (see Figure 1.1.).

Altitude was significantly and negatively associated with the FO of lagomorphs (R2 =

0.29, F1,30 = 12.67, P = 0.001; Figure 3a), and positively associated with that of small

mammals (R2 = 0.27, F1,30 = 11.31, P = 0.002, Figure 1.3b.). Thus, the consumption of

lagomorphs decreased with altitude, and that of small mammals increased.

Is the red fox specialized on rabbits in the Iberian Peninsula?

The consumption of wild rabbits (represented by lagomorphs) was significantly and

negatively related to the consumption of both small mammals (R2 = 0.15, F1,35 = 6.23,

P = 0.02) and fruits/seeds (R2 = 0.17, F1,35 = 8.41; P = 0.006). The GLM results suggest

that diet diversity was not significantly associated with latitude (F1,25 = 0.33, P > 0.5),

altitude (F1,25 = 0.552, P > 0.4) or the FO of the four main food groups (lagomorphs:

F1,25 = 0.126, P > 0.7; small mammals: F1,25 = 0.004, P > 0.9; invertebrates: F1,25 = 0.253,

P > 0.6; and fruits/seeds: F1,25 = 0.196, P > 0.6).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lago

mor

ph R2 = 0.19

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Smal

l mam

mal

s

R2 = 0.16

36 37 38 39 40 41 42 43 44

Latitude

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Inve

rtebr

ates

R2 = 0.11

36 37 38 39 40 41 42 43 44

Latitude

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Frui

t/See

d

R2 = 0.12

a c

db

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lago

mor

ph R2 = 0.19

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Smal

l mam

mal

s

R2 = 0.16

36 37 38 39 40 41 42 43 44

Latitude

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Inve

rtebr

ates

R2 = 0.11

36 37 38 39 40 41 42 43 44

Latitude

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Frui

t/See

d

R2 = 0.12

a c

db

Page 39: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

38

Figure 1.3. Relationships between altitude (in metres) and the frequency of occurrence (FO; arc sine transformed) of (a) lagomorphs and (b) small mammals in the diet of the red fox. Each point represents one study site (see Figure 1.1.).

Habitat type and seasonality

We found a significant relationship between habitat type and the FO of lagomorphs

(F2,21 = 8.10, P = 0.002) and small mammals (F2,20 = 4.05, P = 0.03) in red fox diet. The

FO of lagomorphs was higher in Mediterranean scrub than in forest (Figure 1.4a.), but

the opposite was observed for small mammals (Figure 1.4b.).

A significant seasonal relationship in the red fox diet was found for reptiles (F3,53 =

3.34, P = 0.02), invertebrates (F3,53 = 9.45, P < 0.0001) and fruits/seeds (F3,53 = 11.49, P

< 0.0001). The FO of reptiles increased from winter to summer (Figure 1.5a.);

invertebrates were mostly consumed in summer, and their occurrence in the diet was

lowest in winter (Figure 1.5b.); and fruits/seeds were consumed most in autumn and

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lago

mrp

h

R2 = 0.29a

0 200 400 600 800 1000 1200 1400 1600

Altitude

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sm

all m

amm

als

R2 = 0.27b

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lago

mrp

h

R2 = 0.29a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lago

mrp

h

R2 = 0.29a

0 200 400 600 800 1000 1200 1400 1600

Altitude

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sm

all m

amm

als

R2 = 0.27b

0 200 400 600 800 1000 1200 1400 1600

Altitude

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sm

all m

amm

als

R2 = 0.27b

Page 40: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

39

least in spring (Figure 1.5c.). Marginally significant differences were found for

lagomorphs (F3,53 = 2.40, P = 0.07), which were consumed most in summer (Figure

1.5d.).

Figure 1.4. Frequency of occurrence (FO; arc sine transformed; means±SE) of (a) lagomorphs and (b) small mammals in the diet of the red fox as a function of habitat type. Means marked with the same letter are not significantly different from one another (P < 0.05; Tukey’s post-hoc test). M. scrub, Mediterranean scrub; Agri., agricultural lands.

M. Scrub Forest Agri./Dehesa0.00.10.20.30.40.50.60.70.80.91.0

Sm

all m

amm

als

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0La

gom

orph

sa

b

A

A, B

B

(N=12) (N=9) (N=3)

A A, B

B

M. Scrub Forest Agri./Dehesa0.00.10.20.30.40.50.60.70.80.91.0

Sm

all m

amm

als

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0La

gom

orph

sa

b

A

A, B

B

(N=12) (N=9) (N=3)

A A, B

B

Page 41: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

40

Figure 1.5. Frequency of occurrence (FO; arc sine transformed; means±SE) of (a) reptiles (b) invertebrates (c) fruits/seeds and (d) lagomorphs in the diet of the red fox, as a function of season (marginally non-significant for lagomorphs, P = 0.07). Means marked with the same letter are not significantly different from one another (P < 0.05; Tukey’s post-hoc test).

Discussion Biogeographical variations in the diet of the red fox in Iberia

Generalist predators feed on different food resources according to their abundance and

availability (Futuyma and Moreno 1988). This study confirms that the red fox is a

generalist predator; its trophic patterns can be explained by geographical variables,

habitat type and seasonality. These factors determine directly the abundance and

availability of its main foods [e.g. wild rabbits are more abundant at southern latitudes

(Villafuerte et al. 1998) and in Mediterranean scrubland habitats (Calvete et al. 2004);

small mammals are more abundant at northern latitudes (Soriguer et al. 2003) and in

forest habitats (Torre et al. 2002)]. Latitude influences the feeding patterns of many

medium-sized carnivores (Clavero et al. 2003; Hounsome and Delahay 2005; Lozano et

al. 2006; Zhou et al. 2011). Some researchers relate dietary patterns in the abundance

and diversity of prey species with the latitudinal gradient described in Eurasia, which

Winter Spring Summer Autumn0.00.10.20.30.40.50.60.70.80.91.0

Lago

mor

phs

Winter Spring Summer Autumn0.00.10.20.30.40.50.60.70.80.91.0

Frui

ts/S

eeds

0.00

0.05

0.10

0.15

0.20

0.25R

eptil

es

0.00.10.20.30.40.50.60.70.80.91.01.11.2

Inve

rtebr

ates

a b

c d

A

A, B

B

A

A, BB, C

C

A

B

A, CC

A

A, B

B

(N=11) (N=15) (N=18) (N=13) (N=11) (N=15) (N=18) (N=13)

A, B

A, B

Winter Spring Summer Autumn0.00.10.20.30.40.50.60.70.80.91.0

Lago

mor

phs

Winter Spring Summer Autumn0.00.10.20.30.40.50.60.70.80.91.0

Frui

ts/S

eeds

0.00

0.05

0.10

0.15

0.20

0.25R

eptil

es

0.00.10.20.30.40.50.60.70.80.91.01.11.2

Inve

rtebr

ates

a b

c d

A

A, B

B

A

A, BB, C

C

A

B

A, CC

A

A, B

B

(N=11) (N=15) (N=18) (N=13) (N=11) (N=15) (N=18) (N=13)

A, B

A, B

Page 42: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

41

increases towards the south (Pianka 1966; Blondel and Aronson 1999). Our results are

consistent with these findings as we observed a latitudinal gradient in the consumption

of lagomorphs, invertebrates, small mammals and fruits/seeds by red foxes.

The increase in the consumption of lagomorphs, mainly wild rabbits, towards southern

Iberia is a consequence of the greater abundance of this prey at these latitudes

(Villafuerte et al. 1998). The same pattern in rabbit intake has been shown for other

medium-sized Iberian carnivores including the wildcat (Lozano et al. 2006), the badger

(Virgós et al. 2005; Barea-Azcón et al. 2010) and the polecat (Santos et al. 2009). This

feeding pattern could explain the negative latitudinal gradient found in the body size of

Iberian red foxes, which contradicts Bergmann’s Rule (Yom-Tov et al. 2007). The high

occurrence of invertebrates in the red fox diet in southern regionsmay be explained by

the greater availability of this food type at low latitudes (Chapman 1998; Blondel and

Aronson 1999) and is in agreement with studies of the diet of other medium-sized

Iberian generalist carnivores including the genet (Virgós et al. 1999).

The positive relationship between latitude and small mammal consumption by Iberian

red foxes corresponds to a south–north gradient in the abundance and species richness

of this prey group (Blanco 1998; Soriguer et al. 2003). The decrease in rabbit abundance

in northern regions of the Iberian Peninsula also promotes the switch to small mammals

as the main prey in these areas. This pattern was also observed by Zhou et al. (2011) in

Holarctic marten species at a larger biogeographical scale.

The consumption of fruits/seeds by the red fox is greater in northern regions than in

southern regions. However, this pattern is opposite to that described for other Eurasian

generalist carnivores, which decrease their consumption of plant matter and increase

carnivory with increasing latitude (Virgós et al. 1999; Goszczynski et al. 2000; Vulla et

al. 2009; Zhou et al. 2011). In some of these studies, this pattern is explained by a

reduction in primary production with increasing latitude, but the narrow latitudinal

range covered in the present study leads us to believe that the higher consumption of

fruits/seeds is likely to be due to the greater availability of this resource in the north of

the Iberian Peninsula.

The FO of invertebrates in the fox diet increases from east to west, while that of

fruits/seeds increases from west to east. Rosalino and Santos-Reis (2009) were not able

to explain a similar longitudinal gradient found in fruit/seed consumption by medium-

Page 43: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

42

sized carnivores in Iberia because of the absence of data on the availability of plant

species producing fruits and seeds. Invertebrates are an alternative food source for some

omnivorous species, especially larger carnivorous mammals, where larger prey items

are not available (Capinera 2010). However, as there is currently no information on the

availability of invertebrates over a longitudinal gradient in Iberia, we have no data to

enable us to interpret our results.

The decrease in consumption of lagomorphs by foxes with increasing altitude could be

because of the reduced presence and abundance of rabbits above 1000m (Blanco 1998;

Palomo et al. 2007), but the consumption of small mammals by foxes increased in high

altitude areas. This is in contrast with previous findings that the species richness and

abundance of small mammals decreases at higher altitudes (Torre 2004). However, the

altitudinal range considered in this study (only three localities were higher than 1400m;

see Appendix S1) did not include altitudes that may limit the presence of most small

mammals consumed by the red fox (Palomo et al. 2007), which prevents us from

confirming this trend in small mammal consumption. Thus, the increased intake of

small mammals seems to be a functional response to the reduced availability of

lagomorphs at higher altitudes, as Hartová-Nentvichová et al. (2010) found for red

foxes in the mountains of the Czech Republic.

Is the red fox specialized on rabbits in the Iberian Peninsula?

A negative relationship between a given food group and dietary diversity is usually

interpreted as indicating trophic specialization (Futuyma and Moreno 1988; Fedriani et

al. 1998; Lozano et al. 2006). A negative relationship at a regional scale between

lagomorph consumption and dietary diversity has been described for red foxes (Delibes-

Mateos et al. 2008) and for other small and medium-sized Mediterranean carnivores

(Sarmento 1996; Lozano et al. 2006; Santos et al. 2009). However, we did not find any

significant relationship between dietary diversity and the consumption of lagomorphs or

other prey, or geographical variables, perhaps because of the high trophic flexibility of

the fox in the Iberian Peninsula. These results suggest that, at the scale of the peninsula,

only small mammals and fruits/seeds are eaten by foxes as alternatives to lagomorphs.

This confirms the opportunistic and generalist feeding behaviour of the red fox, as has

consistently been reported for different geographical areas and at various scales (e.g.

Kjellander and Nordstrom 2003, Dell’Arte et al. 2007).

Page 44: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

43

Habitat type and seasonality

We observed a high intake of lagomorphs by red foxes in the Mediterranean scrubland,

where wild rabbits reach higher densities (Fedriani 1996; Palomares 2001; Calvete et al.

2004). In contrast, Fedriani (1996) found no difference in consumption of wild rabbits

by red foxes in adjacent áreas of scrubland and dehesa habitat in Doñana (southwest

Iberian Peninsula), despite higher rabbit density in the scrubland patches. This is

probably a consequence of the larger scale considered in our review, where habitats

were clearly differentiated between studies. The preference for forests shown by the

small mammal species most frequently consumed by foxes (e.g. Apodemus sylvaticus;

Torre et al. 2002), together with the low abundance of rabbits in this type of habitat,

explains why foxes include in their diet a greater proportion of small mammals in

forests than in others habitats.

Several researchers have reported marked seasonality in the diet of the red fox

(Dell’Arte et al. 2007; Hartová-Nentvichová et al. 2010). Mediterranean ecosystems

have marked climatic seasonality, with hot dry summers and cold wet winters (Blondel

& Aronson 1999); thus, some trophic resources for carnivores are only seasonally

available (Virgós 2002). We also observed a marked seasonality in the diet of the red

fox, which is a result of the seasonal availability of some food groups at the Iberian

scale. Populations of Orthoptera and Coleoptera, the invertebrates most consumed in

summer, increase dramatically during this season (Aranda et al. 1995; Loureiro et al.

2009). The availability of cultivated and wild fruits is greatest in summer and autumn

(Loureiro et al. 2009), when they are most consumed by foxes. The annual abundance

of wild rabbits in the Iberian Peninsula peaks in the spring–summer period (Soriguer

1981; Beltrán 1991). At this time the greater availability of juvenile rabbits and the

susceptibility of the rabbit population to myxomatosis (Calvete et al. 2002) may make

this prey more vulnerable to predation and consumption as carrion by foxes, so that

rabbits may provide a valuable energy source for foxes during the highly critical

breeding period. This explains the observed seasonal increase in the FO of lagomorphs

from spring to summer (Figure 1.5d.). However, in areas where rabbits are very

abundant, their availability is high throughout the year (Angulo and Villafuerte 2003),

which could explain the lack of statistically significant differences between seasons in

the FO of lagomorphs in the red fox diet.

Page 45: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

44

Conclusions

Biogeographical variation in the feeding habits of Iberian red foxes are associated with

geographical variables, hábitat type and season, which affect the availability of

alternative potential foods (Figure 1.6.). Our results confirm that the feeding habits of

the red fox, a generalist predator, vary widely both spatially and temporally, even within

a relatively small biogeographical area such as the Iberian Peninsula. Therefore, we

demonstrate that the flexibility of this generalist predator really reflects the

biogeographical patterns of distribution and abundance of its main food sources.

Understanding these patterns in the feeding ecology of the red fox, the most abundant

carnivore in the Iberian Peninsula, will facilitate the understanding of the geographical

variations in its abundance and behaviour, and improve the management and

conservation of this species.

Figure 1.6. Conceptual model illustrating the biogeographical patterns found in the

consumption of the main food groups by the Iberian red fox, in relation to geographical

variables (LAG, lagomorphs; SM, small mammals; F/S, fruits/seeds; INV, invertebrates). The

white arrows represent latitudinal (LATITUDE) and longitudinal (LONG) gradients, and the

grey arrow shows the altitudinal gradient (ALTITUDE).

Page 46: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

45

Acknowledgements We are especially grateful to Drs P. C. Alves and C. Gortázar for providing unpublished

data to be included in this review. We thank also Drs. Jennings and Hackländer, and

two anonymous referees whose comments greatly improved the manuscript. M.

Delibes-Mateos currently holds a Juan de la Cierva research contract awarded by the

Ministerio de Ciencia e Innovación and the European Social Fund. C. Ferreira was

supported by a PhD grant (Ref. SFRH/BD/22084/2005) funded by the Fundação para a

Ciência e Tecnologia of the Ministério da Ciência, Tecnologia e Ensino Superior,

Portuguese government. Financial support for the study was provided by the Spanish

MICINN Project CGL2009-10741 from Spanish Plan Nacional de I+D and FEDER

funds.

Page 47: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

46

CAPÍTULO 2: Factors affecting the feeding habits of black-billed magpies Pica pica during the breeding season in Mediterranean Iberia

Este capítulo ha sido enviado a una revista SCI:

Díaz-Ruiz F, Zarca JC, Delibes-Mateos M., Ferreras (enviado) Factors affecting the feeding habits of black-billed magpies Pica pica during the breeding season in Mediterranean Iberia.

Page 48: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

47

Abstract Feeding habits of the black-billed magpie are of conservation and management interest

for researchers, conservationists and hunters since magpies are considered as predators

of eggs and chicks of both songbirds and gamebirds. The aim of this study was to

characterize the feeding habits of magpies during the breeding season of birds (i.e.

magpies and sympatric birds) in agricultural environments of central Spain, and to

assess the occurrence and incidence of birds and eggs in the magpie’s diet. Diet was

determined by the analysis of gizzards contents from 118 magpies. We tested the effect

of locality, age and sex on diet composition and diet diversity through multivariate

analysis of variance (MANOVA) and general lineal models (GLM). Magpies presented

a generalist diet, which included a wide range of foods. Arthropods and cereal seeds

were the most frequent food groups (frequency of occurrence, FO >60 %). Eggs and

birds were consumed only occasionally (FO < 6% and 17% respectively; percentage of

volume, VOL, < 4%), and more frequently during magpie incubation stage. We did not

find overall significant differences in diet related with age and sex. Significant effects

were only found for the interaction between sex and age and between them and locality.

Our findings suggest that magpies do not seem to pose an important threat for the

conservation of birds in Mediterranean agricultural environments, under the conditions

found during this study. Nevertheless, more complex studies in different scenarios (i.e.

different population sizes of magpies and prey) and at longer temporal scales are

necessary to clarify this controversial issue.

Key words: bird conservation, egg predation, feeding habits, generalist diet, predator

control

Page 49: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

48

Introduction Feeding habits is an important and widely studied aspect of animal ecology and a

fundamental component for understanding the biology and ecology of species. Some

species are perceived as harmful for human interests, frequently because of their feeding

habits. For instance, some predators can consume species of human interest such as

game species or livestock (Woodroffe et al. 2005). From this point of view, the

information provided by studies on predator feeding habits may be relevant to guide

appropriate policy and management decisions (López-Bao et al. 2013) that facilitate

human-wildlife coexistence.

Feeding habits of the black-billed magpie (Pica pica, hereafter the magpie) give rise to

controversial interpretations between researchers, conservationists and hunters. In

Europe, magpies are considered as a harmful bird species by some conservationists and

hunters because of their predation on eggs and chicks of songbirds and gamebirds

(Birkhead 1991; Herranz 2000). As a consequence, control of magpie populations is

widespread in Europe (Hadjisterkotis 2003), particularly in southern regions (Chiron

and Julliard 2013; Díaz-Ruiz and Ferreras 2013). In Spain, magpie control is mostly

performed by hunters and game managers, who consider magpies as high efficient

predators of nests of red-legged partridges (Alectoris rufa) (Delibes-Mateos et al. 2013;

Díaz-Ruiz and Ferreras 2013), a small game species of socioeconomic relevance (Díaz-

Fernandez et al. 2012).

Magpies feeding habits have been object of several studies focusing on different issues,

e.g. seasonal diet composition, food selection, diet of nestlings or differences between

feeding patterns of rural and urban magpies (Birkhead 1991; Soler and Soler 1991;

Martínez et al. 1992; Ponz et al. 1999; Kryštofková et al. 2011). These studies describe

magpies as generalist predators that feed on a broad spectrum of food types. In general,

eggs form only a small proportion of magpie diet (Birkhead 1991; Martínez et al. 1992),

although some studies have shown that magpies are one of the main predators of

artificial and natural nests (Groom 1993; Herranz 2000; Miller and Hobbs 2000; Roos

and Pärt 2004). Nevertheless, the impact of magpies on bird populations remains still

unclear, due to contrasting results (Gooch et al. 1991; Stoate and Szczur 2001; Thomson

et al. 1998; Chiron and Julliard 2007; Newson et al. 2010), particularly in the Iberian

Peninsula, where the number of studies on this issue is low. In addition, other basic

Page 50: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

49

aspects of the feeding habits of magpies, such as how these are affected by intrinsic

factors (e.g. age or sex) remain largely unknown.

Differences in feeding behaviour related to age and sex have been shown for several

vertebrate species, e.g. reptiles (Liu et al. 2011), mammals (Kidawa and Kowalczyk

2011) and birds (Le Vaillant et al. 2013). In bird species, foraging behaviour may differ

between males and females, in order to avoid intraspecific competition for food

resources (Le Vaillant et al. 2013). Moreover, individuals improve with age their

knowledge of the environment and their ability to prospect for food, which means that

older individuals can expand the range of available dietary items, or focus on more

profitable foods, increasing their foraging efficiency (Pärt 2001; Gomes et al. 2009).

Biometrical differences occur between sexes and age classes in magpies; males are

larger than females and adults are larger than yearlings (Birkhead 1991; Martínez 2011).

Furthermore, during the breeding period males and females take on different roles, e.g.

only females incubate (Buitron 1988). In addition, magpies can remember the type of

food they hoarded, in which location, and when this hoarding took place (Zinkivskay et

al. 2009), and this ability may be more accentuated in more experienced adult birds than

in yearlings. Therefore, these biological and behavioural differences linked to age and

sex may be a source of variation in the magpie’s diet as observed in the case of other

birds (Le Vaillant et al. 2013; Pärt 2001; Gomes et al. 2009). On the one hand, larger

individuals may capture larger prey, such as birds, and more experienced individuals

may have learned to exploit resources not used by less experienced individuals, such as

nests. Although these aspects may be very relevant for magpies’ management, they have

not been tested or described so far for this species.

In the present study or main goal was to characterize the diet of magpies during their

breeding season in agricultural rural areas of central Iberia. Our specific aims were to

examine: (1) the occurrence and importance of birds and eggs in the diet of magpies and

(2) whether age, sex and area may be sources of variation in the feeding habits of

magpies.

Material and Methods Study Area

Magpie feeding habits were studied in two hunting estates located in central Spain

(Area 1: 960 ha, 39º 4.5´ N, 3º 54´ W; Area 2: 547 ha, 39º 33´ N, 3º 12´ W), during

Page 51: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

50

spring 2006. Both study areas were within the Mediterranean bioclimatic region (Rivas-

Martínez et al. 2004), and were similar in habitat composition: an agricultural

dominated landscape with some interspersed patches of natural vegetation (mainly

Mediterranean bushes and some trees in riparian areas and hedgerows). Main crops

were cereals (~50 and 70% of total surface) and, to a lesser extent, vineyards and olive

groves. Hunting was an important activity in both estates, and the main game species

were Iberian hare (Lepus granatensis), European wild rabbit (Oryctolagus cuniculus)

and red-legged partridge. Partridge density was low in both estates (less than 0.36

partridges/ha, authors, unpublished data), within the range of other agricultural regions

of the Iberian Peninsula (Borralho et al. 1996; Duarte and Vargas 2001). Both hunting

estates harbor an important community of small breeding birds, including species of

families such as Alaudidae or Fringillidae (Martí and Del Moral 2003). Magpie density

in both study areas (Area 1: 0.23 magpies/ha, Area 2: 0.39 magpies/ha, before breeding

season; see Díaz-Ruiz et al. 2010) was above average values reported in other areas of

Europe (Birkhead 1991).

Sample collection

Magpies were captured during an experimental evaluation of cage-traps as live capture

methods for magpie population management (see for more details Díaz-Ruiz et al.

2010). Magpies were captured during their breeding season of 2006 (Birkhead 1991;

Soler et al., 1999; Ponz and Gil-Delgado 2004): during May in Area 1 and during late

May-early June in Area 2. Birds were euthanized using standard procedures and

following current guidelines of animal welfare (Close et al. 1997). Age was determined

from the shape and appearance of the first outermost primaries; this method allows to

differentiate between first-year (hereafter young) and older magpies (hereafter adult)

(Erpino 1968; Birkhead 1991). Sex was determined for each individual by the

assessment of gonadal development during laboratory necropsies. Gizzard contents

were extracted and placed in 70% alcohol in labeled plastic tubes for subsequent

analyses.

Gizzard contents analysis

Magpie diet was determined through the analysis of gizzard contents, a frequent

methodology used in diet study of several bird species (Jiguet 2002; Kopij 2005; Bur et

al. 2008). Gizzard contents were analysed in the laboratory following the methodology

Page 52: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

51

described in corvid diet studies (Soler et al. 1990; Soler and Soler 1991; Herranz 2000).

Food items were identified to the lowest possible taxonomic level using published

literature (Day 1966; Barrientos 1988; Devesa 1991; Teerink 1991; Chinery 1997), as

well as a dedicated reference collection of seeds, invertebrates, bird eggs and mammal

hairs. The thickness of eggshells was measured with a digital calliper (precision 0.01

mm) to assign the eggs at least to the family level (Herranz 2000). All identified items

were pooled in nine food classes: arthropod, gastropod, cereal seed, fruit, other vegetal,

bird, egg, reptile and mammal, and two non-food items: gastrolith and plastic (Table

2.1. and Appendix 2.1.). We estimated the minimum number of individuals per food

class present in each gizzard by: the presence of whole individuals or diagnostic hard

structures (e.g. thorax, elytrum, chelicerae or heads) for invertebrates; cereal grain husk

and fruit seeds; for vertebrates we assumed a minimum number of one since usually

only feathers, hair or small fragments of eggshell appeared.

We calculated three dietary indices frequently used in diet studies (Soler et al. 1993;

Herranz 2000; Hadjisterkotis 2003; Kryštofková et al. 2011): the frequency of

occurrence (FO) expressed as the percentage of gizzards in which a food item was

found, the relative frequency of occurrence (RF) expressed as the percentage of times a

food item occurs in relation to the total times all food items occur, and the percentage of

volume (VOL) estimated as the percentage of total volume corresponding to a certain

food item upon the total content of each gizzard.

Data analysis

We used VOL of each food class in the statistical analyses because this index considers

the amount of each food class in each magpie gizzard. The individual gizzard was

considered as the sampling unit in the statistical analyses. In order to test the effect of

study area, age (adult or young) and sex on diet composition and diversity we conducted

two statistical approaches.

First, we pooled all food classes in four main categories to avoid groups with very low

FO (< 5 %; e.g. fruits, reptiles and mammals). The four categories were: invertebrates

(arthropods and gastropods), cereal seeds, vegetal (encompassing fruits and other

vegetal material, see below) and vertebrates (eggs, birds, reptiles and mammals). We

used multivariate analysis of variance (MANOVA) with the VOL of each main food

category as response variables and the study area, age and sex and all interactions

Page 53: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

52

between them as fixed factors. Using these main categories, we calculated diet diversity

of each gizzard using the Shannon diversity index(퐻 = ∑ 푝푖 lg푝푖). Differences in

퐻′ were tested using General Linear Models (GLM), which included the same factors as

in MANOVA.

Second, we assessed the factors explaining the consumption of the principal food

classes (FO ≥ 5%) present in both study areas (arthropod, cereal seed, other vegetal,

gastropod, bird and egg). For this, we performed independent GLMs with the VOL of

each food class as dependent variable and study area, age, sex and all interactions as

fixed factors.

A negative relationship between a given food and dietary diversity is usually interpreted

as indicative of trophic specialization (Futuyma and Moreno 1988). We tested whether

magpies specialize on any food class through Pearson´s correlation analysis between the

principal food classes (FO ≥ 5%) and H’.

Prior to statistical analyses, the VOL for each food class and H’ values (dependent

variables) were log (x+1) transformed to achieve normality (Zar 1984), which was

assessed visually from normal probability plots of residuals. All statistical analyses

were performed using Statistica 10.0 software (Statsoft INC 2011) and the significance

level was set at α = 0.05.

Results A total of 118 gizzards were collected and analyzed in the laboratory, achieving a

similar sample size for each study area (61 from Area 1, 57 from Area 2), age (51 adult,

67 young), and sex (48 females, 70 males). Overall, we identified 1016 food items in

the gizzard contents belonging to 26 taxonomic groups (Table 2.11 and Appendix 2.1.).

Diet composition

Magpies consumed a wide range of food items among which arthropods and cereal

seeds were the most frequent classes (total FO of 94.07% and 66.95% respectively),

followed by other vegetal (FO of 33.90%) and birds (FO of 16.95%). Other food classes

(gastropods, mainly small snails, bird eggs, fruits, mammals and reptiles) were present

in lower FO (< 10%, Table 2.1. and Appendix 2.1.). Coleoptera and formicidae species

represented 90% of the items consumed among the artrhropoda (Appendix 2.1.). We

were able to identify 84% of the seeds found in the gizzards, and most of them

Page 54: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

53

corresponded to Hordeum sp. (64%), Avena sp. (27%) and Triticum sp. (9%) (Appendix

2.1.). The “other vegetal” class was composed mainly by grass stalk and leaves of

unidentified herbaceous plants, likely from cereal crops. We only could differentiate

bird remains to the taxonomic order level by the microscopic structure of feathers (Day

1966). Most bird remains belonged to passeriformes (n = 15), and only one of them

corresponded to galliformes (Appendix A). Bird egg remains always appeared highly

fragmented, making very difficult the identification of the species that had produced

them. Nevertheless, according to the thickness of eggshells, four (< 0.09 mm) were

compatible with eggs produced by small birds (likely passeriformes), one (0.14 mm)

with those of doves and one with those of partridges (0.23 mm, Herranz 2000). The rest

of vertebrate prey items were remains of two Apodemus sylvaticus, hairs of one Felis

sp., and one undetermined mammal and reptile species, respectively (Appendix 2.1.).

Table 2.1. Magpie diet composition in central Spain. For each food class, we present the

number of gizzards containing remains (Gizzards), the frequency of occurrence (FO) and the

average % volume (VOL). Data is independently presented in terms of overall magpie diet

(Total) and for each study area (A1 and A2). More detailed data on diet composition are shown

in the Appendix 2.1.

Gizzards FO VOL

Food class Total

(n = 118) A1

(n = 61) A2

(n = 57) Total A1 A2 Total A1 A2

Arthropoda 111 56 55 94.07 91.80 96.49 41.14 29.16 53.96

Gastropoda 11 10 1 9.32 16.39 1.75 3.07 5.89 0.05

Cereal seeds 79 43 36 66.95 70.49 63.16 36.10 36.43 35.75

Fruits 5 5 0 4.24 8.20 0.00 1.55 3.00 0.00

Other vegetal 40 27 13 33.90 44.26 22.81 10.75 16.20 4.93

Eggs 6 5 1 5.08 8.20 1.75 2.63 3.61 1.58

Birds 20 17 3 16.95 27.87 5.26 3.87 5.90 1.70

Mammals 4 4 0 3.39 6.56 0.00 0.07 0.13 0.00

Reptiles 1 1 0 0.85 1.64 0.00 0.21 0.41 0.00

Influence of locality, age and sex on diet composition and diversity

Our first approximation showed that overall diet varied significantly between study

areas and that there was a statistically significant effect of the sex-area interaction, and a

marginal statistical effect of the interaction sex-age on diet variation (Table 2.2.). Only

Page 55: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

54

VOL of seeds did not differ between localities (Tukey post-hoc, Appendix 2.2.). Males

fed similarly in both areas but females from Area 1 fed more on vegetal and less on

invertebrates than females from Area 2 (Tukey post-hoc; Appendix 2.3.).

Table 2.2. Results of MANOVA using the four main food categories as response variables:

invertebrates (arthropod and gastropod), cereal seeds, vegetal (encompassing fruit and other

vegetal material, see below) and vertebrates (egg, bird, reptile and mammal) and three fixed

factors (Study Area, Age and Sex) and all possible interactions. Statistically significant

variables are highlighted in bold and marginally significant ones in italic.

Variables Value F4, 107 P-value Study Area 0.75 9.15 < 0.001 Sex 0.94 1.71 0.154 Age 0.98 0.68 0.609 Study Area*Age*Sex 0.97 0.82 0.513 Study Area*Sex 0.88 3.48 0.010 Study Area*Age 0.98 0.63 0.645 Sex*Age 0.92 2.38 0.056

Significant differences in the consumption of principal food classes were mainly related

to the study areas (Table 2.3.). Magpies consumed more arthropods, less other vegetal,

less gasthropods and less birds in Area 2 than in Area 1 (Figure 2.1.). The only

significant difference due to sex was a larger consumption of other vegetal by females

(mean ± se: 15.11±2.93) than males (7.89±2.39). The interactions between sex and area

significantly affected the consumption of arthropods (Figure 2). The effect of the

interaction sex-age on the consumption of other vegetal group VOL was statistically

significant (Table 2.3.; Figure 2.3.).The consumption of bird eggs was not significantly

affected by any of the factors considered.

Magpie diet was significantly more diverse in Area 1 than in Area 2 (Table 2.3.; Figure

2.4.), while sex, age and interactions did not represent significant differences in diet

diversity (Table 2.3.). H’ was significantly and positive correlated with the VOL of

cereal seeds and other vegetal material (Pearson´s correlation: 0.36 and 0.39

respectively; p < 0.05). VOL of arthropods was significantly and negatively correlated

with VOL of cereal seeds, eggs, birds and vegetal groups (Pearson´s correlation: -0.40, -

0.33, -0.24 and -0.20 respectively; p < 0.05).

Page 56: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

55

Table 2.3. Results of the General Linear Models (GLMs) performed to assess the effect of different factors on the consumption of the principal food classes (FO ≥ 5%) by magpies and on diet diversity (H´). Degrees of freedom were 1,110 in all F tests. Statistically significant variables are highlighted in bold.

Diet Diversity (H´) Arthropoda Cereal Seeds Vegetal Gastropoda Birds Eggs

Variables F p F p F p F p F p F p F p

Study Area 16.04 0.014

25.35 <0.001

0.34 0.560

12.67 0.001

5.87 0.017

6.26 0.014

0.93 0.336 Sex 0.17 0.677

1.40 0.239

1.83 0.179

7.11 0.009

0.05 0.830

0.91 0.342

0.03 0.860

Age 1.17 0.280

0.48 0.491

2.19 0.142

0.37 0.543

0.05 0.826

0.08 0.773

0.03 0.867 Study Area*Sex*Age 0.01 0.888

0.26 0.614

0.06 0.812

1.33 0.252

1.80 0.183

1.08 0.301

0.39 0.535

Study Area*Sex 0.02 0.874

7.98 0.006

1.51 0.222

2.50 0.116

0.28 0.598

0.07 0.793

0.77 0.382 Study Area*Age 1.98 0.874

0.85 0.358

0.05 0.820

0.05 0.823

0.01 0.927

0.60 0.438

1.49 0.224

Sex*Age 2.13 0.147 0.88 0.351 0.88 0.351 4.90 0.029 2.74 0.101 2.34 0.129 2.81 0.097

Page 57: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

56

Figure 2.1. Percentage of volume (VOL; mean±SE) of the principal food classes (FO > 5%)

consumed by magpies in both study areas. *: Statistically significant differences; NS: non-

significant differences.

Figure 2.2. Variation in the percentage of volume of arthropods (VOL) consumed by magpies

(mean±SE) in function of the study area and sex. *: Statistically significant differences between

pair of means (Tukey’s post-hoc test); NS: non-significant differences (Tukey’s post-hoc test).

Page 58: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

57

Figure 2.3. Variation in the percentage of volume (VOL) of vegetal food consumed by

magpies (mean±SE) in function of age and sex. *: Statistically significant differences between

pair of means (Tukey’s post-hoc test); NS: non-significant differences (Tukey’s post-hoc test).

Figure 2.4. Differences in magpie diet diversity (H´; means±SE) between study areas.

Page 59: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

58

Discussion Our findings show that, during the breeding season, magpies fed on different food

types, with varying importance between localities, and that the most frequently

consumed food classes were cereal seeds and arthropods. This is in agreement with

previous studies conducted in Spain, which indicated that, although both food classes

are consumed throughout the year, the consumption of invertebrates increases during

the breeding season, when their availability is higher (Soler and Soler 1991; Martínez et

al. 1992; Herranz 2000).

Magpie predation on eggs and birds

Eggs were detected in a low proportion and volume in magpie gizzards (< 6%), in

accordance with most previous studies (Birkhead 1991). A higher occurrence of eggs in

magpie diet has been recorded in a previous study conducted in central Spain (FO = 13-

20 %; Herranz 2000); a large proportion of these were attributed to red-legged

partridges (77-80 %). In contrast, only one of the egg remains found in our study (17%)

coincided with the partridge egg thickness. This suggests that partridge eggs do not

represent an important food for magpies during the breeding season in the study areas.

However, several studies conducted in the Iberian Peninsula have shown that magpies

are one of the main predators of dummy partridge nests (Herranz 2000; Blanco-Aguiar

et al. 2001; Ferreras et al. 2010). From this perspective, we cannot discard that magpie

nest predation could represent a risk for partridge breeding success in a scenario of high

magpie abundances and low partridge densities, where even a small number of partridge

eggs predated by each magpie could represent a large impact on the breeding success of

the partridge population. In addition, partridge nest predation by magpies may be

underestimated in diet studies, which hardly detect remains of predated eggs, i.e.,

eggshells (Chiron and Julliard 2007). This is probably because magpie behaviour of egg

predation and ingestion varies with egg size. Thus, while smaller eggs are entirely

swallowed, including the eggshell, larger ones are broken and only the egg content and

small eggshell pieces are swallowed (Suvorov et al. 2012), decreasing the likelihood of

eggshells ingestion.

We found a relatively high consumption of passerines (12.7 % FO) compared with data

reported in other studies performed during the breeding season (FO < 8 %; Birkhead

1991; Herranz 2000; Kryštofková et al. 2011). It has been suggested that magpie

Page 60: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

59

predation on breeding birds may be related to high bird densities (Birkhead 1991).

However, Fernández-Juricic et al. (2004) found that magpie predation on birds was

opportunistic and was mainly observed during the breeding season, regardless of bird

abundance. Magpies might increase their predatory pressure on birds when

invertebrates, the principal animal component of their diet, are less available.

Sources of magpie diet variation and consumption of other food groups

The consumption of the other main food groups, except cereal seeds and eggs, varied

between localities. This pattern was potentially related to food availability, as suggested

by the similar consumption of cereal seeds between areas, which had similar cereal crop

surfaces. Nevertheless, we must be cautious with this interpretation for two reasons.

First, we did not have data about the availability of the other food groups, and second

magpies can select food items independently to their availability; e.g. some invertebrate

groups (Martínez et al. 1992; Kryštofková et al. 2011). Alternatively, differences in the

consumption of arthropods, birds and eggs between areas may be explained by the

different breeding stages when samples (i.e. gizzards) were collected: during the

incubation stage in Area 1 and during the stage of nestling feeding in Area 2. In this

sense, Suvorov et al. (2012) showed that magpies predated dummy nests more

frequently at the incubation stage than during the stage of nestling feeding because

during this stage magpies select invertebrates to feed nestlings (Martínez et al. 1992).

This may also explain the lower diet diversity found in Area 2. During our study an

important proportion of young magpies were also reproductive (all captured young

females showed brood patch, indicating they were breeders), and therefore this may

explain that young magpies presented a similar feeding behavior to adults.

Globally, we did not find differences in diet composition associated with age and sex,

and only the interaction between the locality and these intrinsic factors significantly

affected magpie diet. During the breeding season males regularly feed females (Buitron

1988), so it would be expected that the diet was similar between sexes. However, we

observed that adult females included in their diet significantly more vegetal food than

adult males. Breeding females spend most of the time in the nest during incubation and

hatching (Buitron 1988), where vegetal food, which they can easily consume, is

probably more available, supplementing food provided by males. Also, female magpies

consumed more arthropods than males in Area 2. During the nestling feeding stage

Page 61: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

60

males increase the supply of food to the female and chicks (Buitron 1988), being

invertebrates the main food brought to chicks (Martínez et al. 1992; Ponz et al. 1999).

In this sense, the male probably reduces the consumption of invertebrates in order to

provide most of their catch to the nest.

Magpie diet diversity

Our results indicate that magpies do not specialize in any food during our study since

diet diversity was not related negatively to the occurrence of any of the main food

classes (Futuyma & Moreno 1988). In contrast, diet diversity was positively related to

the amount of cereal seeds and other vegetal in the diet. This suggests that magpies need

to supplement their diet including many different animal food types, although it is

predominantly vegetarian. Invertebrates are the principal contribution of protein in a

large number of birds (Capinera 2010), including magpies in agricultural landscapes

within central Spain. Arthropods consumption was negatively associated with the

consumption of other animal sources of proteins, such as birds or eggs, suggesting that

these may be a secondary and occasional source of protein for magpies during the

breeding season (Birkhead 1991).

Conclusions

Overall we found no evidence that magpies pose a threat to the conservation of birds

since magpies include in their diet eggs and birds in a low proportion, regardless of the

age and sex of magpies. However, the possible sources of bias associated with our study

methodology, such as the quantification of these bird remains and eggs, as well as the

fact that even a low rate of predation may affect a prey when the predator is abundant,

make us to be cautious with this conclusion. Thus, more complex and experimental

studies at larger time-spatial scales are necessary, including localities with different

densities of magpies and potential bird prey. Diet data should be complemented with the

monitoring of the abundances of potential bird prey species and magpies, prey breeding

success and predation rate of magpies on nests, chicks and adults birds.

Acknowledgements We are very grateful to land owners and game managers who allowed us to work in

their hunting estates. We thank people who assisted us during the fieldwork, especially

S. Luna and L.E. Minguez. We acknowledge Dr. J.T. García and Dr. E. Pérez-Ramírez

for necropsy and sexing of magpies. This study was funded by Consejería de Medio

Page 62: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

61

Ambiente of Junta de Comunidades de Castilla-La Mancha (Project PREG-05-23). M.

Delibes-Mateos is currently supported by a JAE-DOC contract funded by CSIC and the

European Social Fund.

Ethical standards This work was performed in compliance with current Spanish legislation, and follows

the European Union’s recommendations regarding animal welfare. All procedures were

carried out with all legal permits required by the concerned administrations.

Page 63: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

62

CAPÍTULO 3: An evaluation of cage-traps and the Collarum device to capture red foxes (Vulpes vulpes). Can the performance of cage-traps be improved by baits and scent attractants?

Este capítulo se encuentra en preparación para ser enviado a una revista SCI:

Díaz-Ruiz F, Delibes-Mateos M., Ferreras P (en preparación) An evaluation of cage-traps and the Collarum device to capture red foxes (Vulpes vulpes). Can the performance of cage-traps be improved by baits and scent attractants?

Page 64: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

63

Abstract Carnivore predation on prey of human interest, such as game species or livestock, leads

frequently to the lethal control of predators. This constitutes a serious conservation

problem in many places across the world, since non-target species of conservation

concern are frequently removed. In Spain, cage-trapping is one of the most widespread

methods used by hunters to control red foxes (Vulpes vulpes), although its low

efficiency and selectivity have been frequently reported. From this perspective, these

control methods need urgently to be improved, and its performance compared to that of

new alternative devices, such as the Collarum restraint device. The aim of this study

were to test whether the use of different baits and scent attractants may improve the

selectivity and efficiency of cage-traps, to compare the performance of different cage-

traps designs with that of the Collarum restraint device, and to analyse the injuries

caused by both methods to captured animals. Fieldwork was conducted in three study

sites in central Spain during 2003 and 2006/07. We tested the effect of two types of

baits (dead or alive), four scent attractants, and their combinations on the efficiency and

selectivity of three cage-trap types commonly used to control foxes in Spain. During

2006/07, we also compared the Collarum restraint device with cage-traps in terms of

efficiency and selectivity. Injuries caused to animals by both capture methods were also

described. Cage-traps captured a total of six foxes and 40 individuals of 13 non-target

species, including protected carnivores and raptors, with an overall effort of 2068 trap-

nights. The use of live baits and fox urine increased the efficiency of cage-traps

independently of the cage-trap type. In addition, the capture rate of non-target animals

was lower with cage-traps with chamber for bait adjacent to the capture chamber and

with traps of one capture chamber. It was also slightly lower using valerian scent as

attractant. The Collarum restraint device was more selective (50-100%) than cage-traps

(12-29%) and more efficient than cage-traps without attractant, but as efficient as cage-

traps with attractants. Animals captured with both types of traps showed no indicator of

poor welfare. Our results suggest that live baits and scent attractants may improve the

efficiency and selectivity of cage-traps for capturing red foxes. Even so, non-target

species, including some protected ones, can be still captured, and selectivity levels are

still very low (0-21%) and therefore the use of this method is not recommended for

managing foxes in Spain. The Collarum restraint device may be an acceptable selective

alternative to traditional methods in areas with similar carnivore composition than that

Page 65: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

64

existing in our study sites. Further studies are necessary to test the selectivity in other

areas with different composition of carnivore communities. Although our results show

that the selectivity of trapping methods can be improved, the decision of releasing

captured non-target animals depends ultimately on the trapper. For this reason, it is of

key importance that fox management is carried out by skilled technical personnel and

always supervised by wildlife competent authorities.

Keywords: red fox, cage-traps, Collarum restraint device, capture efficiency, selectivity, predator control, game management.

Page 66: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

65

Introduction Lethal control of predators is widespread all over the world (Treves and Karanth 2003;

Woodroffe et al. 2005), because humans usually see these species as competitors for

shared, limited resources, such as game species (e.g. Valkama et al. 2005) or livestock

(e.g. Treves et al. 2004; Sangay and Vernes 2008). Intensive predator removal has

caused the local extinction of several species of conservation concern, and massive

contractions of the geographic ranges of many others (e.g. Whitfield et al. 2003).

Methods of predator control may result in the death of protected species. On the one

hand, some legal methods are not selective, and therefore non-target protected species

are captured (e.g. Duarte and Vargas 2001; Way et al. 2002). On the other hand, come

managers employ illegal, unselective methods, such as poisoning (e.g. Whitfield et al.

2003; Márquez et al. 2012), based on their belief that legally permitted methods are not

efficient to reduce predator numbers (Delibes-Mateos et al. 2013).

The removal of predator species of conservation concern causes frequent clashes

between conservationists and hunters and game managers (Virgós et al. 2010). In

biodiversity conflict management, success occurs when the outcome is acceptable to

both sides and when neither party is asserting its interests to the detriment of others

(Redpath et al. 2013). Under this perspective, banning totally predator control would not

be the best way to minimise conflicts between hunters and conservationists in relation to

predator management. In this regard, finding efficient and selective control methods to

legally reduce the numbers of some generalist/opportunistic predators could help to

reduce these tensions between hunters and conservationists.

In Spain, hunting is a very important socioeconomic activity and one of the most

important leisure rural activities; thus, >77 % of the territory is covered by hunting

estates (Rios-Saldaña 2010; Arroyo et al. 2012). Hunters and game managers employ

several different management tools, including predator control, to boost game species

numbers (see Angulo 2003; Arroyo et al. 2012). The use of predator control is

widespread in some Spanish regions (Ríos-Saldaña 2010; Díaz-Ruiz and Ferreras 2013).

For example, in central Spain most small-game estates (~ 90%) use some type of

predator control (Delibes-Mateos et al. 2013). The main predators legally controlled in

Spain are red foxes (Vulpes vulpes), feral cats (Felis catus) and feral dogs (Canis lupus

familiaris), among carnivores, and magpies (Pica pica), among birds. Nevertheless, the

detrimental effect of illegal predator control on some protected species of conservation

Page 67: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

66

concern, including raptors and carnivores, has been frequently reported (e.g. Villafuerte

et al. 1998; Márquez et al. 2013).

Spanish hunters argue frequently that the current legal predator control methods are

inefficient, and therefore they request more effective methods to cull predators, and

especially red foxes (Delibes-Mateos et al. 2013). For example, cage-traps, which are

one of the most frequently employed methods to legally control foxes are usually

considered as inefficient by Spanish hunters (Delibes-Mateos et al. 2013). In fact, the

efficiency of cage-traps to capture foxes in Spain is extremely low; capture rate ranges

between 1.2 and 5 foxes per 1000 trap-nights, and levels of selectivity are far from

acceptable (Herranz 2000; Duarte and Vargas 2001; Muñoz-Igualada et al. 2008). Given

that this is neither acceptable for conservationists (selectivity) nor for hunters

(efficiency), it is urgent to explore possibilities of improving both the efficiency and

selectivity of cage-traps in Spain. For example, some scent attractants could be used to

achieve this goal, since not all the species respond equally to different scent attractants

(Monterroso et al. 2011). In addition, Iberian predators show different feeding

strategies; some species feed exclusively on live prey (e.g. the European wildcat (Felis

silvestris); Lozano et al. 2006), while others can also scavenge (e.g. red fox; Díaz-Ruiz

et al. 2013). This suggests that the probability of capturing different species could

change in function of the type of bait (alive or dead) used. To our knowledge, only

Herranz (2000) previously tested for differential attraction effects using both dead and

alive baits in Spain, but this author did not evaluate any scent attractant.

Methods alternative to cage-traps have been used to capture other canids with success in

terms of efficiency, selectivity and injuries to both target and non-target. For example,

the Collarum restraint device (hereafter Collarum), a powered neck snare designed to

the live capture of canids (see Shivik et al. 2000), has shown up to 87% efficiency for

coyotes (Canis latrans; Shivik et al. 2005). In Spain, the Collarum has been tested for

capturing foxes only in two studies developed in northern and southern Spain

respectively (Muñoz-Igualada et al. 2008; Andalucía 2010). These studies consider the

Collarum as highly selective and its efficiency as higher than that of traditional cage-

traps (Muñoz-Igualada et al. 2008), but still far from the efficiency obtained for coyotes

(Shivik et al. 2005).

Page 68: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

67

In this paper, our goals were: 1) to evaluate the efficiency and selectivity of different

types of cage-traps traditionally used for the capture of red foxes in Spain; 2) to test

whether the use of different baits and scent attractants improve the selectivity and

efficiency of different cage-traps types; 3) to compare the performance of cage-traps

and the Collarum restraint device in terms of efficiency and selectivity; and 4) to

describe the injures caused to foxes and non-target species by both capture methods.

Material and Methods Study areas

Fieldwork was performed in 3 sites of central Spain (Ciudad Real province), one private

and two public estates, during 2003 and 2006/2007 (Table 3.1.). The climate was typical

Mediterranean characterised by wet, mild winters and warm, dry summers with a

marked drought period (Rivas-Martínez et al. 2004). The landscape was similar between

study sites i.e. Mediterranean scrubland (mainly Cistus spp. in combination with holm

oak (Quercus ilex) forests), mixed with cereal croplands, riparian habitats, ‘dehesas’

(pastureland with savannah-like open tree layer, mainly dominated by Mediterranean

evergreen oaks) and pine (Pinus spp.) plantations (Table 3.1.).

Study sites selection was based on three criteria: 1) a high habitat heterogeneity that

favoured the presence of a diverse wildlife community, including both prey and

predators, 2) a medium-high red fox abundance, which allowed us to test trap efficiency

for capturing foxes, and 3) a high diversity of other potentially capturable predators,

including protected ones, which allowed us to asses trap selectivity.

The three study sites were situated in the distribution area of several Iberian terrestrial

carnivores such as European wildcat, stone marten (Martes foina), small-spotted genet

(Genetta genetta) and Eurasian badger (Meles meles); the Egyptian mongoose

(Herpestes ichneumon) was also present in Site 1 (Palomo et al. 2007). Our study sites

also held raptors, such as common buzzards (Buteo buteo), goshhawks and

sparrowhawks (Accipiter sp.), Bonelli's eagles (Aquila fasciata), Spanish Imperial

eagles (Aquila adalberti), Golden eagles (Aquila chrysaetos) or Eagle owls (Bubo bubo)

(Martí and Del Moral 2003).

Page 69: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

68

Table3.1. Description of study sites. The geographical location, the year and season when trapping was performed are shown.

Study site Location Year (Season) Area (ha) Main habitat types Main land uses

Site 1 38˚27´40´´N 3˚34´5´´ W

2003 (September-November)

3700 Pine plantations (Pinus pinaster), Mediterranean scrub (Cistus sp.), holm oak forest (Quercus ilex), and cereal crops

Managed publicly for forestry production and big game

Site 2 38˚ 58 ́2´ ́N 4˚ 8´47´´ W

2006 (July-December)

1000

“Dehesa” (a typical Mediterranean formation of sparse oaks and underlying cereal crops), holm oak forest with Mediterranean scrub, and riparian vegetation

Managed privately for livestock, cereal agriculture, and big game

Site 3 39˚ 0 ́2´ ́N 4˚ 23´55´´ W

2006/2007 (November-March) 1500 “Mixed” forests of pine (Pinus sp.) and holm

oak with Mediterranean scrub. Managed publicly for forestry, and small and big game

Page 70: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

69

The presence of these species and foxes was previously confirmed by the technical staff

of the public estates (i.e. Sites 1 and 3; Junta de Comunidades de Castilla-La Mancha,

unpublished data), by colleagues from our Institute (Site 2, P. Acevedo, unpublished

data), and during the revision of the traps in this study. Since no direct measure of the

abundance of potentially capturable species was available, we performed nocturnal

spotlight-counts chiefly to estimate fox relative abundance (kilometric abundance index,

KAI) at the beginning of the study and during the trapping season (Ruette et al. 2003).

KAIs estimated were apparently higher in site 2 (0.26 foxes km-1, 42.4 km surveyed)

than in site 1 (0.016 foxes km-1, 60 km surveyed), and in site 3 (0.02 foxes km-1, 66.4

km surveyed). The European wildcat (Felis silvestris) was only observed in Site 1,

(0.016 wildcats km-1), and feral cats in Site 3 (0.03 km-1).

Efficiency and selectivity definitions of control methods

We used the parameters described previously by the International Organization for

Standardization (1999) for testing restraining traps for mammals. The number of foxes

captured per 1000 trap-nights was used to assess trapping system efficiency. We

evaluated two parameters related to the selectivity: direct selectivity, or the percentage

of foxes captured related to the total number of animals captured (including red foxes),

and the non-target capture rate, or number of non-target captures per 1000 trap-nights

(inversely related to selectivity).

Trap types evaluated

We used three types of cage-traps used in Spain for capturing foxes. These types had

one or two capture entrances that employed a guillotine-type door and a tread trigger

system, differing in design details. CT01 type had one entrance and one capture

chamber; used exclusively with dead baits placed in the capture chamber, CT02 type

had two entrances, one capture chamber and a lateral bait chamber and CT03 type had

two entrances, two capture chamber and a central bait chamber (see Appendix 3.1.).

Some of these types included different commercially available models that slightly

differed in their characteristics, such as measures or mesh size, as described in

Appendix 3.1.

The Collarum neck restraint device is a specific trap to selectively capture canids, such

as coyotes, foxes, dogs and dingoes (Canis lupus dingo) (Shivik et al. 2000, 2005). It

Page 71: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

70

uses a baited pull-tab that triggers a pair of coil-spring powered throw-arms that propels

a cable loop over the head onto the neck of a fox (Muñoz-Igualada et al. 2008). We

tested the commercially available red fox version (Wildlife Control Supplies, East

Granby, Connecticut, USA). The Collarum traps were tested in Sites 2 and 3.

Baits and scent attractants

We tested two types of bait (dead or alive) for possible effects on the efficiency and

selectivity of cage-traps. Chicken carcasses and lamb meat were used as dead baits.

Common quails (Coturnix coturnix), red legged partridges (Alectoris rufa), and

helmeted guinea fowl (Numida meleagris) were used as live baits. Dead baits were

placed inside the traps secured with wire to avoid that animals took them away, and

they were weekly replaced. Live baits were placed in an independent chamber that was

adjacent to, or inside the trap, depending on the trap model (see Appendix 3.1.).

We also tested the effect of scent attractants on cage-trap efficiency and selectivity. We

tested four types of scent attractants previously used to attract red foxes (Saunders and

Harris 2000; Monterroso et al. 2011): red fox urine (hereafter FU), valerian-extract

solution (hereafter VAL), containing valeric acid found in urine and anal-sac secretions

of fox (Albone and Fox 1971; Jorgenson et al. 1978), fatty acids scent (hereafter FAS),

a mixture of seven volatile fatty acids found in fermented eggs (Roughton 1982), and

Collarum canine bait (Wildlife Control Supplies, East Granby, Connecticut, USA;

hereafter COLL), a commercial canids-specific attractant. Scent attractants were

impregnated on a piece of chalk tied to an iron stick with elastic bands, driven to the

ground inside the cage-trap. The chalk was moistened with the attractant (1-5 cc) with

the help of a syringe and was replenished every 3-4 days.

Dead and live baits were tested in all study sites, but only FU and VAL scent attractants

were used in all study sites. FAS was tested in Sites 2 and 3, and COLL only in Site 3.

Moreover, traps without any scent attractant were used as control in all the localities.

We followed a block design in each study site, with the treatment randomly assigned to

each trap within a block, regardless of the trap type. Three treatments were

simultaneously tested in Site 1: control, FU and VAL. Four treatments were tested in

Site 2, control and three scents (FU, VAL and FAS) being simultaneously deployed

after an initial period with the control treatment in all the traps. Five treatments were

simultaneously tested in Site 3: control, FU, VAL, FAS and COLL. The minimum

Page 72: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

71

distance between neighbouring traps was 100 m. Traps were placed near shrubs or other

resources that increase the probability of animal presence (e.g. ponds, water courses,

edges of dense vegetation, etc.).

Handling of animals and injuries

All captured animals were examined in situ by a wildlife veterinarian for possible trap-

related injuries. For veterinarian inspection, both foxes and non-target carnivores

captured were immobilized with a combination of Ketamine hydrochloride (50 mg/ml,

Imalgene ® 50, Merial) and Xylazine hydrochloride (20 mg/ml Rompun®, Bayer); this

was injected intramuscularly in the animal's hindquarters, using recommended doses for

small and medium size carnivores (15 mg Ketamine + 1-1.5 mg Xylacine per Kg; Seal

and Kreeger 1987). To do so, animals were transferred from the cage-trap to a squeeze

cage that allows their physical immobilization, and prevent damage to both them and

the veterinary (Ferreras et al. 1994). Non-target carnivores were marked with a

subcutaneous transponder (ID-100, Trovan®), which allowed their identification in case

of recapture. The drug effect was reversed using Yohimbine (0.15 mg per Kg; Seal and

Kreeger 1987). Once fully recovered from anesthesia and after the veterinary checked

that no serious injuries compromised their survival, animals were released in the capture

site (Harris et al. 2006).

A correct evaluation of injuries caused by trapping methods to target species requires

the examination through a post-mortem necropsy of at less 20 captured animals

(European Union-Canada-Russian Federation 1998; United States of America-European

Community 1998; International Organization for Standardization 1999). In our study,

the number of captured foxes was <20, and only three foxes were euthanized; the others

were kept in captivity for subsequent behavioural experiments. Therefore, we only were

able to show a descriptive list of the injuries observed by the veterinary in situ. Injuries

were recorded according to the four categories established in the international scale of

traumas: mild trauma, moderate trauma, moderate-severe trauma and severe trauma

(International Organization for Standardization 1999). The method chosen for

euthanizing foxes was the intravenous injection of T61 ® (Intervet), which is the

method recommended for euthanizing dogs and cats due to its high speed, efficiency,

ease of use and safety (Close et al. 1996; 1997; Gómez-Villamandos 2000). All

Page 73: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

72

procedures were performed following approval by the competent authority (Castilla-La

Mancha Regional Government).

Statistical Analyses

Cage-traps, baits and attractants

Generalized Linear Mixed Models (GLMMs) were employed to analyze the effect of

cage-trap type, and different baits and scent attractants on the efficiency and selectivity

of the cage-traps. The individual trap with each combination of baits and attractants was

utilized as the sample unit. In this analysis, the number of foxes captured in 1000 traps-

nights was used as a measure of efficiency (Muñoz-Igualada et al. 2008). Since direct

selectivity could not be calculated in many individual traps that produced no capture at

all, non-target capture rate was used as a measure inversely related to selectivity

(Muñoz-Igualada et al. 2008). Due to violations of normality and variance homogeneity

of standardized residuals, dependent variables (i.e. efficiency and non-target capture

rate) were square-root (x+1) transformed (Muñoz-Igualada et al. 2008). FAS and COLL

scent attractants were excluded from these analyses because they were not employed in

all study sites.

Fixed factors included as explanatory variables in these models were: cage-trap type

(CT01, CT02 and CT03), bait type (dead or alive), scent attractant (control, FU and

VAL), and the interaction between bait and scent attractants. Study site was included as

a fixed factor because number of levels was not enough to be considered as a random

variable (Zuur et al. 2007). Since a given trap received several different treatments (bait

x attractant), trap location (a categorical variable identifying each trap position in the

fieldi.e. trap id) was included as a random variable in the models.

Collarum vs. cage-traps

Differences in the efficiency and non-target capture rate between cage-traps and

Collarum were tested in Sites 2 and 3. In order to simplify the analysis we grouped

cage-traps in those with and without scent attractant. Generalized Linear Mixed Models

(GLMMs) were developed to test for differences between cage-traps and Collarum in

terms of efficiency and non-target capture rate. The type of trapping device

(CT_control, CT_attractant or Collarum) and the study site (Site 2 and 3) were included

in these models as fixed factors. Trap location was included as a random effect.

Page 74: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

73

All statistical analyses were performed using the lme4 package of the R statistical

software (Bates and Maechler 2010; R Core Development Team 2013). The models

were obtained with the function dredge of MuMin package (Barton 2012) and compared

through the AICc criterion (Burnham and Anderson 2002). The coefficients of predictor

variables were calculated through model-averaging (Burnham and Anderson 2002). We

present the coefficient of variables resulting from the model-averaging for all models

with a total cumulative weight of at least 90% (Arnold 2010).

Results Overall captures

A total effort of 3359 trap-nights produced the capture of 9 red foxes and 41 non-target

animals of 13 species. Cage-traps captured a total of 6 foxes and 40 non-target animals,

including carnivores, raptors, corvids and other game species, with an overall values of

efficiency and selectivity of 2.9 foxes/1000 trap-nights and 13 % respectively (Table

3.2.). Collarum traps captured 3 foxes and one non-target animal, with overall values of

efficiency and selectivity of 2.3 foxes/1000 trap-nights and 75 % respectively (Table

3.2.).

Baits and scent attractants

Cage-traps captured foxes with both types of baits, and using all attractants except with

COLL and FAS (Figure 3.1.). Model-averaging for efficiency included eight models

with a total cumulative weight of 90% (Table 3.3.). The explicative variables in order of

relative importance were study site (0.96), scent attractant (0.78), bait (0.66), the

interaction bait*scent attractant (0.47) and trap type (0.10). Capture rate of red foxes

was higher in Site 2 (mean±SE: 18.51±13.11 foxes/1000 trap-nights) than in the two

other sites (Site 1: 0.83±0.83, and Site 3 without captures; Table 3.4.). Only the

interaction live bait*FU increased the efficiency of cage-traps to capture red foxes

(Table 3.4.; Figure 3.1.).

Non-target species were captured using cage-traps with both types of bait and all the

attractants except COLL (Table 3.3.). Model-averaging for non-target captures included

eight models with a total cumulative weight of 91% (Table 3.3.). The explicative

variables in order of relative importance were trap type (1), scent attractant (0.84), bait

(0.52), study site (0.30) and the interaction bait*scent attractant (0.26). Cage-trap types

Page 75: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

74

CT01 and CT02 had a lower non-target capture rate than CT03 type, and VAL attractant

produced a slightly lower capture rate of non-target species than FU and control (Table

3.4.; Figure 3.1.).

Page 76: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

75

Table 3.2. Number of animals captured in the three study sites using cage-traps and Collarum devices, and the selectivity and efficiency of both methods.

The total sampling effort, estimated as the number of trap-nights, is shown. Efficiency is the number of foxes captured in 1000 trap-nights. Selectivity is the

percentage of foxes captured related to the total number of animals captured (included red foxes). Non-target CR is capture rate refers to the number of non-

target animals captured per 1000 trap-nights. Vv: red fox, Fs: European wildcat, Gg: European genet, Mf: stone marten, Hi: Egyptian mongoose, Mm:

European badger, Ag: goshawk, Fc: feral cat, Clf: dog, and Others: Black-billed magpie (n= 1), azure magpie (n= 1), wild boar (n= 2), red-legged partridge

(n= 19) and European wild rabbit (n= 1).

Trap type Study Site Year Trap-Nights Vv

Non Target captures

Efficiency Non-target CR Selectivity Fs Gg Mf Hi Mm Ag Fc Clf Others Total

Cage-traps

Site 1 2003 601 1 0 2 0 2 1 0 0 0 2 7 1.6 11.6 12.5

Site 2 2006

810 5 1 1 0 0 0 1 0 3 15 21 6.17 25.9 19.2

Site 3 657 0 2 2 1 0 0 0 1 0 6 12 0 18.3 0

Overall 2068 6 3 5 1 2 1 1 1 3 23 40 2.9 19.3 13

Collarum Site 2

2006 362 1 0 0 0 0 0 0 0 0 1 1 2.8 2.8 50

Site 3 929 2 0 0 0 0 0 0 0 0 0 0 2.2 0 100

Overall 1291 3 0 0 0 0 0 0 0 0 1 1 2.3 0.77 75

TOTAL 3359 9 3 5 1 2 1 1 1 3 24 41

Page 77: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

76

Table 3.3. Best models explaining the efficiency of cage-traps 1) for capturing foxes, and 2)

for capturing non-target animals using different baits and scent attractants. AIC values of the set

of GLMMs included a total cumulative weight of at least 0.90.

Table 3.4. Model-average coefficients and standard errors (SE) of the variables included in the

models explaining the efficiency of cage-traps to capture red fox and non-target animals. The

intercept includes Site 2, live bait, control attractant and CT03 cage-trap type.

Red fox Non-target

Variable Parameter SE Parameter SE Intercept 2.19*** 0.58 7.45*** 0.98 Site 1 -1.22* 0.61 -0.53 1.13 Site 3 -1.58** 0.51 -0.36 0.85 Alive bait 0.15 0.61 0.47 0.89 FU 0.16 0.60 -0.91 0.83 VAL 0.18 0.65 -1.63# 0.90 Alive bait*FU 1.80* 0.91 -0.60 1.51 Alive bait*VAL 0.03 0.99 -0.11 1.64 CT01 0.15 0.78 -4.26*** 1.14 CT02 -0.12 0.53 -5.58*** 0.85 *p<0.05; **p<0.01; ***p<0.001

# p= 0.07

Model d.f.

Log-Like AICc Delta AICc weight

1) Fox site+bait+attractant+bait*attractant 10 -160.6 344.1 0.00 0.33

site+attractant 7 -165.0 345.5 1.45 0.16

site 5 -167.7 346.2 2.12 0.11

site+bait+attractant 8 -164.4 346.6 2.54 0.09

site+bait 6 -166.9 346.8 2.75 0.08

site+bait+attractant+trap type+bait*attractant 12 -159.7 347.7 3.64 0.05

bait+attractant+trap type+bait*attractant 8 -165.2 348.3 4.24 0.04

site+bait+attractant+trap type 9 -164.1 348.6 4.56 0.03

2) Non-target

trap type+attractant 7 -203.3 422.1 0.00 0.24

bait+trap type+attractant+bait*attractant 10 -199.8 422.6 0.54 0.18

bait+trap type+attractant 8 -202.6 423.0 0.94 0.15

site+trap type+attractant 9 -201.6 423.5 1.48 0.11

site+bait+trap type+attractant+bait*attractant 12 -198.0 424.4 2.35 0.07

trap type 5 -206.9 424.6 2.49 0.07

site+bait+trap type+attractant 10 -200.8 424.6 2.56 0.07

site+trap type 7 -205.0 425.4 3.35 0.04

Page 78: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

77

Figure 3.1. Average capture rate (±SE) (indv./1000 traps-nights) observed of both foxes and

non-target animals captured with cage-traps using each type of bait (dead and alive) and scent

attractants (Control: without attractant; FU: fox urine; VAL: valerian-extract; FAS: fatty acids

scent; COLL: Collarum canine bait). Data of captures using FAS and COLL as attractants are

shown, although these were not included in GLMMs analyses.

Cage-traps vs. Collarum

Capture rate of red foxes using both types of devices was higher in Site 2 (14.51±10.01

foxes/1000 trap-nights) than in Site 3 (0.91±0.61 foxes/1000 trap-nights) (Table 3.5.).

The efficiency for capturing foxes differed between cage-traps and Collarum (Table

3.5.; Figure 3.2.); the average red fox capture rate was 3.24±1.97 foxes/1000 trap-nights

using the Collarum, 0.87±0.86 foxes/1000 trap-nights using cage-traps without scent

attractants and 6.34±4.86 using cage-traps with scent attractants (Table 3.5.; Figure

3.2.). Additionally, the capture rate of non-target species was significantly lower with

Collarum (0.45±0.44 captures/1000 trap-nights) than that obtained with cage-traps

either with scent attractants (11.39±5.66 captures/1000 trap-nights) or without scent

attractants (23.46±11.25 captures/1000 trap-nights) (Table 3.5.; Figure 3.2.).

Page 79: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

78

Table 3.5. Model standardized coefficients and standard errors (SE) for cage-traps with and

without scent attractants (CT_Attractant and CT_Control, respectively) vs. Collarum analysis of

efficiency of red fox captures and non-target captures. Intercept includes Site 2 and CT_Control.

Red fox Non-target

Variable Parameter SE Parameter SE

Intercept 1.94** 0.41 3.66** 0.73

Site 3 -1.40* 0.41 -1.12 0.76

CT_Attractant 0.72 0.43 -0.88 0.66

Collarum 0.74 0.50 -1.62* 0.83 *p<0.05; **p<0.01

Figure 3.2. Means and SE of the observed capture rates of foxes and non-target animals

(indv./1000 trap-nights) using cage-traps with and without scent attractants (CT_Attractant and

CT_Control, respectively) and the Collarum restraint device in sites 2 and 3.

Injuries

None of the tested traps caused any serious injury or the death (i.e. severe trauma in ISO

scale) of the red foxes captured. However, 83% and 100% of foxes captured with cage-

traps and Collarum, respectively, showed injuries, corresponding to nine mild or

moderate traumas (International Organization for Standardization 1999; Table 3.6.).

Page 80: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

79

Most of the non-target animals captured with the cage-traps showed no injuries (76 %;

n= 31). In the rest of the individuals, seven categories of injuries were detected, and on

most occasions these referred to mild or moderate traumas, with the exception of two

cases of severe traumas (Table 3.6.). Only one azure magpie died as a consequence of

severe trauma (i.e. neck fracture caused by the trap door; Table 3.6.). The Collarum

device captured only one non-target species, a wild boar, causing it “major cutaneous

laceration” and death (Table 3.6.).

Page 81: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

80

Table 3.6. Observed injuries in animals captured using cage-traps and Collarum devices. Data were obtained through veterinarian “in situ” inspections.

Injuries recorded in the list of the International Organization for Standardization (1999) are shown: *Severe trauma category; the other injuries showed are

included into Mild or Moderate trauma categories. Vv: red fox, Fs: European wildcat, Gg: European genet, Mf: stone marten, Hi: Egyptian mongoose, Mm:

European badger, Ag: goshawk, Fc: feral cat, Clf: domestic dog, Pp: black-billed magpie, Cc: azure magpie, Ss: wild boar, Ar: red legged partridge and Oc:

European wild rabbit.

Cage traps

Collarum

Vv

(n=6) Fs

(n=3) Gg

(n=5) Mf

(n=1) Hi

(n=2) Mm

(n=1) Fc

(n=1) Cld

(n=3) Pp

(n=1) Ag

(n=1) Ss

(n=1) Cc

(n=1) Ar

(n=19) Oc

(n=1) Vv

(n=3) Ss

(n=1) Injury

Claw damaged 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 Oedematous swelling or hemorrhage 2 1 1 0 0 0 1 0 0 0 0 0 0 0 3 0

Minor cutaneous laceration 1 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0

Minor subcutaneous soft tissue maceration or erosion (contusion)

1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0

Major cutaneous laceration, except on foot pads or tongue

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Chipped or fracture of a permanent tooth without exposing pulp cavity

1 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0

Any other fracture (e.g. neck fracture)* 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Death* 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

No injuries 1 1 1 1 1 0 0 3 1 1 1 0 19 1 0 0

Page 82: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

81

Discussion Our findings confirm the low selectivity and efficiency of cage-traps to capture foxes in

Spain, reported in previous studies (Herranz 2000; Duarte and Vargas 2001; Muñoz-

Igualada et al. 2008), and for other canids in North America (Way et al. 2002; Shivik et

al. 2005). The Collarum device has been reported as highly selective to catch canids; up

to 100% of selectivity in some areas (Shivik et al. 2000, 2005; Muñoz-Igualada et al.

2008; Junta de Andalucía 2010). Our results are partly in agreement with this, since

only foxes were captured in one of the study sites (100% selectivity), but in the other

one a wild boar was caught (50% selectivity).

Effects of cage-trap type, bait type and scent attractants on efficiency and

selectivity

Our results show that, although cage-traps captured foxes with both baits, live baits

increased their efficiency. This is in agreement with the only study that had previously

tested for differences in efficiency of cage traps to capture foxes using both baits

(Herranz 2000). This increase in fox captures was even more noticeable when live bait

was combined with fox urine as scent attractant. This is not surprising as urine is used

by foxes for scent marking, and plays an important role in olfactory communication and

territoriality (Macdonald 1979; Arnold et al. 2011). However, Monterroso et al. (2011)

observed that captive foxes showed more interest in other attractants than in the urine of

their conspecifics, and this together with the low number of foxes captured in this study

suggest that further works are needed to confirm our finding.

According to our results, the capture rate of non-target species differed between cage-

trap types; it was lower using CT01 and CT02 models than using CT03 (see Appendix

A), likely because the former were smaller in size, which could deter carnivores to enter

inside the trap (Shivik et al. 2005). In addition, CT03 cage-trap type has the bait

chamber in a central position, while the others present a chamber annexed to one side of

the trap. This difference might also explain the increased capture rate observed for

CT03 cage-trap.

Non-target species were captured using both baits and all scent attractants, excepting

COLL. Previous works conducted in Spain have shown that cage-traps baited with live

animals capture higher numbers of non-target species, especially mammalian carnivores

and raptors (Herranz 2000; Duarte and Vargas 2001; Muñoz-Igualada et al. 2008).

Page 83: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

82

Similarly, in our study more non-target wild predators were captured using live bait

(13.61 captures/1000 trap-nights) than dead bait (6.48 captures/1000 trap-nights). We

observed a reduction in the capture rate of non-target species using VAL as attractant,

which could be related to the avoidance behaviour of competitors (Harrington et al.

2009). Nevertheless, it could also increase the captures of some felids of conservation

concern (Jerosch et al. 2010; Monterroso et al. 2011); in fact, we captured a European

wildcat using this attractant.

Cage-traps versus Collarum

Cage-traps using baits have been reported as an effective method to capture foxes and

medium-sized canids, such as coyotes (Baker 1998; Baker 2001; Way 2012), but no

information of non-target captures is reported in these studies. In contrast, professional

trappers of France preferred using cage-traps to catch medium-sized mustelids,

considering other methods more efficient to capture foxes (Ruette et al. 2003). Our

results showed how the efficiency and selectivity of cage-traps for foxes may be

improved combining baits and attractants; however, the capture rate of non-target

species remains high compared to Collarum, which showed an acceptable efficiency to

catch foxes.

The Collarum may constitute a good alternative to other predator control methods, such

as cage-traps, passive neck-snares, leg-snares, leg-hold traps, or foothold-traps, which

are less selective regardless of their efficiency (Travaini 1996; Fleming et al. 1998; Way

et al. 2002; Shivik et al. 2005; Muñoz-Igualada et al., 2008, 2010; Duarte et al. 2012).

Although we captured one wild boar using the Collarum device, the selectivity and

efficiency of this trap to capture foxes were acceptabl e, which agrees with previous

studies (Shivik et al. 2000, 2005; Muñoz-Igualada et al. 2008). To our knowledge, we

reported the first case in the literature of a non-canid species captured using this device,

which could be explained by the high density of wild boar in the study area.

Injures to captured animals

We recorded only non-severe injuries during cage-trapping, as those observed in other

studies (Way et al. 2002; Shivik et al. 2005; Muñoz-Igualada et al. 2008). Therefore,

our findings suggest that cage-trapping produces minimal impact on the welfare of

target animals trapped. Way (2012) recently proposed cage-trapping as an alternative

Page 84: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

83

method to other unpopular devices to capture canids, such as foot traps, which typically

cause significant injuries to captured animals. Nevertheless, cage-traps must be revised

daily to assure a low level of injuries (Duarte and Vargas 2001). Injuries in non-target

species were even lower than those observed in foxes, and only an azure magpie died in

a cage-trap strangled by the guillotine-door, although this was apparently a highly

unlikely event.

Previous studies reported that 80% of the canids captured with Collarum devices

showed no injuries (Shivik et al. 2000, 2005; Muñoz-Igualada et al. 2008), which is a

percentaje lower than that obtained using other devices, such as cage-traps or leg-traps

(Muñoz-Igualada et al. 2008). Our results are in concordance with this, since the three

foxes captured with this device showed minor injuries, which were caused when they

bit the device. These injuries could be reduced simply by rubber coating the snare. In

contrast, the wild boar captured died likely because the diameter of the loop, designed

for the neck of foxes, is too small for a wild boar neck.

Management Implications

Several studies have shown that cage-traps present a low efficiency and selectivity for

catching wild canids (Duarte and Vargas 2001; Shivik et al. 2005; Muñoz-Igualada et

al. 2008). Our results show how the combined use of live baits and scent attractants may

improve their efficiency to capture red foxes and slightly increase their selectivity in

central Spain. Nevertheless, this cannot prevent the capture of non-target protected

species and selectivity levels obtained are still low (max.21%; see Appendix 3.2.). The

selectivity of this trap depends ultimately on the willingness of gamekeepers or hunters

to release captured non-target animals. Accordingly, we do not recommended the use of

cage-traps for fox management in hunting estates within central Spain. However, the

small sample size obtained in our study requires that more tests are carried out at both

levels, traps design (e.g. mesh size, triggered systems, doors modifications) and the

study of other attractants for target species and/or aversive for non-target species. The

Collarum device can be an alternative to cage-traps since it is effective to catch foxes

and highly selective. Our results suggest also that some minor modification can

decrease the level of harm caused by this device during the capture To our knowledge,

the Collarum device has not been tested yet in areas of continuous presence and high

abundance of large threatened carnivores, such as the Iberian lynx (Lynx pardinus),

Page 85: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

84

Iberian wolf (Canis lupus signatus) or brown bear (Ursus arctos). So, it is unknown

whether these species can be captured by this type of trap. Therefore, its use should be

forbidden in these areas at least until more information is gathered. The use of this new

device should be carried out only by skilled technical personnel to ensure proper

handling of trapped animals and always under strict supervision of the competent

authorities in wildlife. Moreover, it is essential that traps are checked at least daily to

avoid injuries and unnecessary animal suffering.

Acknowledgements This study was funded by Consejería de Medio Ambiente of Junta de Comunidades de

Castilla-La Mancha (projects 02-227/RN-52 and PREG-05-23). Special thanks go to

landowners who facilitated the access to the private game estates, and to the field staff

of the regional government of Castilla-La Mancha. Thanks to people who assisted us

during the fieldwork, especially to S. Luna and L.E. Mínguez. We are indebted to O.

Rodríguez, M. Reglero and R. Sobrino who examined the captured animals.

Ethical standards This work was performed in compliance with current Spanish legislation, and follows

the European Union’s recommendations regarding animal welfare. All procedures were

carried out with appropriate permits, provided by the concerned institutions.

Page 86: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

85

CAPÍTULO 4: Experimental evaluation of live cage-traps for Black-billed magpies Pica pica management in Spain

Este capítulo ha sido publicado en revista SCI:

Díaz-Ruiz F, García JT, Pérez-Rodríguez L, Ferreras P (2010) Experimental evaluation of live cage-traps for Black-billed magpies Pica pica management in Spain. European Journal of Wildlife Research 56: 239-248.

Page 87: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

86

Abstract Black billed magpies (Pica pica) are considered as a nest predator of game and non-

game birds in Europe. In rural areas of Spain magpie control is commonly used as a

management tool in small game hunting estates. Cage-traps with a magpie as a decoy

are the legal method most commonly used for controlling magpies in Spain although its

performance has not yet been experimentally tested. We evaluated the selectivity,

efficiency and the effect of different factors on capture rate of these traps for magpie

control and determine the effect of magpie removal on magpie density. Only 4 out of

197 captures corresponded to non-target species, which were released unharmed. Since

the release of non-target captures depends on the daily checking of the trap and the

trapper commitment, in order to guarantee the efficiency and selectivity of this method

traps should be revised daily by full time, qualified trappers. The efficiency of this

method is high during the breeding season, reducing magpie density in the area where

the control is performed. Highest capture rates were obtained in the first days after cage-

traps setting. Neither the gender nor the origin (local or foreign) of the decoy

significantly affected the capture rate. Among male decoys, experimentally increased

testosterone levels did not increase capture rates. According to our results, the tested

cage-traps with a living decoy could be employed as an efficient and selective method

for magpie population management in Spain, when used by full time, qualified trappers.

Keywords: cage-traps, capture rate, black-billed magpie, selectivity, predator

management.

Page 88: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

87

Introduction The effect of predators on species with high socio-economic value frequently causes

conflicts among social stakeholders (Thirgood et al. 2000; Sillero-Zubiri and Laurenson

2001). Such conflicts have often caused the persecution of predators through illegal and

non-selective methods (Delibes-Mateos 2006), causing negative impacts on wildlife

conservation (Villafuerte et al. 1998).

Hunting of red-legged partridges (Alectoris rufa) is an activity of economic interest in

many rural areas of central and southern Spain (Bernabeu 2000). Predation is regarded

in many of these areas as one of the main causes of the partridge populations decline

(Vargas 2002). Among the predators of red-legged partridges, corvids are assumed to

have high impact on partridge nests (Yanes et al. 1998) and, consequently, they have

been traditionally controlled. In these areas, the black-billed magpie (Pica pica) is the

most abundant corvid species, and magpie control is commonly employed in small

game hunting estates in Spain (Otero 1995).

The black-billed magpie is a generalist species, living in a wide range of habitats

(Birkhead 1991). It feeds on a broad spectrum of food types: seeds, fruits, ground

invertebrates, carrion and small vertebrates. Eggs form only a small proportion of the

magpie diet (Birkhead 1991; Martínez 1992), and the impact of magpies on bird

populations is still controversial (Gooch 1991; Thomson et al. 1998; Chiron and Julliard

2007).

Some studies performed in Spain during the red-legged partridge breeding period

suggested that most eggs consumed by magpies belong to red-legged partridges (77.8

%, Herranz 2000). According to artificial nest experiments, magpies may be locally the

most important predator of red-legged partridge nests, (Blanco-Aguiar et al. 2001) and

magpie abundance may be regionally the best indicator of nest predation probability

(Ferreras et al. 2006). Population dynamics of partridges can be negatively affected by

nest predation (Potts 1980), and hence in places where magpies reach high densities,

their removal may increase the breeding success of red-legged partridges and other

game bird species (Martínez de Castilla and Martínez 2004).

Black-billed magpies are in expansion in Europe since 1960 (Birkhead 1991) and a

positive trend of 25% has been reported in Spain between 1995 and 2001

(SEO/BirdLife 2002). Effective management tools for abundant populations of magpies

Page 89: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

88

can be therefore necessary for alleviating their pressure on declining species such as

red-legged partridges in circumstances where predation on nests is particularly high.

Many methods have been traditionally used in Spain for capturing magpies, including

currently forbidden methods such as eagle owls (Bubo bubo) as decoys combined with

mist-nests (Wang and Trost 2000), glued-branches (Boza 2002) or poisoned baits, the

latter frequently used in Spain over the last decades (Hernandez and Margalida 2009)

and legally prohibited since 1989 (Law 4 / 1989 on Conservation of Natural Areas and

Flora and Wildlife) to be massive and non-selective methods.

Currently, the methods legally employed for capturing magpies include shooting in

communal roosts or driven hunting, nest destruction and cage-traps. Among these, cage-

traps with a magpie as a decoy is the most commonly used method, likely due to their

efficiency and their ease to operate. Gamekeepers, hunters and manufacturers assure

that cage-traps with a magpie as a decoy are an effective and selective method for

reducing magpie density. Popular recommendations for increasing the capture rate

based on non-systematic observations include using foreign magpies (i.e., magpies

originating from an area different from the one in which cages are being used) as

decoys, and using them throughout the magpie breeding season. Also, these popular

recommendations suggest to use male birds as decoys, as it is expected that their more

active territorial behaviour, which is highly determined by testosterone levels

(Wingfield et al. 1987), will be more effective in attracting conspecifics to traps.

However, no experimental studies have tested these recommendations. On the other

hand, conservationists claim that cage-traps aimed to capture magpies are often not

selective and may negatively affect other species, particularly raptors, which enter into

the traps trying to capture the decoy.

The objectives of the present study were: 1) to assess the selectivity of cage traps, 2) to

evaluate the efficiency of cage traps with a living decoy to capture black-billed magpies,

3) to determine the effect on the capture rate of several factors such as the gender and

testosterone levels of decoys, the origin of decoys, the trapping season and the

permanence time of traps in the same place and 4) to determine the effect of magpie

removal on magpie density.

Page 90: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

89

Materials and Methods Study Area

The study was carried out in two hunting estates located in Castilla-La Mancha (Central

Spain) during spring and autumn 2006. Area 1 (960 ha) was placed in the province of

Ciudad Real, within an agricultural-dominated landscape. Natural vegetation layers

were primarily bushes and some trees associated to riparian areas. Hunting is an

important activity in this area, where the main game species are the Iberian hare (Lepus

granatensis), the wild rabbit (Oryctolagus cuniculus) and the red-legged partridge.

Magpies were not systematically controlled before the study, although they were

occasionally shot during the hunting season. Area 2 (547 ha), located in the province of

Toledo, was also dominated by agricultural landscape, and bushes and some trees were

associated with hedgerows. The main game species were the Iberian hare and the wild

rabbit; the density of the red legged partridge was low and hence it was not among the

main game species. Magpies were not controlled in this study area previous to this

study. Magpie density before the breeding season was similar in the two study areas

(see below).

Magpie trapping

We evaluated the efficiency of four different models of cage traps commonly used in

Spain for capturing magpies, all of them using a live magpie as decoy. Cage-traps have

one central chamber for the decoy and several capture chambers around the decoy

chamber, employing a guillotine-type door as capture system. Models 1-3 had four

capture chambers, octagonal prism structure and similar size (approximately: 85 x 85 x

35 cm long x wide x high; See Appendix). Model 4 had two capture chambers and

rectangular prism structure (model 4, 90 x 30 x 30 cm long x wide x high; See

Appendix 4.1.). All cage-traps were made of metallic mesh of variable gauge: thick (3

mm) in model 1, medium (1.9 mm) in model 3 and light (1 mm) in models 2 and 4.

Cage-traps were located near magpie nests (<50 m). For this purpose, nests were

searched previous to the spring trapping experiments (February-March). Magpie nests

are easily found during this season because deciduous trees lack leaves, magpie nests

are large, distinctive and conspicuous (Birkhead 1991), and pairs are very active

building and defending the nest. Traps were separated at least 50 meters among them,

and under tree or shrub shade to avoid sunstroke of the decoy and captured animals in

Page 91: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

90

the central hours of the day. All cage-traps were checked daily in the morning, all

captures removed, and the decoy was provided with food and water ad libitum.

In order to compare the effect of different factors on traps performance we defined

capture-rate as the average number of magpies captured per day that a trap is operative

(International Organization for Standardization 1999).

Testosterone manipulation

Testosterone causes aggressive and territorial behaviour in male birds (Wingfield et al.

1987), which could affect the capture efficiency of decoys. For this reason, ten male

decoys, sexed through molecular techniques from blood samples (Fridolfsson and

Ellegren 1999), were experimentally provided with testosterone implants. Implants

consisted in 10 mm long silastic tubes (inner diameter of 1.47 mm, outer diameter of

1.97 mm) filled with crystallized testosterone (T-males; ICN Biomedicals, Irvine, CA)

or empty (C-males). These tubes were sub-cutaneously implanted in the dorsal zone

between the wings (Blas et al. 2006).To assess the efficiency of testosterone implants in

creating significant differences in testosterone levels between T-males and C-males, we

collected 0.3ml of blood from the brachial vein of all birds before and 5 days after

implantation. Blood samples were stored cold (4ºC) and centrifuged within 4 hours, and

plasma was subsequently stored at -80ºC until testosterone quantification. Plasma

testosterone concentration was measured using a commercially available testosterone

enzyme immunoassay (Elisa Kit EIA-1559 from DRG Diagnostics, Marburg,

Germany). Before implanting, C- and T- males did not differ in plasma testosterone

levels (t-test, t=0.87, p=0.39). However, after implanting, T-males showed higher

testosterone levels than C-males (2.3±0.11 (SE) and 1.04±0.13 (SE) ng/ml, respectively;

t-test, t=8.53, p<0.05). Testosterone levels of T-males after implantation were within the

range found in control birds or all birds before manipulation. Although testosterone

levels where not measured again during the rest of the experiment, our previous

experiences indicate that implants of this size are fully active during at least 50 days. In

addition, the visual inspection of implants through the skin indicated that they were still

active (i.e. they were partially filled with testosterone) during the whole extension of the

experiment.

Page 92: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

91

Experimental design

Four experiments were designed to test the effect of different factors on capture-rate

(Table 4.1.). Experiments 1, 2 and 4 consisted of n (2-4) blocks or groups of traps of the

same model. Each block included one trap of each treatment. For instance, each block in

experiment 1 consisted of one trap with female decoy, one trap with T-male decoy and

one trap with C-male decoy. Experiment 3 consisted in a single block of 9 traps of

models 1, 2 and 3 (all with 4 capture chambers). Traps belonging to one block were set

in the same area separated at least 50 m.

- Experiment 1 was performed during spring in Area 1, using three decoy types: females

(F), control males (CM) and males implanted with testosterone (TM). All decoys were

from foreign origin. Fifteen cage-traps were installed and remained active for 13 days.

The following variables were evaluated with this experiment: trap model, gender and

testosterone of decoy and days since trap placement. Moreover, the effect of magpie

removals on magpie density was examined together with data from experiments 2 and

4.

- Experiment 2 was performed during spring in Area 1, using F and CM decoys with

different origins, local (L) and foreign (F). Sixteen cage-traps were installed and

remained active 10 days. In this experiment we evaluated the following variables: trap

model, gender and origin of decoys and days since trap placement. Moreover, the effect

of magpie removal on magpie density was examined together with data from

experiments 1 and 4.

- Experiment 3 was performed during autumn in Area 1, using F and CM decoys, all

from local origin. We installed 9 cage-traps that remain active 20 days. This experiment

was used for evaluating trapping season, together with experiments 1 and 2.

- Experiment 4 was performed during the spring season in Area 2, using three types of

decoy: F, CM and TM, all decoys from foreign origin. We installed 12 cage-traps that

remained active during14 days. In this experiment we evaluated trap model, the gender

and testosterone of decoy. Moreover, the effect of magpie removal on magpie density

was examined together with data from experiments 1 and 2.

Page 93: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

92

Table 4.1. Summary of field experiments: variables evaluated, decoy gender and testosterone

level (F: female, CM: control male, TM: testosterone implanted male), decoy origin, area where

the experiment was carried out, season, total number of traps employed and duration (days) of

the experiment.

Experiment Variables Decoy

gender & testos.

Decoy origin

Study Area Season

Nr Traps

Duration (days)

Exp.1

Gender and

Testosterone and

trap model

F, CM &

TM Foreign Area 1 Spring 15 13

Exp.2 Gender, origin

and trap model F & CM

Foreign

& Local Area 1 Spring 16 10

Exp.3 Season F & CM Local Area 1 Autumn 9 20

Exp.4

Gender and

testosterone and

trap model

F, CM &

TM Foreign Area 2 Spring 12 14

Handling of captures

Captured animals were examined for possible trap-related injuries. Non-target species

were checked for injuries and released in the capture site. Trap selectivity was defined

as the proportion of captured magpies in relation to the total number (target and non-

target) of captured animals (International Organization for Standardization 1999). The

captured magpies were euthanized through an intraperitoneal injection of sodium

pentobarbitone (200 mg/ml Dolethal Vetoquinol), as recommended for birds (Close et

al. 1997). Data from necropsy of captured magpies (age, gender, physical condition)

were used for further studies (authors in prep.). Some captured magpies were kept alive

and used as decoys in further experiments, once sexed through molecular techniques

from blood samples (Fridolfsson and Ellegren 1999). Those magpies used as decoys in

the same study area where they were captured were considered as “local decoys”,

whereas those captured elsewhere were considered as “foreign decoys”.

Magpie density estimation

The density of magpies in both study areas was estimated with the distance-sampling

method (Burnham et al. 1980), which has been successfully employed to estimate the

density of a number of bird species, including magpies (Newson et al. 2008). We

Page 94: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

93

employed the Fourier series estimator as detection function. Surveys were carried out

once a week during the trapping period, following a fixed route (21 km in Area 1 and 12

km in Area 2) with high visibility, starting two hours after sunrise. We indirectly

assessed the effect of magpie removal on population density (experiment 1 and 2, in

study area 1 and experiment 4 in study area 2) by relating the changes in the density of

magpies with the number of animals captured in our cage-traps. Raptor and corvid

species observed during line transects were recorded in order to assess the abundance of

potential magpie predators or competitors which could enter the traps attracted by the

magpie decoy, and related to trap selectivity.

Data analysis

We first modelled daily capture rate (number of magpies trapped each day that a trap

was active) using data from both study areas during spring (exps.1, 2 and 4). Fixed

factors included in this model were: number of days since the trap was installed and

decoy origin (local or foreign). Study area, experimental block and trap location (a

categorical variable identifying each trap position) were included as random effects.

Trap location was nested within experimental block, because these random effects are

not independent. Generalized mixed models with a Poisson error term and a log link

function were used for this and for the remaining analyses of factors affecting capture

rate (see below).

Since the amount of time each cage trap was active differed among experiments (see

Table 4.1.) and capture rate was significantly affected by time since trap installation

(see results), we only considered in further analyses of spring data the captures obtained

during the first 5 days after trap installation, when highest capture rates were obtained

(see results). By this way, we controlled for experiment duration and did not include

this variable in further models of spring data. In order to test for variation in capture rate

among experimental treatments, we modelled the number of magpie captures in the first

5 days after trap installation, using data from spring experiments (exps. 1, 2 and 4), and

the following explanatory factors: trap model (a categorical factor with four levels),

type of decoy (female, Control-male and Testosterone-male), decoy origin (local or

foreign) and study area (1 or 2). Models were fitted to all the data from experiments 1, 2

and 4. We ranked the obtained models according to their Akaike Information Criterion

value (AIC) with respect to the principle of parsimony (Akaike 1973; Burnham and

Page 95: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

94

Anderson 1998). The statistical significance of the parameters estimated was assessed

using the Wald test.

Finally, the effect of season on capture rate was analysed including only data from study

area 1, where trapping was performed both in spring (experiments 1 and 2) and in

autumn (experiment 3). Since the decay of capture rate along time since trap installation

could differ between seasons, we considered the daily capture rate as dependent

variable, and fitted generalized linear models to these data, including day since trap

installation, season and their interaction as fixed effects.

Results Selectivity

A total effort of 708 trap-days during spring and autumn 2006 produced the capture of

193 magpies and 4 individuals of non-target species, which indicate a high selectivity of

the trapping method (97.9% captures of the target species). Non-target captures were:

common buzzard (Buteo buteo), genet (Genetta genetta), Western hedgehog (Erinaceus

europaeus) and red-legged partridge. None of these captured animals resulted injured

and they were released in the capture site. Despite the low capture rate of non-target

species, several medium raptors, potential predators of magpies, were frequently seen in

the surroundings (<100 m) of the traps during the daily checks and during the weekly

transects for magpie density estimation (Table 4.2.).

Effect of trapping time on capture rate

Average capture rate during spring was 0.32 magpies/trap-days (see Table 4.3.). We

checked for overdispersion in the data, and extra-dispersion scale was close to 1 (0.9),

therefore it was not necessary to correct for this factor and the use of Poisson errors was

appropriate for modelling capture rates. Capture rate significantly decreased over time

since trap installation (Table 4.4.; Figure 4.1.). Other significant term included in the

models was the interaction between time and decoy origin (see Table 4.4.). According

to this, local decoys provided higher capture rate than foreign decoys during the first

days, but lower during latter days (Figure 4.2.). Study area, block and trap location,

included as random terms, did not result significant.

Page 96: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

95

Table 4.2. Non-target species susceptible of being captured in the traps that were observed in

the traps vicinity during daily trap checking and along weekly linear transects in both study

areas.

Linear transects Trap vicinity

Area 1 Area 2 Area 1 Area 2

Circus sp. 7 6 7 0

Buteo buteo 6 13 4 1

Asio otus 0 0 1 0

Milvus migrans 6 0 0 0

Accipiter nisus 2 0 0 0

Hieraaetus pennatus 1 0 0 0

Corvus corone 0 0 1 0

Corvus monedula 36 108 0 0

Total length 219 km 60 km

Table 4.3. Number of magpies captured, trapping effort and average capture rate during spring

and autumn in each study site.

Season Site Nr magpies

captured

Effort

(trap-days)

Capture rate

Site Average

Spring Area 1 105 355 0,26

0.32 Area 2 62 168 0,37

Autumn Area 1 26 185 0.14

Page 97: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

96

Table 4.4. Summary of results of the mixed model of capture rate including time since

installation and decoy origin (data from spring in study areas 1 and 2). Area, block and

trap location are controlled as random variables.

Effect DF F P

Time since installation 1,536 46.56 0.0001

Decoy origin 1,305 3.54 0.061

Time x decoy origin 1,536 4.74 0.030

Figure 4.1. Daily capture rate changes along time since trap installation during spring 2006

(experiment 1 and 2) and autumn 2006 (experiment 3) in area 1.

Page 98: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

97

Figure 4.2. Expected capture rate as a function of time since trap installation (days) and the

origin of the magpie employed as decoy.

Effects of type of decoy and trap model on capture rate during spring

The following analysis focused on the number of magpies captured during the first five

days after trap installation, when capture rate is highest in all the experiments (see

Figures 4.1. and 4.2.). None of the factors considered (trap type, gender-testosterone and

decoy origin) resulted significant in the models (Table 4.5.). However trap type was

included in the five models with lowest AIC and had the highest sum of Akaike weight

(Tables 4.5. and 4.6.). The trap types with four capture chambers tend to have higher

capture rates than the model with two capture chambers (Figure 4.3.).

Effect of season

Average capture rate in study area 1 during autumn (experiment 3) was lower (0.14

magpies/trap-day) than during spring (0.26 magpie/trap-day; see Table 4.3.; Figure

4.1.). However, only days since trap installation, but not season, resulted significant in

generalized models including data from spring and autumn in study area 1 (Table 4.7. ).

Page 99: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

98

Table 4.5. Significance of variables used in the mixed models for magpies captured during the

five days since trap installation. Last column indicates the relative importance of each predictor

variable estimated as the sum of the Akaike weights over all the models including each variable.

Variable

Degr. of

freedom Wald test p Σwi

Intercept 1 0.531 0.466

Trap type 3 0.992 0.609 0.618

Gender & testosterone 2 3.433 0.180 0.275

Origin 1 2.407 0.121 0.209

Table 4.6. Summary of mixed models for magpies captured during the five days since trap

installation. Variables: Tr: trap type; DS: decoy gender and testosterone level; DO: decoy

origin.

Model Variables Degr. of

freedom AIC ∆AIC Chi-2 p wi

1 Tr 2 172.219 0.000 3.886 0.143 0.106

2 Tr + DO*Tr 4 172.648 0.430 7.456 0.114 0.086

3 DO 1 173.211 0.992 0.893 0.345 0.065

4 Tr + DS*DO 4 173.508 1.289 6.597 0.159 0.056

5 DS*DO 2 173.587 1.368 2.518 0.284 0.054

6 DO + Tr 3 173.704 1.485 4.401 0.221 0.051

7 DO*Tr 2 173.850 1.631 2.254 0.324 0.047

8 DS 2 173.926 1.707 2.178 0.336 0.045

9 Tr + DS*DO + DO*Tr 6 174.075 1.856 10.030 0.123 0.042

Page 100: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

99

Figure 4.3. Average number (±SE) of captured magpies per trap during the first 5 days after

trap installation according to trap model (1-3, with four capture chambers; 4 with two capture

chambers).

Table 4.7. Summary of results of the mixed model of capture rate including time since

installation and season (only data from study area 1).

Effect of captures on magpie density

Magpie density before the breeding season was estimated as 0.23±0.06 magpies/ha in

study area 1 and 0.39±0.09 magpies/ha in study area 2. The magpies removal during the

breeding season (spring) was followed by a decline in magpie density in both study

areas (see Figure 4.4.). In area 1 the initial density declined coinciding with the first 60

Variable Degr.

of freedom

Wald test p Σwi

Intercept 1 0.223 0.637

Season 1 2.194 0.139 0.378

Time since installation 1 13.017 0.0003 1.000

Season x Time since installation 1 2.054 0.152 1.175

Page 101: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

100

magpies removed. Despite magpie density increased in the fourth census, the density at

the end of the trapping season was lower than the initial density (Figure 4.4a.). After the

trapping ceased, magpie density tended to increase. In area 2, the effect of trapping is

clearer than in area 1. There, the initial density of magpies was reduced following the

trapping season (Figure 4.4b.), and did not increase after the end of the trapping season.

Figure 4.4. Changes in magpie density (magpies/ha ± SE) along time (dashed line) and

accumulated captures during the trapping season (solid line) in study area 1 (A) and study area 2

(B).

Page 102: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

101

Discussion The tested traps are highly selective for the capture of magpies, according to our results

(97% selectivity). This is not the result of the absence of species susceptible to be

captured in the traps. Both systematic and non-systematic surveys indicate that species

susceptible to enter the traps are abundant in the study areas (see Table 4.2.). This is the

case of magpie predators, such as medium-size raptors, and magpie competitors, such as

other corvids (e.g. jackdaw (Corvus monedula); Högstedt 1980). Only a common

buzzard was captured in the traps among the medium-size raptors able to capture

magpies that were observed Accipiter nisus, Circus sp., Buteo buteo. However, we did

not detect in any of the study areas the presence of goshawk (Accipiter gentilis), a

reputed magpie predator (Mañosa 1994), which likely would enter the traps. Some

small carnivores Genetta genetta, Martes foina, Mustela nivalis, and Mustela putorius

which could be attracted by the decoy and captured in these traps, are likely present in

the study areas according to distribution atlas (Palomo et al. 2007), although we lack

quantitative data on their abundance. However, only a common genet was captured

during the study.

The release of non-target animals captured in magpie traps, when used as a management

tool, depends totally on the trapper commitment, as it happens with other traps used for

predator control (Duarte et al. 2001). Because of that, the training and the awareness of

the trappers are necessary to guarantee the release of non-target captures. Traps must be

checked daily to prevent long restraint periods which can reduce the animal welfare and

eventually cause the death of both target and non-target species.

The assessed traps resulted highly effective for the capture of magpies during the

breeding season, producing an average capture rate of 0.32 magpies/trap and day. The

daily capture rate was highest during the first day after trap installation (0.73-0.87

magpies/trap; Figure 4.1.). These values are much higher than those obtained in one-day

attempts with bal-chatri traps using an adult female as decoy (0.43; Wang and Trost

2000), although other factors such as magpie density could have affected capture rate.

The trap type was included in the best models of capture rate during the first five days,

although it was not a significant term. In fact, number of capture chambers seems to

increase the capture rate (although not significantly), since trap models with four

Page 103: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

102

chambers tended to provide more captures than the model with two capture chambers

(Figure 4.3.).

The popular recommendation of using foreign magpies as decoys to increase captures is

not supported by our data, since the origin of the decoy seems not to affect the capture

rate. In fact, we obtained a similar number of captures when using the first magpie

captured as decoy in the trap where it was captured (authors unpublished, data not

included). Although both magpie males and females defend territories, this behaviour is

more conspicuous in males (Baeyens 1981; Birkhead 1991). However, neither the

gender of the decoy nor the testosterone level affected significantly the capture rate

(Table 4.5.). Therefore, our data do not support the popular assumption about increasing

captures by using male decoys from distant populations.

The lower capture rate in autumn compared to spring (Table 4.3.) could be explained, at

least partially, by the lower density just before autumn trapping period (0.17 and 0.23

magpies/ha, respectively for autumn and spring in study area 1). This lower density in

autumn is probably a result of the magpies removed during the experimental trapping in

spring. Also during autumn and winter, magpies are more sociable and not so

aggressive when defending their territory (Eden 1989; Birkhead 1991). This lower

territoriality during the non-breeding season can also explain the lower tendency of

magpies to enter the traps.

Recent studies show that predator control often do not reduce local predator abundances

(Baker and Harris 2006; Beja et al. 2009). However, in our study, there was a strong

decline in one area, whereas in the other the pattern was unclear (Figure 4.4.). In the

study area 2 we observed an increase in magpie density one week after trapping started,

which was followed by a density decrease during the next week (Figure 4.4b.). In both

areas, these density fluctuations are probably due to sampling variability.

In any case, in both study areas trapping was able to reduce magpie density during the

breeding season of game species such as red-legged partridge and therefore the potential

predation impact upon nests reduced.

Management Implications

The use of non-selective, illegal methods for predator control in Spain is one of the

main causes of mortality for many predator species, both mammals and birds, some of

Page 104: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

103

them endangered (Villafuerte et al. 1998). Therefore, it is necessary to identify selective

methods for predator control to be used as management and conservation tools in

particular situations of high abundance of generalist, non-protected predators. Such is

the case of the traps tested in the present study, which have resulted highly selective and

efficient. Some recommendations for using this type of traps for managing magpie

populations can be drawn from our results. The breeding season is the most appropriate

for effectively control magpie populations with these traps, since capture rate is higher

in this period, the magpie density of unmanaged populations is lowest just before

breeding and easier to be controlled. On the other hand, this period coincides with

nesting of most bird species, including red-legged partridges, reducing in this way nest

losses due to magpie predation. Traps located in the proximity of magpie nests are

highly effective but their efficiency would increase if they are moved to a new location

after 4-5 days. Either local or foreign magpies of any gender can be used as decoys in

the traps with similar results in capture rate. Traps should be checked daily in order to

avoid the reduction of welfare of captures and the personnel in charge of setting and

manipulating these traps must be encouraged to liberate individuals of non-target

species. Other likely side effects of the traps assessed should be considered before their

generalized use. For instance, the effect of the reduction of magpie populations on Great

spotted cuckoo populations (Clamator glandarius), a nest parasite specialized on

magpie nests (Soler et al. 1996), should be scientifically evaluated and taken into

account when authorising the use of traps for magpie control.

Acknowledgements This study was funded by Consejería de Medio Ambiente of Junta de Comunidades de

Castilla-La Mancha (project PREG-05-23). Patrick Fasolo kindly provided the first

magpie decoys to start the trapping experiments, and shared with us his long experience

with the use of the traps. Land owners and game owners of both study areas facilitated

the access to estates and facilitated the field tests. Salvador Luna performed most of the

field work. Luis Enrique Mínguez kindly assisted in the field work and solved most

bureaucracy during the project development. Beatriz Arroyo provided helpful support

with the statistical analyses.

Page 105: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

104

Ethical standards All the experiments comply with the current Spanish laws, and were performed with the

corresponding legal authorizations and following current guidelines for animal welfare.

Page 106: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

105

CAPÍTULO 5: Assessing the influence of predator control on target and non-target predator populations using occupancy models

Este capítulo se encuentra en preparación para ser enviado a una revista SCI:

Díaz-Ruiz F, Caro J, Delibes-Mateos M, Arroyo B, Ferreras P (en preparación) Assessing the influence of predator control on target and non-target predator populations using occupancy models.

Page 107: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

106

Abstract

Lethal control of predators may affect the structure and composition of predator

communities, and this can have far-reaching ecological consequences, including the

precipitation of trophic cascades and species declines. Understanding the effects of

predator control on predator communities is therefore of great interest for the

conservation and management of wildlife. In the present study, we used camera traps

and occupancy models to assess the influence of red fox (Vulpes vulpes) control on

foxes (target species) and stone marten (Martes foina, non-target species) across 12

localities of Mediterranean environments in central Iberian Peninsula. Our results show

that the intensity of fox control was not associated with red fox occupancy, whereas it

was negatively related to red fox detectability. This suggests that fox control could

decrease the species’ abundance if we assume a relationship between abundance and

detectability as suggested by some authors. On the other hand, the intensity of fox

control was positively related to stone marten occupancy, but unrelated to its

detectability. Nevertheless, habitat composition and prey availability were more closely

associated with site occupancy of both species than red fox control. Our study suggests

that predator control could affect target (red fox) populations both spatially and

numerically, differently than non target (stone marten) populations. Furthermore, red

fox extractions could benefit subordinate sympatric mesocarnivores, such as stone

marten, through a competitor release process. This work provides valuable information

on the ecological consequences of fox control to be considered in the management of

red fox populations conducted in game estates.

Key words: competitor release, hunting, mesocarnivores, predator management, Vulpes

vulpes, Martes foina

Page 108: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

107

Introduction Changes in the relative abundance of sympatric carnivores can have far-reaching

ecological consequences, including the precipitation of trophic cascades and species

declines (Prugh et al. 2009; Levi and Willmers 2012). Lethal control of predators may

be one of the main factors affecting the structure and composition of carnivore

communities in areas where this management practice is performed. The main goal of

predator control is reducing the incidence of predation on prey, and it has become a

widely management tool used to preserve both prey species of conservation concern and

human interests (Woodroffe et al. 2005). In this sense, the red fox is the species of

predator most often persecuted because it usually impacts negatively on livestock or

game species (Sillero-Zubiri et al. 2004).

In Spain predator control is mostly focused on the red fox and it is usually carried out

by hunters and game managers (Díaz-Ruiz and Ferreras 2013), who consider it is

indispensable to reduce fox impact on small-game prey (Rios-Saldaña 2010; Delibes-

Mateos et al. 2013). The red fox is a game species in Spain; it is legally culled during

the regular hunting season (autumn-winter, pre-reproduction fox season) mainly by

shooting (Delibes-Mateos et al. 2013). In some small game estates, exceptional permits

are also granted to cull foxes outside the regular hunting season (Delibes-Mateos et al.

2013) by means of traditional methods, such as cage traps and neck snares (Muñoz-

Igualada et al. 2008, 2010).

Although game managers often consider that fox numbers are reduced as a result of

intensive fox culling (but see Delibes-Mateos et al. 2013), the effect of predator control

on fox populations is still controversial, as several studies have shown different, often

opposed, results (Heydon et al. 2000; Baker and Harris 2006; Saunders et al. 2010;

Mateo-Moriones et al. 2012; Berry et al. 2013). Fox control could also have effects on

other sympatric mesocarnivores. On the one hand, the Competitor Release Hypothesis

states that the reduction of a dominant competitor species may benefit other subordinate

competitor that increases its abundance (Caut et al. 2007). This has been shown

experimentally in UK, where the culling of Eurasian badgers (Meles meles), dominant

competitor, was associated with an increase in densities of a subordinate competitor, the

red fox (Trewby et al. 2008). On the other hand, non-selective predator control methods

(e.g. cage-traps, poisoning, etc) are sometimes used in some hunting estates, resulting in

the culling of both target and non-target mesocarnivore species (Duarte and Vargas

Page 109: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

108

2001; Barrull et al. 2011). In this sense, recent studies based on theoretical simulation

models indicate that certain levels of non-selective control of red fox populations could

alter the carnivore communities with an increase in the abundance of the target predator

(i.e. the red fox), and a reduction in the numbers of other non-target species (red fox

“competitors”), such as the Eurasian badger, the stone marten (Martes foina) and the

pine marten (Martes martes) (Casanovas et al. 2012; Lozano et al. 2013).

It is therefore of particular interest to all stakeholders involved in the conservation and

management of wildlife to understand the multiple effects of predator control on

terrestrial carnivore communities, including the interactions between carnivore species.

Detecting these effects on the populations of both target and non-target carnivores is not

an easy task because these species are often cryptic and occurs at low densities, and

therefore specific sampling methods are required to a reliable monitoring of their

populations (Boitiani and Fuller 2000; Long et al. 2008). Camera traps constitute a good

alternative to monitor rare, elusive species, such as mammalian carnivores and the effect

of management interventions on carnivore populations (Johnson et al. 2009; Sarmento

et al. 2011; Schuette et al. 2013). Camera-trapping data combined with new

methodologies of statistical analysis allows characterizing the status and changes in the

populations of these species. For example, Occupancy Models are often applied to

camera trapping data to estimate the probability of site occupancy of a species; i.e. the

proportion of sites occupied by the species (MacKenzie et al. 2002; MacKenzie et al.

2006). This is estimated from the detection/non-detection data obtained from several

sampling sites and during several sampling occasions. Occupancy has been used as a

surrogate of abundance for many inferential purposes, including habitat selection,

population dynamics and distribution, or changes in population size (Royle and Nichols

2003; MacKenzie and Nichols 2004; MacKenzie et al. 2006). To obtain unbiased

estimates of occupancy it is fundamental to account for detection probability; i.e. the

probability of detecting the species, given its presence, during the independent survey of

sampling sites (MacKenzie et al. 2002; Mackenzy et al. 2006)

In the present study, we combined the use of camera traps and occupancy models to

assess the influence of red fox control on occupancy and detection probability of

populations of foxes and stone martens, a non-target predator, in Mediterranean

environments within central Iberian Peninsula. In addition, we discuss about the

Page 110: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

109

potential relationship between predator control and the abundance and spatial

distribution of both species, and it implications for the predator management.

Material and Methods Study areas

The study was conducted in 12 localities within central Spain (Figure 5.1.),

characterized by hot and dry summers, cold winters and most rainfall occurring during

autumn-spring months (Mediterranean bioclimatic region; Rivas-Martínez et al. 2004).

The landscape was heterogeneous, and the main habitats present in all localities were

Mediterranean scrubland (mainly (Cistus spp.) in combination with holm oak (Quercus

ilex) forests), mixed with cereal croplands and permanent crops, such as olive groves

(Olea europaea) and vineyards (Vitis vinifera), and natural pastures. Other less

abundant habitats included riparian areas and ‘dehesas’ (pastureland with savannah-like

open tree layer, mainly dominated by Mediterranean evergreen oaks). Surface and

habitat composition varied among localities (see Table 5.1. and Appendix 5.1. for a

detailed description).

All localities were hunting estates, with the exception of two protected areas (numbers 5

and 11 in Figure 5.1.), where hunting was not allowed. The main small game species

were European wild rabbit (Oryctolagus cuniculus; hereafter rabbit), red-legged

partridge (Alectoris rufa) and Iberian hare (Lepus granatensis). Red deer (Cervus

elaphus) and wild board (Sus scrofa) were the main big game species. Hunting estates

were managed to boost small game numbers, mainly by the provision of supplementary

food and water, and predator control. The intensity of fox control varied among hunting

estates (Table 5.1., and see below).

Camera trap surveys

We carried out camera trap surveys between 2010 and 2013 in late spring and summer

(May-September, Table 5.1.), after Iberian mesocarnivores breeding season (Blanco

1998). We used two models of infrared-triggered digital cameras: Leaf River IR5 (Leaf

River OutDoor Products, Taylorsville, Mississippi, USA) and HCO ScoutGuard (HCO

OutDoor Products, Norcross, Georgia, USA). Camera stations were regularly deployed

with an average distance of ~1.2 km among neighboring cameras, ensuring

independence between them (Monterroso et al. 2011, 2013). The number of camera

Page 111: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

110

traps deployed in each study locality varied from 14 to 20, according to locality surface

(Table 5.1.).

Figure 5.1. Situation of the study localities (1-12) in the Iberian Peninsula.

Cameras were mounted on trees approximately 0.5–1.0 m off the ground and set to

record time and date when triggered. Cameras operated 24 h a day for an average period

of 28.4±0.4 days (mean±SE). We programmed cameras with the minimum time delay

between consecutive photos to maximize the number of photos taken per captured

individual (Monterroso et al. 2011; 2013), so assuring the species identification of each

event.

In order to increase the detection probability of mesocarnivores, we set the sensitivity of

the infrared sensor at the highest level, and used Valerian scent and Iberian lynx (Lynx

pardinus) urine as lures. This combination has been described as an effective attractant

for a wide range of Iberian carnivores (Monterroso et al. 2011). Between 3 and 4 ml of

each lure were put in two independent perforated plastic vials secured to a metal rod.

Lures were set at 2-3 meters from each camera trap, and were replenished every two

weeks, when cameras were inspected to check the batteries and to replace memory

cards. Consecutive images of the same species within 30 min interval were considered

as the same event, unless animals were clearly recognized as different individuals, and

Page 112: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

111

those separated by a longer interval as independent events (Kelly and Holub 2008;

Davis et al. 2011; Delibes-Mateos et al. 2014).

Table 5.1. Description of study localities. The predominant landscape (agriculture or

scrubland) is indicated along with the habitat types present in each area: Oa: open areas, Scr:

scrubland, Wc: woody crops, Rip: riparian, Fo: forest, Dh: dehesa. “Red fox control” is the

number of foxes culled per square km and year. “Control Method” is the main method

employed to remove foxes: shooting, snaring or no control (No). “Cameras” indicate the

number of camera-traps used in each locality. “Effort” (survey effort) is expressed as camera-

days, or the sum of days each camera was active in the field in each locality.

Study site

(Map ID)

Area (ha)

Locality type and Uses

Landscape (Habitats

types)

Red fox control (foxes/km2year)

Control Method

Sampling Year Cameras Effort

1 2000 Social hunting estate Small

game

Agricultural (Oa, Scr, Rip, Wc)

0.08 Shoot 2010 20 620

2 1600 Commercial

hunting estate Small game

Scrubland (Oa, Scr,

Rip) 1.98 Snares 2010 15 424

3 5000 Social hunting estate Small

game

Agricultural (Oa, Scr, Rip, Wc)

0.89 Shoot 2011 18 493

4 3580 Social hunting estate Small

game

Agricultural (Oa, Scr, Rip, Wc)

0.43 Shoot 2011 17 485

5 2140 Protected area Conservation

Scrubland (Oa, Scr,

Rip, Dh, Fo) 0 No 2011 19 682

6 1560 Social hunting estate Small

game

Scrubland (Oa, Scr, Rip, Wc)

1.30 Snares 2011 20 645

7 2140 Social hunting

estate Big game

Agricultural (Oa, Scr, Rip, Dh)

0 No 2012 20 495

8 2000 Social hunting estate Small

game

Agricultural (Oa, Scr, Rip, Wc)

4.00 Snares 2012 20 503

9 900 Commercial

hunting estate Big game

Scrubland (Oa, Scr,

Rip, Dh, Fo) 0.10 Shoot/Cage trap 2012 15 417

10 900 Commercial

hunting estate Small game

Agricultural (Oa, Scr,

Rip) 2.70 Snares 2012 14 372

11 2600 Protected area Conservation

Scrubland (Oa, Scr,

Rip) 0 No 2012 20 529

12 1600 Commercial

hunting estate Big game

Scrubland (Oa, Scr,

Rip, Dh, Fo) 0.70 Shoot 2013 18 463

Page 113: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

112

Selection of covariates

Several factors could influence the probability of site occupancy and detectability of

carnivores. Among these habitat composition and prey availability are the main factors

explaining the presence/absence of carnivores at a given site (Long et al. 2011;

Sarmento et al. 2011; Silva et al. 2013), although human disturbance, including predator

control, may also play an important role (Long et al. 2011).

Fox control data (i.e. human disturbance covariate) were gathered through face-to-face

interviews with game managers of each hunting estate, conduct before field sampling

(at the end of the regular hunting season, in February). We asked managers about the

number of foxes removed in the previous hunting season (Table 5.1.). The intensity of

red fox control (IFC) was estimated as the number of foxes removed per km2 and year

(fox·year-1·km-2), and it was recorder at locality level. We confirmed during the

interviews that the same fox control effort was developed in each locality for at least

two years before our field samplings. Methods employed to control foxes varied

between study localities, including shooting, cage-trapping and neck snaring (Table

5.1.).

We also recorded data of covariates associated with habitat type and prey availability at

each camera site to account for potential heterogeneity in the probability of occupancy

and detectability. We used a Geographic Information System (QGIS version 1.8.0) to

calculate the percentage of each habitat type within a circular buffer of 200-m radius

around each camera trap (Ordeñana et al. 2010; Sarmento et al. 2011; Silva et al. 2013).

We classified habitats into 6 different types using the combination of CORINE land-

cover 2006 (European Environment Agency; http://www.eea.europa.eu), Updated

satellite orthophotos (National Geographic Institute, http://www.ign.es/), and field data

recorded on site during installation-revision of camera traps. Main habitat types were

scrublands (SCR), open areas (OA), woody crops (WC), riparian (RIP) and “dehesa”

(DEH) (Appendix 5.1.). The European rabbit is the main prey of most mesocarnivores

in the Iberian Peninsula (Delibes-Mateos et al. 2008a). Therefore, rabbit availability

(hereafter RA) was assessed for each camera station as the number of independent

detections per 100 trap days and used as a measure of prey availability (Kelly and

Holub 2008; Davis et al. 2011; Monterroso 2013).

Page 114: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

113

To avoid multicollinearity, we eliminated any covariate highly correlated with other

covariates (Spearman rank correlation≥0.70). Thus, among habitat covariates, we

eliminated OA as it was highly correlated with SCR. Prior to analysis we standardized

all continuous covariates using the z-transformation (MacKenzie et al. 2006).

Occupancy models

We constructed detection histories for each camera trap placed on the 12 study

localities. We divided each survey period into four 1-week sampling occasions during

which the detection/non detection data of each target species was recorded (Sarmento et

al. 2011; Monterroso 2013).

For each species we developed single season occupancy models (MacKenzie et al.

2002) using the software PRESENCE 5.8 (Hines and Mackenzie 2013); these are based

on the assumption that all sampling sites always present the same level of occupancy

(i.e., either occupied or not) during the sampling period (MacKenzie et al. 2002). As our

goal was to estimate the influence of covariates on occupancy and detectability

simultaneously, we followed a two steps process to fit global models, as previously

described (Sarmento et al. 2011; Harihar and Pandav 2012; Monterroso 2013).

In the first step we selected independently the covariates that best explained detection

probability (Habitat and IFC covariates) and occupancy (all covariates). We used a

sequential modeling approach to find the best model for each parameter, by discarding

uninformative variables (Arnold 2010). We first held occupancy (Ψ) constant and

proceeded to find the best detection (p) model. In other words, we started building a full

effect model for detection probability, and performed a backward-stepwise model

selection to sequentially eliminate the covariate with the weaker effect size (β/SE). This

process was kept until the deletion of an additional covariate led to an increase in AICc,

keeping the variables included in the top model (Monterroso 2013). The same process

was developed to find the best occupancy model, holding detection probability constant.

In the second step we built for each species a global model that included all informative

covariates selected in the top models of detection and occupancy probability developed

in the first step. Then we followed the same procedure of backward-stepwise model

selection as described above to find the final model set for each species, we selected as

informative covariates for inference those that were included in models with ∆AICc< 2

Page 115: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

114

units of the top-supported model (Burnham and Anderson 2002). We estimated overall

AIC weights for individual variables by summing the AIC weights of all the candidate

models in which they were included (Mackenzie et al. 2006). If no single model

accounted for >90 % of the total model weights, we model-averaged by extracting the

top 95 % model confidence set and recalculating model weights (Burnham and

Anderson 2002). Model averaged estimates were calculated using the spreadsheet

developed by B. Mitchell (http://www.uvm.edu/%7Ebmitchel/software.html).

Results Camera-trapping survey

Red fox was detected in all study localities with naïve occupancy (i.e. the raw

proportion of. camera traps where the species was detected) ranging 0.20-0.95, and a

total of 254 positive sampling occasions. Stone marten was detected in more than half

of study localities (n=7, 58%) with a total of 65 positive sampling occasions, and naïve

occupancy ranging 0-0.60. Besides red fox and stone marten, other 5 species of wild

mesocarnivores were detected during the sampling period at different localities:

common genet (Genetta genetta), Egyptian mongoose (Herpestes ichneumon), Eurasian

badger (Meles meles), least weasel (Mustela nivalis) and wildcat (Felis silvestris)

(Appendix 5.2.).

Explanatory covariates of detection and occupancy

According to the sequential modeling approach to select the covariates, the intensity of

fox control was selected as covariate for fox detection to be included in the second step

(Table 5.2.). The scrublands, riparian areas, dehesa, the intensity of fox control and

rabbit availability were selected as covariates for red fox occupancy to be included in

the second step (Table 5.3.).

For the stone marten the proportion of scrubland and the intensity of fox control were

selected for the detection probability (Table 5.2.). The proportion of scrubland, rabbit

availability and the intensity of fox control were selected as covariates for stone marten

occupancy to be included in the second step (Table 5.3.).

Page 116: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

115

Table 5.2. Models obtained in the process developed for selecting detection covariates, by fitting Ψ constant: Ψ(.), for red fox and stone marten. Selected covariates are those that are included in the top model, which is marked in bold. IFC: intensity of fox control; RIP: % riparian habitat; SCR: % scrubland; WC: % woody crops.

Model AIC ∆AIC AIC wt K 2log L Red fox

Ψ(.), p(IFC) 895.72 0.00 0.436 3 889.72 Ψ(.), p(IFC+RIP) 896.28 0.56 0.330 4 888.28 Ψ(.), p(IFC+RIP+SCR) 897.90 2.18 0.147 5 887.9 Ψ(.), p(IFC+RIP+SCR+WC) 899.60 3.88 0.063 6 887.6 Ψ(.), p(full) 901.60 5.88 0.023 7 887.6 Ψ(.), p(.) 906.45 10.73 0.002 2 902.45

Stone marten Ψ(.), p(IFC+SCR) 421.18 0 0.313 4 413.18

Ψ(.), p(SCR) 421.40 0.22 0.280 3 415.4 Ψ(.), p(IFC+RIP+SCR) 421.50 0.32 0.267 5 411.5 Ψ(.), p(IFC+RIP+SCR+WC) 423.42 2.24 0.102 6 411.42 Ψ(.), p(full) 425.38 4.20 0.038 7 411.38

Table 5.3. Models obtained in the process developed for selecting occupancy covariates, by fitting p constant: p(.), for red fox and stone marten. Selected covariates are those that are included in the top model, which is marked in bold. IFC: intensity of fox control; RIP: % riparian habitat; SCR: % scrubland; WC: % woody crops; DEH: % dehesa; RA: rabbit availability.

Model AIC ∆AIC AIC wt K 2log L Red fox Ψ(SCR+RIP+DEH+IFC+RA), p(.) 904.22 0.00 0.501 7 890.22 Ψ(SCR+RIP+DEH+IFC), p(.) 905.44 1.22 0.272 6 893.44 Ψ(full), p(.) 905.81 1.59 0.226 8 889.81

Stone marten Ψ(SCR+IFC+RA), p(.) 414.06 0.00 0.403 5 404.06

Ψ(SCR+RA), p(.) 415.16 1.10 0.233 4 407.16 Ψ(SCR+RIP+IFC+RA), p(.) 415.33 1.27 0.214 6 403.33 Ψ(SCR+RIP+DEH+IFC+RA), p(.) 416.66 2.60 0.110 7 402.66 Ψ(full), p(.) 418.66 4.60 0.040 8 402.66

Page 117: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

116

Selection of global models and model averaging

The second step for the red fox produced three models with ∆AICc< 2 (Table 5.4.).

According to the model averaging, the proportion of scrubland, riparian areas and

dehesa as well as rabbit availability and fox control intensity influenced red fox

occupancy probability (Table 5.4.). The three habitat types were the most explicative

covariates (w= 0.99) and were positively associated with occupancy probability; a

marginally significant effect was obtained for the proportion of riparian areas (Table

5.5.; Figure 5.2a.). Rabbit availability was also positively associated with occupancy

probability (Table 5.5.). Although with lower weight of evidence (w= 0.17), red fox

control intensity was negatively related to the probability of red fox occupancy (Table

5.5.; Figure 5.3.). Red fox detection probability was affected negatively by red fox

control intensity (Table 5.5. and Figure 5.2b.), which was included in the three top

models (Table 5.4.).

Table 5.4. Single season occupancy models (top ranked models ∆AIC < 2) for the red fox and stone marten including covariates previously selected for p and Ψ. IFC: intensity of fox control; RIP: % riparian habitat; SCR: % scrubland; DEH: % dehesa; RA: rabbit availability.

Model AIC ∆AIC AIC wt K 2log L Red fox Ψ(SCR+RIP+DEH+RA), p(IFC) 893.73 0.00 0.492 7 879.73 Ψ(SCR+RIP+DEH), p(IFC) 894.61 0.88 0.317 6 882.61 Ψ(SCR+RIP+DEH+RA+IFC), p(IFC) 895.63 1.90 0.190 8 879.63

Stone marten Ψ(SCR+IFC+RA), p(.) 414.06 0.00 0.444 5 404.06

Ψ(SCR+RA), p(.) 415.16 1.10 0.256 4 407.16 Ψ(SCR+IFC+RA), p(SCR) 415.48 1.42 0.218 6 403.48

Page 118: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

117

Table 5.5. Model averaged coefficients (β) and confidence intervals (CI 95%) of the covariates included in the set of models explaining the red fox and stone marten detectability p and occupancy Ψ. “wt” refers to covariate AIC weights. Habitat covariates: RIP riparian; DEH dehesa and SCR scrubland. IFC: intensity of fox control. RA: rabbit availability. **Significant covariates. *Marginally significant covariate.

Red fox Covariate β CI 95% wt

Ψ

intercept 0.53 (0.18, 0.88) RIP* 0.39 (-0.05, 0.83) 0.99 DEH 0.29 (-0.13, 0.72) 0.99 SCR 0.22 (-0.10, 0.54) 0.99 RA 0.32 (-0.50, 1.14) 0.66 IFC -0.01 (-0.17, 0.15) 0.17

p intercept 0.03 (-0.18, 0.25)

IFC** -0.36 (-0.6, -0.2) 1

Stone marten Covariate β CI 95% wt

Ψ

intercept -1.28 (-2.02, -0.3) SCR** 0.769 (0.14, 1.39) 1.00 RA* -3.84 (-7.72, 0.06) 1.00 IFC 0.28 (-0.25, 0.81) 0.71

p intercept -1.27 (-1.78, -0.75)

SCR 0.04 (-0.24, 0.33) 0.22

The sequential modeling approach for the stone marten produced three models with

∆AICc< 2 (Table 5.4.). According to the model averaging the proportion of scrubland,

rabbit availability and fox control intensity explained stone marten occupancy (Table

5.5.). The proportion of scrubland was the most informative covariate and was

positively associated with stone marten occupancy (Table 5.5.; Figure 5.4.). Stone

marten occupancy was negatively related to rabbit availability and positively to red fox

control intensity (Table 5.5.; Figure 5.3.). Stone marten detection probability was

positively related to the proportion of scrubland, although with low weight of evidence

(w= 0.22) (Tables 5.4., 5.5.).

Page 119: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

118

Figure 5.2. (a) Relationship between occupancy probability (Ψ) of red fox and riparian, dehesa

and scrubland habitat proportions. (b) Relationship between red fox detection probability (p)

(solid line) and red fox control intensity (fox·year-1·km-2). Dashed lines represent the 95% CI

estimated for detection probability.

Page 120: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

119

Figure 5.3. Relationship between occupancy probability (Ψ) of red fox (grey lines) and stone marten (black lines) and red fox control intensity (fox·year-1·km-2). Dashed lines represent the 95% CI estimated for occupancy probability of each species.

Figure 5.4. Relationship between occupancy probability (Ψ) of stone marten (solid line) and scrubland habitat proportion. Dashed lines represent the 95% CI estimated for occupancy probability.

Page 121: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

120

Discussion

The intensity of red fox control was related differently to both site occupancy and

detection probability of red fox and stone marten. On the one hand, the intensity of fox

control was not related to site occupancy of red fox, but it was negatively associated

with red fox detectability. On the other hand, the intensity of red fox control was

positively related to the stone marten occupancy probability but it was not associated

with its detectability. Overall, habitat composition and prey availability were more

important than red fox control to define site occupancy probability of both species.

According to our results, the intensity of fox control was not related to the site

occupancy of red fox. Although differences in occupancy probability have been

interpreted as reflecting differences in abundance, it has been also suggested that

occupancy and abundance address distinctly different aspects of population dynamics

(MacKenzie and Nichols 2004; Mackenzy et al. 2006). Thus, some changes in

population abundance may not be identified using occupancy estimates, and some

changes in site occupancy may not reflect changes in abundance (Towerton et al. 2011).

For example, if foxes use larger areas, then they may spend less time in any given part

of those areas, thus influencing differently occupancy (increasing) and abundance

(decreasing) (Towerton et al. 2011). When territorial adult foxes are removed from an

area, this area is afterwards reoccupied by subadult foxes, which move through the

landscape in search of available territories (Towerton et al. 2011). In our study area, it is

likely that, after intensive fox control, fox population may be dominated by transient

individuals, which have larger home-rages than territorial (Henry et al. 2005). This may

explain not only the lack of association between fox extraction and red fox site

occupancy, but also the apparent low relationship between the latter and population

abundance; this seems to be related in this case with the spatial distribution of red foxes

populations.

Several authors have suggested that there is a close relationship between species’

abundance and its detectability (e.g. Royle and Nichols 2003; McCarhty et al. 2013). In

this regard, the negative relationship between the detection probability of red foxes and

the intensity of fox control might suggest that this could decrease fox abundance. This is

in disagreement with other studies performed in the Iberian Peninsula that reported

similar (Virgós and Travaini 2005), or even higher abundances of foxes (Beja et al.

Page 122: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

121

2009) in areas where these were controlled than in areas without control. Nevertheless,

these studies did not take into account the intensity of fox control, which could explain

their contrasting results with respect to our study. It is also noteworthy that changes in

the probability of detection may be the response of foxes to other factors like habitat

type or behavioural responses to human disturbances. Interestingly, in our study area the

intensity of fox control does not seem to be related to the overall activity levels of red

foxes (Chapter 6).

The difficulty to reduce fox populations has been demonstrated in several studies; the

effect of fox control on its abundance is variable and depends on various factors, such as

the control method used or the duration of control (Saunders et al. 2010). In our study,

the method employed in localities with the highest rates of fox extraction was neck-

snaring (Table 1), which is considered an efficient method to remove red foxes in Spain

(see Muñoz-Igualada et al. 2008, 2010). Furthermore, fox control effort was sustained at

least during two years before our study in all localities. On the other hand, cage-

trapping and/or shooting were the methods employed in localities with a low level of

fox control (Table 5.1.), and these are usually ineffective to reduce fox abundance

(Baker and Harris 2006; Saunders et al 2010). This could be also the reason why Beja et

al. (2009) did not observe a lower number of foxes where predator control was

employed, but data on fox control intensity were not considered by these authors.

Red fox can use very different habitats due to its high ecological plasticity (Sillero-

Zubiri et al. 2004; Sarmento et al. 2011). In this study, we found that red fox site

occupancy increased with the proportion of riparian habitat, dehesas and scrubland.

According to previous studies, scrublands and dehesas are determinant habitats in

Mediterranean areas for Iberian carnivores, including the red fox (Mangas et al. 2008).

The high relevance of riparian habitat according to our findings is probably due to the

fact that the field sampling was carried out in hot, dry summer. During this season

riparian habitat can become a key habitat for Iberian carnivores in Mediterranean

ecosystems since they find there food, water and protection against high temperatures

(Virgós 2001; Matos et al. 2009). Red fox site occupancy was also positively associated

with rabbit availability, although this relationship was weaker than those found for

habitat types. This is not surprising as rabbits are likely the most profitable prey for

foxes in the Iberian Peninsula, and their consumption by foxes increases when rabbit

numbers increase (Díaz-Ruiz et al. 2013; Delibes-Mateos et al. 2008b).

Page 123: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

122

Within communities of Iberian mesocarnivores, red foxes could play a dominant

competitor role over some sympatric species, such as the stone marten (Pereira et al.

2012; Monterroso 2013). In addition, the red fox is one of the carnivore species most

often cited as killers of other mesocarnivores like Martes sp. (Palomares and Caro

1999). In this scenario, red fox extraction may benefit the competitor release of

subordinate sympatric mesocarnivores, such as the stone marten. Our results are in

concordance with this, since red fox extraction increased the occupancy probability of

the stone marten. Similarly, in UK the experimental, selective control of Eurasian

badgers, the dominant predator species, was associated with an increase in the densities

of the red fox, the subordinate one (Macdonald et al. 2004; Trewby et al. 2008).

In our study area localities with more intensive fox extraction used fox snaring, which is

a controversial method in the Iberian Peninsula because it allows the capture of non-

target species (Duarte and Vargas 2001; Barrull et al. 2011). Different levels of non-

selective control of red fox populations could alter the carnivore communities with an

increase in the populations of the target species (i.e. red fox), while the populations of

other non-target species (red fox “competitors”), such as the Eurasian badger, the stone

marten and the pine marten, decrease markedly or even disappear (Casanovas et al.

2012; Lozano et al. 2013; Barrull et al. 2014). Contrarily, our results suggest that fox

control may decrease fox abundance and may benefit the occurrence of a competitor the

stone marten. These differences could be probably due to a mainly selective fox control

in the studied localities or that at least the stone marten was not affected by potential

non-selective fox control. However, it is unclear that non-selective predator control does

not occur in our study area, as it has been reported in other Iberian regions (Beja et al.

2009; López et al. 2014).

Stone marten occupancy was significantly higher in areas with higher proportion of

scrubland. This is in accordance with previous studies, which suggest that stone martens

occupy areas with high vegetation cover and structure complexity, including

Mediterranean scrubland. These habitats provide diverse key feeding resources for stone

martens, such as fruits, small mammals or birds (Barrientos and Virgós 2006; Virgós et

al. 2010; Sarmento et al. 2011; Monterroso 2013) as well as refuge areas (Mangas et al.

2008). Stone martens present a generalist feeding behavior mainly based on the

consumption of fruits and small mammals, although rabbits also may represent key

resources for them during spring and summer seasons (Barrientos and Virgós 2006),

Page 124: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

123

when our study was conducted. Surprisingly rabbit availability was negatively related to

stone marten site occupancy. This might be an indirect effect of habitat since stone

martens usually avoid landscapes dominated by open areas (Prigioni et al. 2008; Dudús

et al. 2014), where rabbits tend to be more abundant (Virgos et al. 2003; Calvete et al.

2004). In fact, we found lower rabbit availability in sites dominated by closed habitats

like scrublands, riparian areas and forests (authors, unpublished results).

In conclusion, our work shows how the combined use of camera-trapping and

occupancy models provide a useful tool to evaluate the relationship between

management actions and changes in populations of managed species, especially for

species that are difficult to monitor like carnivores. Nevertheless, some relationships

and assumptions of the outcome of occupancy models are not entirely clear, such as the

link between detection probability and population abundance, discussed here. From this

perspective, rigorous experimental studies based on the combination of this new

methodology and good quality abundance data of predators is essential to improve the

knowledge on the effect of predator control on the population dynamics of target and

non-target predators.

Acknowledgements We are very grateful to land owners, game managers, game keepers and hunters who

allowed us to work in their hunting estates, and to the staff of Cabañeros National Park

and Ruidera Natural Park. Special thanks to people who assisted us during the

fieldwork. This study was funded by project ref: CGL2009-10741, by the Spanish

Ministry of Science and Innovation and EU-FEDER funds, EU 7th framework

HUNTing for Sustainability project (212160, FP7-ENV-2007-1), and the project OAPN

352/2011 from the Spanish Organismo Autónomo Parques Nacionales. J. Caro had a

postdoctoral contract financed by the European Social Fund (ESF) and the Junta de

Comunidades de Castilla-La Mancha (Operational Programme FSE 20072013), and M.

Delibes-Mateos a JAE-doc contract funded by CSIC and the ESF. P. Monterroso

provided helpful support with the statistical analyses.

Ethical standards This work was performed in compliance with current Spanish legislation, and follows

the European Union’s recommendations regarding animal welfare. All procedures were

carried out with appropriate permits by the concerned institutions.

Page 125: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

124

CAPÍTULO 6: Drivers of red fox (Vulpes vulpes) daily activity: prey availability, human disturbance or habitat structure?

Este capítulo ha sido enviado a una revista SCI:

Díaz-Ruiz F, Caro J, Delibes-Mateos M, Arroyo B, Ferreras P (enviado) Drivers of red fox (Vulpes vulpes) daily activity: prey availability, human disturbance or habitat structure?

Page 126: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

125

Abstract Daily activity patterns in mammals depend on food availability, reproductive stage,

habitat selection, intraspecific interactions and predation risk, among other factors.

Some mammals exhibit behavioral plasticity in activity patterns, which allows them to

adapt to environmental changes. A good example of this can be found in the red fox

(Vulpes vulpes). This species is adapted to living in highly humanized environments,

where it is often culled because it may affect human interests (e.g. through the

consumption of game species or livestock). We assessed the potential main drivers of

the daily activity patterns of the red fox in 12 Iberian Mediterranean areas through the

use of camera traps. Among these, we considered main prey availability, degree of

human disturbance (e.g. distance to human settlements, and intensity of predator

control) and habitat structure. Our results revealed a predominantly crepuscular and

nocturnal activity of foxes with local variations. Although overall daily activity of fox

increased with rabbit availability, the temporal overlap with prey activity was generally

low. In addition, diurnal activity was lower with higher levels of human disturbance (i.e.

closer to human settlements) and increased in dense habitats. Prey availability may

determine red fox daily activity rhythms in areas with low human disturbance. In

contrast, the activity of foxes seems to be determined by other factors like human

presence where human disturbance is higher. Our study shows that in highly adaptable

species daily activity patterns are determined by several interacting drivers, resulting in

complex behavioral patterns.

Key words: camera trap, circadian rhythms, human disturbance, fox control,

Oryctolagus cuniculus.

Page 127: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

126

Introduction Daily activity patterns have been defined as adaptive sequences of routines that meet the

time structure of the environment, shaped by evolution and fine-tuned to the actual state

of the environment (Halle 2000). According to this, animals may exhibit behavioral

plasticity in daily activity patterns to decrease mortality risk, balance energy

expenditure and gain, and enhance their fitness (Monterroso et al. 2013). Thus, in

mammals, daily activity is internally regulated by species-specific endogenous clocks

(Kronfeld-Schor and Dayan 2003), but also by ecological factors such as nutritional

requirements (Masi et al. 2009), temporal habitat selection (Chavez and Gese 2006),

intraguild interactions (Di Bitetti et al. 2010) or predation risk (Lima and Dill 1990).

Additionally, mammals, as well as other animals, show behavioral responses to

environmental changes induced by human activities (Tuomainen and Candolin 2011).

Predators are strongly constrained by prey availability, which is defined as the

combination of prey abundance and their accessibility; prey can be abundant but

inaccessible to predators when they are not active or are in inaccessible habitats

(Ontiveros et al. 2005). Daily activity patterns in mammalian predators are thus

considered mainly the result of innate activity rhythms and a response to prey activity

(Giller and Sangpradub 1993), showing in some cases a high level of synchrony with

their prey (Foster et al. 2013; Monterroso et al. 2013). Other external factors explaining

daily activity patterns of mammalian predators include habitat structure or human

disturbance. Predators frequently decrease their activity at daytime in open habitats

(Chavez and Gese 2006), where predator control is conducted (Brook et al. 2012) or

where human activities such as hunting or outdoor recreational activities are common

(Belotti et al. 2012; Ordiz et al. 2012).

We chose the red fox (Vulpes vulpes) as a model to study flexibility of mammalian

predator daily activity patterns due to its high ecological plasticity and capacity of

adaptation to environmental changes. The red fox is the most widely distributed

mammalian carnivore of the world and it is found in many different habitats, where it

can be abundant and feeds on a large variety of foods (Sillero-Zubiri et al. 2004; Díaz-

Ruiz et al. 2013). Although the species is a generalist predator, European wild rabbits

(Oryctolagus cunniculus) are the most profitable prey in the central-southern Iberian

Peninsula (Delibes-Mateos et al. 2008a; Díaz-Ruiz et al. 2013) where foxes include

rabbits in their diet according to their abundance (Delibes-Mateos et al. 2008b). Red

Page 128: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

127

foxes have adapted to living in highly humanized environments, where they take

advantage of human subsidiary resources (Bino et al. 2010). In addition, it is often

persecuted by humans because it preys on game species and livestock (Sillero-Zubiri et

al. 2004).

Daily rhythms of activity are among the least studied aspects of the ecology and biology

of red foxes. Different studies have shown that red foxes are mainly nocturnal-

crepuscular, a pattern that can be explained by ecological factors such as season, habitat

and prey (Blanco 1986; Cavallini and Lovari 1994; Monterroso et al. 2013).

Additionally, red fox activity may also be influenced by human activities such as

livestock husbandry (Villar et al. 2013) or road traffic (Baker et al. 2007).

Notwithstanding, to our knowledge no studies have examined the simultaneous

influence of ecological (e.g. habitat and prey availability) and human-related factors on

red fox activity.

In Spain the red fox is a game species that can also be legally culled outside the hunting

season with a special permit. Direct shooting and live trapping with cage traps and neck

snares are the methods most used for legal culling (Delibes-Mateos et al. 2013; Díaz-

Ruiz and Ferreras 2013). Fox control is a widespread game management tool in Spain,

where between 70-94% of hunting estates perform predator control, mainly targeted to

red fox (Díaz-Ruiz and Ferreras 2013). In areas where predator control is carried out

more intensively foxes are exposed to a higher ‘risk of predation’ by humans resulting

from their capture or death (Reynolds and Tapper 1996). Thus, fox control could be

related to stronger fox behavioral responses to human presence in these areas. In this

sense, it is known that when hunting constitutes an important source of mortality in a

given species, human presence itself may create a ‘landscape of fear’ and thereby

provoke strong behavioral responses, as it happens in brown bears (Ursus arctos)

(Martin et al. 2010; Ordiz et al. 2012).

We evaluated the plasticity of red fox daily activity in environments with varying levels

of prey availability and human disturbance (e.g. fox control and distance to human

settlements) in Mediterranean areas from central Spain. According to previous studies

on mammal predator’s activity we expected that foxes would adapt their activity pattern

to that of their main prey, when this was available, but that this behavioral pattern could

be disrupted in function of factors, such as habitat composition or human disturbance.

Page 129: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

128

To assess this, we first tested whether the activity patterns of the red fox were related to

the daily activity of its preferred prey (European wild rabbit). Secondly, we tested the

relationships between the daily activity of red foxes and prey availability, human

disturbance and habitat structure simultaneously.

Material and Methods Study area

The study was conducted in 12 localities within central Spain (Figure 6.1.), with

Mediterranean-continental climate characterized by hot and dry summers, cold winters

and most rainfall occurring during autumn-spring months (Rivas-Martínez et al. 2004).

The landscape was heterogeneous and dominated by Mediterranean scrubland (mainly

Cistus spp. in combination with holm oak Quercus ilex forests), mixed with cereal

croplands and permanent crops such as olive groves (Olea europaea) and vineyards

(Vitis vinifera) and natural pastures. Other less abundant habitats included riparian

habitats, ‘dehesas’ (pastureland with savannah-like open tree layer, mainly dominated

by Mediterranean evergreen oaks) and plantations of pine (Pinus spp.), eucalyptus

(Eucalyptus spp.) and poplar (Populus spp.). Villages and scattered dwellings were

interspersed in the landscape. Surface and habitat composition varied among localities

(see Table 6.1. for a detailed description).

Figure 6.1. Situation of the study localities (1-12) in the Iberian Peninsula.

Page 130: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

129

Agriculture and livestock were the main economic activities in all localities, which were

also hunting estates, with the exception of two protected areas (numbers 5 and 11 in

Figure 6.1.), where hunting was not allowed. The main small game species were

European wild rabbit (hereafter rabbit), red-legged partridge (Alectoris rufa) and Iberian

hare (Lepus granatensis). Hunting estates were managed to improve small game

populations, mainly by the provision of supplementary food and water, and predator

control. The intensity of fox control varied among hunting estates (Table 6.1., and see

below).

Table 6.1. Description of study localities. The predominant landscape (agriculture or

scrubland) is indicated along with the habitat types present in each area: Oa: open areas, Scr:

scrubland, Wc: woody crops, Rip: riparian, Fo: forest, Dh: dehesa. ‘Red fox control’ refers to

the number of foxes culled per square km and year. ‘Cameras’ indicate the number of camera-

traps used in each locality. ‘Effort’ (survey effort) is expressed as camera-days, or the sum of

days each camera was active in the field in each locality.

Study site (Map ID)

Area (km2) Locality use Landscape

(Habitat types)

Red fox control

(foxes km-2 year-1)

Sampling Year Cameras Effort

1 20 Hunting estate Agricultural (Oa, Scr, Rip, Wc) 0.08 2010 20 620

2 16 Hunting estate Scrubland (Oa, Scr, Rip) 1.98 2010 15 424

3 50 Hunting estate Agricultural (Oa, Scr, Rip, Wc) 0.89 2011 18 493

4 35.8 Hunting estate Agricultural (Oa, Scr, Rip, Wc) 0.43 2011 17 485

5 21.4 Protected area Scrubland (Oa, Scr, Rip, Dh, Fo) 0 2011 19 682

6 15.6 Hunting estate Scrubland (Oa, Scr, Rip, Wc) 1.30 2011 20 645

7 21.4 Hunting estate Agricultural (Oa, Scr, Rip, Dh) 0 2012 20 495

8 20 Hunting estate Agricultural (Oa, Scr, Rip, Wc) 4.00 2012 20 503

9 9 Hunting estate Scrubland (Oa, Scr, Rip, Dh, Fo) 0.10 2012 15 417

10 9 Hunting estate Agricultural (Oa, Scr, Rip) 2.70 2012 14 372

11 26 Protected area Scrubland (Oa, Scr, Rip) 0 2012 20 529

12 16 Hunting estate Scrubland (Oa, Scr, Rip, Dh, Fo) 0.70 2013 18 463

Page 131: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

130

Camera trap surveys

Camera-trap surveys were carried out between 2010 and 2013 in late spring and

summer (May-September, Table 6.1.), after the red fox breeding season (Blanco 1998)

and when rabbits reach their highest annual numbers in the Iberian Peninsula (Blanco

and Villafuerte 1993). We used two models of infrared-triggered digital cameras: Leaf

River IR5 (LeafRiver OutDoor Products, Taylorsville, Mississippi, USA) and HCO

ScoutGuard (HCO OutDoor Products, Norcross, Georgia, USA). Camera stations were

regularly deployed with an approximate distance of 1.2 km among neighboring

cameras, ensuring independence between them (Monterroso 2013). The number of

camera traps deployed in each study locality varied from 14 to 20, proportionally to

locality surface (range: 9-35.8 Km2; Table 6.1.). Cameras were mounted on trees

approximately 0.5–1.0 m off the ground and set to record time and date when triggered.

Cameras operated 24 h a day for an average period of 28.4±0.4 days (mean±SE). We

programmed cameras with the minimum time delay between consecutive photos to

maximize the number of photos taken per captured individual, and so assure the species

identification of each event.

In order to increase the detection probability of red fox, we set the sensitivity of the

infrared sensor at the highest level, and used Valerian scent and Iberian lynx (Lynx

pardinus) urine as lures. This combination has been described as an effective attractant

for the red fox (Monterroso et al. 2011). Between 3 and 4 ml of each lure were put in

two independent perforated plastic vials secured to a metal rod. Lures were set at 2-3 m

from each camera trap, and were replenished every two weeks, when cameras were

inspected to check the batteries and to replace memory cards. Consecutive images of the

same species within 30 min interval were considered as the same event (unless animals

were clearly different individuals) and those separated by a longer interval as

independent events (Kelly and Holub 2008; Davis et al. 2011; Monterroso et al. 2013;

Delibes-Mateos et al. 2014).

Relationship between fox and rabbit activity patterns

We studied the activity patterns of both red foxes and rabbits (its main prey) to estimate

the probability of both species concurring in a time period. Probability density functions

of activity for both species were estimated non-parametrically for each locality from

their detection records using kernel density estimates (Ridout and Linkie 2009). Density

Page 132: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

131

functions were only estimated in species and localities with > 10 records. We also

estimated for each locality the coefficient of overlap Δ1 as suggested by Ridout and

Linkie (2009) and Linkie and Ridout (2011) for small sample sizes. The coefficient of

overlap ranges from 0 (no overlap) to 1 (complete overlap). The precision of this

estimator was obtained through confidence intervals, as percentile intervals from 500

bootstrap samples (Linkie and Ridout 2011). These analyses were performed in R 3.0.1

(R Core Development Team 2013), using an adaptation of the scripts developed by

Linkie and Ridout (2011) available at

<http://www.kent.ac.uk/ims/personal/msr/overlap.html>.

Relationship between fox activity, rabbit availability, human disturbance and habitat structure

Records of red fox activity were assigned to one of three time periods (Monterroso et al.

2013): i) twilight (between one hour prior to one hour after sunrise and sunset); ii)

diurnal; and iii) nocturnal periods, taking into account the time of sunset and sunrise in

each study site during the sampling period.

A rabbit availability index was calculated as the number of independent detections of

rabbits per 100 trap days in each camera station (Monterroso 2013).

Distance to human settlement has been frequently used as a proxy of human disturbance

(Ordeñana et al. 2010; Ohashi et al. 2013). We calculated the distance (in kilometers) to

the nearest human settlement from each camera using a Geographic Information System

(QGIS 1.8.0; QGIS Development Team 2013).

Fox control data were gathered through face-to-face interviews with game managers of

each hunting estate, conducted before field sampling (at the end of the regular hunting

season, in February). We asked managers about the number of foxes removed in the

previous hunting season (Table 6.1.). We estimated intensity of fox control as the

number of foxes removed per km2 and year (fox·year-1·km-2), and used it as another

index of human disturbance.

Activity patterns could vary between areas dominated by habitats with high vegetation

cover (i.e. shelter for foxes) and those occupied by open habitats (i.e. without shelter).

Hence, we grouped habitat types in two main categories: dense habitats (including

scrubland, forests and riparian habitats) and open habitats (including ‘dehesas’, pasture

Page 133: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

132

and crops). Habitat types surrounding each camera trap were identified from CORINE

land-cover 2006 and updated satellite orthophotos (Instituto Geográfico Nacional,

<http://www.ign.es/>) and checked during field works. Using QGIS 1.8.0, we calculated

the percentage of each habitat type (i.e. open versus dense) within a buffer of 200 m

radius around each camera trap (Ordeñana et al. 2010; Monterroso 2013). Either open or

dense habitat was assigned to each camera-trap according to the prevailing category

(>50%) within the buffer.

Generalized Linear Mixed Models (GLMM) were employed to assess red fox activity as

a function of time period (day, twilight and night), rabbit availability, human

disturbance (fox control intensity and distance to human settlement) and habitat type.

The response variable was the number of independent red fox detections for each

camera in a given time period, fitted to a Poisson distribution and a log link function

was used. We calculated the trapping effort in each camera for each period and locality

as follows: trapping effort = nº camera-days × period duration in hours. Trapping effort

was included as an offset in models. Camera trap identity was included as a random

effect nested within study locality, to account for the non-independence of observations

according to these factors. Fixed explanatory effects included: time period and habitat

as categorical variables; distance to human settlement, intensity of fox control and

rabbit availability as continuous variables; and all two-way interactions between time

period and other variables. Analyses were carried out with R 3.0.1 with lme4 package

(Bates and Maechler 2010; R Core Development Team 2013). We performed all

possible combinations of these independent effects, as all of those models were

biologically plausible. For this purpose we used the function dredge (library MuMIn;

Bartoń 2012), selected the models with delta ΔAICc<2, and if no single model

accounted for >90 % of the total model weights we calculated model-averaged

parameter estimates for the variables included in those models (Burnham and Anderson

2002). We assessed whether models were affected by overdispersion, accepting

dispersion parameter levels between 0.5 and 1.5 (Zuur et al. 2009). We checked for

potential collinearity and redundancy of the explanatory variables by analysing the

Variable Inflation Factor (VIF), eliminating variables with VIF values greater than 10

(Belsley et al. 1980).

Page 134: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

133

Results During a total effort of 6128 trap-days (mean±SE: 511±27 trapping days·locality-1;

Table 1) (all means are presented±SE), we obtained 610 independent detections of red

foxes (51±14 detections·locality-1) and 1190 of rabbits (99±37 detections·locality-1;

Table 6.2.).

Table 6.2. Number of independent detections of red fox and rabbit and coefficient of overlap

(Δ1) of daily activity patterns of red fox and rabbit in each locality. CI95% is the 95% bootstrap

confidence interval.

Study site (Map ID)

Nº Red fox detections

Nº Rabbit detections ∆1 CI 95%

1 17 48 0.48 (0.33-0.67) 2 4 101 - - 3 35 343 0.33 (0.31-0.52) 4 77 176 0.43 (0.36-0.56) 5 38 108 0.60 (0.39-0.66) 6 22 18 0.49 (0.36-0.72) 7 17 0 - - 8 39 12 0.46 (0.29-0.63) 9 89 0 - -

10 48 357 0.26 (0.15-0.32) 11 180 16 0.24 (0.25-0.49) 12 44 11 0.35 (0.11-0.56)

Red fox activity patterns and overlap with rabbit activity

Red foxes were detected in all the studied localities (Table 6.2.). Fox activity density

functions slightly varied among localities, but in general, two major activity peaks

occurred, one after sunset and another before sunrise (Figure 6.2a.). A preliminary test

showed significant differences among the three defined time periods (Kruskal-Wallis

test, H=25.73, p<0.001): activity was most intense during twilight, followed by night-

time and day-time (mean±SE: 1.02 ± 0.22, 0.79±0.11 and 0.17±0.03 detections·100

trapping-hours-1, respectively). This is in agreement with the results obtained in the

second more complex approach using GLMMs (see below).

Rabbits were detected in most localities (Table 6.2.). Rabbit activity density functions

were similar in all localities, revealing a strong bimodal pattern, with a major activity

peak occurring after sunrise and throughout the morning and a second peak before

Page 135: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

134

sunset (Figure 6.2b.). Rabbit activity significantly differed among periods (Kruskal-

Wallis test, H=34.88, p<0.001): activity was most intense at day-time, followed by

twilight-time and night-time (mean±SE: 1.47±0.42, 0.98±0.33 and 0.22±0.06

detections·100 trapping-hours-1, respectively).

Figure 6.2. Kernel densities of red fox (a) and rabbit (b) activity in study localities (mean:

solid line; range: dashed lines). Vertical dashed lines represent approximate sunrise and sunset

times.

Coefficients of overlap were estimated in nine localities with enough detection of

rabbits and foxes (Table 6.2.). Coefficient of overlap between red fox and rabbit activity

patterns varied widely among localities, ranging from 0.24 to 0.60 (0.40±0.04; Table

6.2. and Figure 6.3.), and it was not correlated with rabbit availability (Pearson´s

correlation= 0.42, p>0.05).

Page 136: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

135

Figure 6.2. Kernel densities of red fox (a) and rabbit (b) activity in study localities (mean:

solid line; range: dashed lines). Vertical dashed lines represent approximate sunrise and sunset

times.

Rabbit availability, human disturbance and habitat structure as factors explaining red fox activity patterns

Predictor variables showed VIF values below 10 (VIF values <1.26), and therefore all

variables were included in the analysis. Five of the evaluated models showed ΔAICc <2,

involving a total weight of 0.70 (Table 6.3.). None of these models were affected by

overdispersion (dispersion parameter levels: 0.67-0.69). All these models included all

the fixed variables, except fox control, which was not included in two of the selected

models (Table 6.3.). Interactions between time period and the remaining fixed variables

Page 137: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

136

were also included in the selected models (Table 6.3.). The most important variables

explaining fox activity were time period, rabbit availability, distance to human

settlement and habitat type, and the interactions between time period and either rabbit

availability or habitat type (Table 6.4.). Fox control and other interactions between

variables were less important to explain the variability in daily activity of foxes (relative

importance < 0.6; Table 6.4.).

Table 6.4. Model averaged coefficients and standard errors of the variables included in the five

best models explaining the red fox activity (number of independent red fox detections for each

camera in a given period). ‘RI’ is the relative variable importance from model average, ‘Time’

is the time period (day, night or twilight), ‘Distance’ is the distance to human settlement, and

‘Rabbit’ is the availability of rabbits.

Variable Estimate SE z RI P value Intercept -3.576 0.455 7.860 - <0.001 Time: Twilight 0.031 0.264 0.119 1 0.905 Time: Day -1.469 0.347 4.232 1 <0.001 Fox Control -13.1 19.2 0.686 0.46 0.492 Habitat: Dense -0.046 0.253 0.181 1 0.856 Distance 0.159 0.062 2.736 1 0.009 Rabbit 0.004 0.001 3.870 1 <0.001 Twilight*Fox Control 3.923 11.06 0.369 0.20 0.712 Twilight*Dense habitat 0.192 0.237 0.811 1 0.417 Twilight*Distance -0.001 0.043 0.036 0.59 0.971 Twilight*Rabbit 0.001 4·10-04 2.037 1 0.041 Day*Fox Control -22.9 11.5 1.979 0.20 0.047 Day*Dense habitat 0.910 0.223 4.082 1 <0.001 Day*Distance -0.076 0.037 2.043 0.59 0.041 Day*Rabbit -0.002 0.001 2.273 1 0.023

Model-averaged parameter estimates revealed that red fox activity was in general lowest

during day-time, and increased with rabbit availability except during daylight

(Twilight*Rabbit interaction and Day*Rabbit interaction, Table 6.4.; Figure 6.4a.).

Diurnal activity of red foxes increased in dense habitats (Day*Dense habitat interaction,

Table 6.4., Figure 6.4.). Red fox activity increased with increasing distance to human

settlements (Table 6.4.; Figure 6.4b.), although that trend was less marked during day-

time (Day*Distance interaction, Table 6.4.), when overall activity was lower anyway

(Figure 6.4b.). Overall fox activity did not change strongly with fox control, but diurnal

Page 138: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

137

activity decreased where fox control was more intense (Day*Fox control interaction,

Table 6.4.; Figure 6.4c.).

Figure 6.4. Model-averaged relationships between red fox activity (expressed as

detections·100 trapping-hour-1) and: a) Rabbit availability (rabbits·100 trapping-day-1), b)

Distance to human settlements (km), and c) Fox control (fox·year-1·km-2) during the three

periods of the daily cycle (day, twilight and night) at two different habitat types (dense or open).

For plotting the results, data were back-transformed.

Page 139: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

138

Discussion Our results indicate that the red fox is mainly crepuscular and nocturnal in our study

areas (Figure 6.2a.). This is in agreement with previous studies (Blanco 1986; Servin et

al. 1991; Cavallini and Lovari 1994) and supports that the red fox is ‘facultative

nocturnal’ (Monterroso 2013). As most canids, the red fox has specific evolutionary

adaptations to the night (sight, hearing, smell, Sillero-Zubiri 2009). However, our

results support that it is not phylogenetically constrained to nocturnality, and we found

differences in the activity patterns associated with the different factors.

During our study period (May-September) rabbits showed a main peak of activity in the

first hours of the day and a slight peak about sunset (Figure 6.2b.), i.e. they were mainly

diurnal, unlike foxes, which were mainly crepuscular and nocturnal (Figure 6.2a.). This

means that the overlap between red fox and rabbit activity was in general low (mean

coefficient of overlap=0.40) compared with that described for other mammalian

predator-prey examples (mean coefficients of overlap>0.60; Foster et al. 2013;

Monterroso et al. 2013). Therefore, our results disagree with the opportunistic hunting

theory, which states that predators adjust their activity in order to reduce the foraging

energy expenditure (Sunquist and Sunquist 1989); i.e. adapting their activity to that of

their main prey species (Foster et al. 2013). Nevertheless, this partial lack of synchrony

between predator and its main prey has been previously reported by Arias-Del Razo et

al. (2011) and Monterroso et al. (2013), who interpreted this as a response of prey to

reduce predation risk.

This low overlap between rabbit and fox activity patterns may suggest that prey is not

the most important factor explaining variations in red fox activity patterns. However,

other results show that it has an important influence on them. For example, our findings

also showed that the overall activity of red foxes was higher where rabbits were more

available, especially during twilight. In that time period, the overlap between rabbit and

fox activity was overall highest, and rabbits might be thus more accessible for foxes.

Accordingly, a greater temporal overlap between fox and rabbit would be expected in

areas with higher availability of rabbits. However, this was not observed in our study, as

there was no relationship between the overlap index and the availability of rabbits.

These results could indicate that red foxes do not need a high synchrony with rabbits

where the latter are abundant, and/or that prey-predator patterns may be altered by

Page 140: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

139

human disturbance, as it has been also suggested for wolves (Canis lupus) and moose

(Alces alces) in Scandinavia (Eriksen et al. 2009; 2011).

In our study, red fox activity was lower in areas closer to human settlements,

particularly during twilight and night, the time of highest fox activity. Several studies

have shown that human disturbance caused by activities such as agriculture,

stockbreeding and outdoor leisure activities, which frequently take place in our study

areas, affect the activity of mammal predators. For example, Matthews et al. (2006) and

Belloti et al. (2012) demonstrated that tourist activities altered the activity patterns of

black bears (Ursus americanus) in Yosemite National Park (USA) and Eurasian lynxes

(Lynx lynx) in the Czech Republic, respectively. The effect of human disturbance on

predator behavior is especially evident when hunting is an important source of mortality

in a given species. In such case, just human presence may create strong behavioral

responses through fear (Martin et al. 2010), which is in accordance with our results.

Red fox culling by humans has been globally identified as an important cause of

mortality in the red fox (Sillero-Zubiri et al. 2004). From this point of view, an effect of

predator control on the activity pattern of the target species could be expected. For

example, in some areas with intense predator control, canids decrease their activity,

especially during the daylight period (Kitchen et al. 2000; Rasmussen and Macdonald

2011; Brook et al. 2012, but see Monteverde and Piudo 2011). However, in our study

red fox decreased its overall activity and particularly its activity in daytime in areas with

intense fox control (thus with higher direct mortality risk), but the importance of fox

control on fox activity was lower than that of other factors in our study. It is possible

that the effect of human activity would be stronger during the hunting season (Ciuti et

al. 2012; Ohashi et al. 2013) than during our field sampling period but this has not been

tested yet. The lack of a strong behavioral response of foxes to predator control

intensity, together with the high influence of human presence on fox activity, could

indicate that “fear to humans” could be an intrinsic behavior in foxes, accentuated by

the historical persecution of this canid by humans in our study area (Vargas 2002).

The circadian variations in habitat use by hunted species in human-modified landscapes

are possibly a response to human presence (Sunquist 1989; Chavez and Gese 2006;

Martin et al. 2010). Therefore, anti-predator behavior in terms of avoidance of human

disturbance may explain the observed increase in fox diurnal activity in dense habitats

Page 141: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

140

(Figure 6.4), which would be safer for the canid. In agreement with this, several studies

have reported that red foxes in rural areas select habitats dominated by dense vegetation

during daytime even with human presence (Cavallini and Lovary 1994; Reynolds and

Tapper 1995; Janko et al. 2012).

Our results show that the red fox presents a high degree of behavioral plasticity

adjusting its daily activity rhythms to different ecological scenarios. In this sense, rabbit

availability seems to drive fox daily activity rhythms in a scenario of low human

disturbance where foxes mainly track rabbits, increasing their diurnal activity. However,

where foxes are close to urbanized areas or culled, human disturbance may determine

the activity of red foxes, which is reduced during daytime. Our findings show how

wildlife adapts to different environmental conditions, including human disturbance,

contributing reliable information about an adaptive species such as the red fox.

Acknowledgements We are very grateful to land owners, game managers, game keepers and hunters who

allowed us to work in their hunting estates, and to the staff of Cabañeros National Park

and Ruidera Natural Park. Special thanks to people who assisted us during the

fieldwork. This study was funded by project ref: CGL2009-10741, by the Spanish

Ministry of Science and Innovation and EU-FEDER funds, EU 7th framework

HUNTing for Sustainability project (212160, FP7-ENV-2007-1), and the project OAPN

352/2011 from the Spanish Organismo Autónomo Parques Nacionales. J. Caro had a

postdoctoral contract financed by the European Social Fund (ESF) and the Junta de

Comunidades de Castilla-La Mancha (Operational Programme FSE 20072013), and M.

Delibes-Mateos a JAE-doc contract funded by CSIC and the ESF.

Ethical standards This work was performed in compliance with current Spanish legislation, and follows

the European Union’s recommendations regarding animal welfare. All procedures were

carried out with appropriate permits, by the concerned institutions.

Page 142: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

141

DISCUSIÓN GENERAL

Existen numerosos trabajos sobre la temática tratada en esta Tesis Doctoral realizados

en diferentes ecosistemas de todo el mundo. No obstante, un alto porcentaje han sido

desarrollados en sistemas muy simplificados, lo cual hace difícil aplicar sus resultados y

conclusiones a sistemas diversos y de mayor complejidad como los presentes en la

Península Ibérica. En este sentido, los resultados obtenidos en esta Tesis Doctoral

aportan nueva información sobre diferentes aspectos de la ecología y gestión de

depredadores generalistas en ecosistemas complejos, como los ibéricos, en donde el

conocimiento científico es más escaso. La mayor parte de los trabajos de esta Tesis han

sido desarrollados en ambientes Mediterráneos de la Península Ibérica, considerados

entre los de mayor biodiversidad a nivel mundial (Blondel y Aronson 1999), y que

ocupan la mayor parte de la Península Ibérica (Rivas- Martínez 1987; Rivas-Martínez et

al. 2004). Teniendo esto en cuenta, la información aportada en esta Tesis puede ser de

utilidad para mejorar la gestión de dos especies generalistas ampliamente distribuidas y

generalmente abundantes como son el zorro y la urraca.

Ecología trófica del zorro y la urraca

Es fundamental estudiar los hábitos alimentarios de los depredadores para comprender

su ecología, así como para entender el papel que desempeñan en los procesos ecológicos

que ocurren en las comunidades de las que forman parte. Además, los hábitos

alimentarios de los depredadores son la principal causa por la cual gran parte de estos

son perseguidos por el hombre (Woodroffe et al. 2005) y, por lo tanto, conocerlos bien

es de vital importancia para la gestión de estas especies. Tanto el zorro común (Vulpes

vulpes, zorro en adelante) como la urraca (Pica pica) son especies ampliamente

distribuidas y abundantes en gran parte de España, por lo que el estudio de su

alimentación es especialmente relevante para evaluar su posible impacto sobre algunas

presas de interés para la conservación, así como sobre especies cinegéticas de interés

socioeconómico (Herranz 2000; Ruiz-Olmo et al. 2003; Fernandez de Simón 2013).

Aunque puede pensarse que la alimentación de estas dos especies es un aspecto de su

ecología suficientemente conocido, algunas cuestiones no han sido tratadas hasta la

fecha. Los capítulos 1 y 2 de esta Tesis Doctoral aportan nueva información sobre la

ecología trófica de estas especies que puede ser útil para mejorar la gestión de sus

poblaciones.

Page 143: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

142

Para una mejor comprensión de las estrategias tróficas de los depredadores a nivel de

especie es fundamental su estudio a escala biogeográfica, en la que se tienen en cuenta

un amplio rango de condiciones ambientales derivadas de la distribución de la especie

(Daan y Tinbergen 1997). En las últimas décadas se han llevado a cabo estudios de este

tipo con varias especies de carnívoros de tamaño medio como por ejemplo la gineta

(Genetta genetta) (Virgós et al. 1999), la nutria (Lutra lutra) (Clavero et al. 2003) o el

gato montés (Felis silvestris) (Lozano et al. 2006). Este tipo de estudios han supuesto

una mejora substancial en el conocimiento sobre la ecología trófica de estas especies.

Por ejemplo, han puesto de manifiesto que el gato montés, considerado como un

especialista en micromamíferos en latitudes septentrionales, se alimenta en gran medida

de conejos en latitudes meridionales (Oryctolagus cuniculus). De este modo, gracias a

estos estudios, el gato montés ha sido reconsiderado como un depredador especialista

facultativo, que adapta su alimentación a presas energéticamente más rentables cuando

éstas son abundantes (Lozano et al. 2006).

El zorro ha sido definido como un depredador generalista de amplio espectro trófico,

que utiliza los recursos alimentarios de forma oportunista en función de su

disponibilidad o abundancia (Macdonald y Reynolds 2004). Esta consideración está

apoyada por los resultados obtenidos en numerosos trabajos realizados mayormente a

escala local o regional, mientras que no existe ningún trabajo a escala biogeográfica

similar a los citados anteriormente sobre otros carnívoros. El capítulo 1 de esta Tesis

Doctoral analiza la ecología trófica del zorro a escala biogeográfica en la Península

Ibérica a través de una exhaustiva revisión bibliográfica. Los resultados de este capítulo

demuestran el carácter generalista y oportunista del zorro a esta escala, ya que su

alimentación está relacionada con variables geográficas (latitud, longitud y altitud) y

ambientales (hábitat y estacionalidad), que determinan en gran medida la presencia y

abundancia de sus principales alimentos. Concretamente la dieta del zorro presenta un

marcado patrón latitudinal, alimentándose principalmente de conejos e invertebrados en

el sur de la Península Ibérica, mientras que en el norte su dieta está dominada por

micromamíferos, frutos y semillas. Patrones similares han sido descritos para otros

carnívoros de mediano tamaño como el tejón (Meles meles), el gato montés y la gineta

(Virgós et al 1999; Virgós et al. 2005; Lozano et al. 2006).

El conejo es una especie clave en ecosistemas Mediterráneos de la Península Ibérica y

principal recurso alimentario para un importante número de depredadores ibéricos

Page 144: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

143

(Delibes-Mateos et al. 2007, 2008a). Los resultados de esta Tesis demuestran la

influencia de los conejos en diferentes aspectos de la ecología del zorro. Por un lado,

son una presa preferida, base de la dieta de los zorros en el centro-sur de la Península

Ibérica (capítulo 1). Por otro lado, la disponibilidad o abundancia de conejos influye

notablemente sobre la ecología espacial del zorro, siendo más probable su presencia en

aquellas zonas donde el lagomorfo es abundante (capítulo 5). Finalmente, desde el

punto de vista comportamental se ha demostrado que la actividad diaria del zorro es

mayor en las zonas donde el lagomorfo presenta una mayor disponibilidad (capítulo 6).

Al igual que otras especies generalistas, el zorro presenta respuestas funcionales

alimentarias como mecanismo adaptativo ante las variaciones de sus recursos tróficos

(Hanski et al. 1991; Panek et al. 2013). En el centro-sur de España se ha observado

cómo el consumo de su principal presa, el conejo, es denso-dependiente, es decir

aumenta con la abundancia del lagomorfo (Delibes-Mateos et al. 2008b; Fernandez de

Simón 2013). Así, cuando el conejo no es abundante el zorro adapta su alimentación

incrementando el consumo de otros recursos secundarios (Ferreras et al. 2011). A escala

biogeográfica los micromamíferos parecen ser uno de los principales recursos

alternativos preferidos por los zorros (capítulo 1). Esto es especialmente interesante

desde un punto de vista de conservación de otras especies presa como las aves, ya que,

cuando hay disponibilidad de micromamíferos, no parecen ser seleccionadas como

principal fuente sustitutoria del conejo. Por el contrario, Ferreras et al. (2011)

comprobaron a escala local, en la Reserva Biológica de Doñana, cómo los zorros

incrementaron significativamente el consumo de aves y carroñas de ungulados como

respuesta a la marcada disminución de las poblaciones de conejo tras la llegada de la

enfermedad hemorrágico vírica (EHVc). A pesar de la acentuada disminución de

conejos en gran parte de España durante las últimas décadas (Delibes-Mateos et al.

2009), las poblaciones de zorro no parecen mostrar descensos significativos en su

abundancia (Sobrino et al 2008; Fernandez de Simón 2013; pero ver Ferreras et al.

2011). Ante este escenario de baja disponibilidad de su presa principal y una abundancia

del cánido relativamente constante, posiblemente haya incrementado la presión de

depredación del zorro sobre otras presas, como por ejemplo algunas aves terrestres que

nidifican en el suelo, para las que el zorro es uno de los principales depredadores (Yanes

y Suárez 1996; Herranz 2000; Ruiz-Olmo et al. 2003). Sin embargo, hasta la fecha este

aspecto no ha sido estudiado de forma específica.

Page 145: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

144

El patrón de alimentación de la urraca ha sido descrito como el de un generalista que

utiliza de forma oportunista diferentes recursos en función de su disponibilidad

(Birkhead 1991). Los resultados obtenidos en esta Tesis indican que la principal fuente

de variabilidad en la dieta de la urraca es la localización geográfica de sus poblaciones,

mientras que factores intrínsecos como el sexo y la edad no parecen tener tanto peso en

su alimentación (capítulo 2). El patrón de consumo de los distintos grupos tróficos en

cada localidad está probablemente relacionado con su disponibilidad. De esta forma el

consumo de cereal no varió entre las dos localidades estudiadas, donde la disponibilidad

de este tipo de alimento era similar. Sin embargo, las urracas pueden seleccionar ciertos

tipos de alimentos independientemente de su disponibilidad, como por ejemplo algunos

grupos de invertebrados (Martínez et al. 1992; Kryštofková et al. 2011). Estudios

previos han documentado una mayor depredación de nidos artificiales por parte de las

urracas durante la fase de incubación (Suvorov et al. 2012), mientras que durante la fase

de crianza de los pollos el consumo de invertebrados se incrementa significativamente

(Martínez et al. 1992; Ponz et al. 1999). De esta manera, las diferencias observadas

entre localidades en el consumo de aves y artrópodos (capítulo 2) podrían estar

determinadas por la fase del ciclo reproductor en la que se encuentran las urracas.

Además, esta hipótesis podría explicar la diferencia encontrada en la diversidad de la

dieta, que sería menor durante la crianza, debido probablemente al elevado consumo de

artrópodos (capítulo 2).

El papel de la urraca como depredador de pequeños vertebrados, concretamente de aves,

y sus huevos, es un aspecto de su ecología muy discutido. Numerosos trabajos muestran

cómo este córvido consume aves y huevos durante la época de reproducción, aunque

estos representan una proporción muy baja en su dieta (Birkhead 1991). En ese sentido,

los resultados obtenidos en el capítulo 2 muestran cómo las urracas se alimentan

principalmente de semillas de cereal y artrópodos en ambientes agrícolas durante la

reproducción. En esta época los artrópodos son la principal fuente de proteínas para las

urracas (Martínez et al. 1992). Cuando la disponibilidad de éstos es baja, las urracas

utilizan, probablemente de forma secundaria, otras fuentes de proteína animal como

pueden ser las aves o sus huevos, incrementándose bajo estas circunstancias la

probabilidad de depredación (Birkhead 1991; capítulo 2). El uso masivo de pesticidas

en la agricultura actual podría haber incrementado la presión de depredación sobre aves

Page 146: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

145

por parte de las urracas, al disminuir la disponibilidad de invertebrados. No obstante,

hacen falta estudios adicionales para corroborar esta hipótesis.

Se encontraron restos de cáscara de huevo y plumas atribuibles a perdiz roja en tan solo

dos mollejas, perteneciendo la mayor parte de restos de aves y huevos a paseriformes

(capítulo 2). A priori los resultados del capítulo 2 pueden ser indicativos de que las

urracas no suponen un problema para la dinámica poblacional de otras aves, tal y como

se ha descrito para las poblaciones de varias especies de paseriformes (Gooch 1991;

Chiron y Julliard 2007). Sin embargo, otros estudios identifican a la urraca como uno de

los principales depredadores de nidos de diferentes aves, incluidos los de perdiz roja

(Groom 1993; Herranz 2000; Roos y Pärt 2004; Ferreras et al. 2010), por lo que es

posible que se subestime el consumo de huevos en los estudios de dieta. Esto hace que

no se pueda descartar que la depredación de nidos por la urraca pueda representar un

riesgo para el éxito reproductor de la perdiz roja en un escenario de alta abundancia de

urracas y bajas densidades de perdiz. En estas condiciones, incluso una pequeña

cantidad de huevos depredados podría representar un gran impacto en el éxito

reproductor de la población de perdiz.

Evaluación y mejora de los métodos de captura para el control de zorros y

urracas Los métodos empleados para el control de depredadores generalistas suscitan

controversia entre diferentes sectores. Por un lado, los conservacionistas consideran que

los métodos hasta ahora utilizados no son selectivos, y que eliminan de forma ilegal

individuos de especies de interés para la conservación (Virgós et al. 2010). Igualmente

algunos autores consideran que los criterios para determinar si los métodos se adecúan o

no a los estándares de captura no cruel no son suficientes ni adecuados (Iossa 2007). Por

otro lado, los cazadores consideran que los métodos permitidos para controlar

depredadores generalistas abundantes son escasos y poco eficaces (Delibes-Mateos et

al. 2013).

La resolución exitosa de este tipo de conflictos se produce cuando el resultado es

aceptable para las distintas partes y ninguna de ellas hace valer sus intereses en

detrimento de los de los demás (Redpath et al. 2013). Bajo esta perspectiva, la

prohibición total del control de depredadores no sería la mejor manera de minimizar los

conflictos entre cazadores, gestores de fauna y conservacionistas en relación a la gestión

Page 147: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

146

de los depredadores generalistas. Por lo tanto, parece fundamental trabajar en la mejora

de los métodos de control existentes así como en el desarrollo de nuevos sistemas que

permitan un control selectivo y eficiente de especies generalistas que bajo ciertas

condiciones pueden llegar a ser abundantes, como es el caso del zorro y la urraca. De

hecho, la mejora de los métodos legales para el control de depredadores ha sido incluida

en varias Estrategias de Conservación de algunos depredadores amenazados como el

lince ibérico (Lynx pardinus) o el águila imperial ibérica (Aquila adalberti), como

medida de lucha contra el uso de métodos ilegales y masivos como los cebos

envenenados (Fernández-Olalla 2011), que han repuntado en España en los últimos

años (Martínez-Abraín et al. 2013).

El estudio de diferentes sistemas para el control de zorros y urracas quizás sea el

aspecto sobre el control de depredadores al que mayor esfuerzo se ha dedicado en los

últimos años en España (Díaz-Ruiz y Ferreras 2013). Esto se debe principalmente a la

obligatoriedad del cumplimiento de los estándares establecidos en diferentes tratados

internacionales en cuanto a la eficiencia de captura de las especies objetivo, la

selectividad y los daños relacionados con la captura, necesarios para la homologación

de los métodos y su uso legal. Sin embargo, y hasta la fecha, el esfuerzo dedicado a los

métodos para el control de zorro ha sido muy superior al dedicado a los métodos para

urraca (Díaz-Ruiz y Ferreras 2013). Esto probablemente se deba a que por un lado el

control de dicho carnívoro es más habitual que el control de córvidos y a que por otro

lado los métodos habitualmente empleados para zorro son menos efectivos y selectivos

que los empleados para la urraca, y por tanto suscitan una mayor polémica.

En el caso del zorro, se han evaluado en España dos métodos tradicionales (jaulas-

trampa y lazos) y dos nuevos sistemas de captura desarrollados en Norteamérica

(Belisle y Collarum) (Díaz-Ruiz y Ferreras 2013). Según estos estudios, las jaulas-

trampa son poco eficaces y poco selectivas (Tabla 1). Sin embargo, pocos trabajos han

evaluado diferentes variantes en su uso o modificaciones con vistas a incrementar su

eficiencia de captura y selectividad. Hasta la fecha se ha probado el uso de diferentes

cebos (vivos o muertos) (Herranz 2000; Ferreras et al. 2003, 2007), la combinación de

cebos y atrayentes olorosos (Ferreras et al. 2003, 2007) y la incorporación de una

apertura circular en las puertas de la jaula-trampa para facilitar la salida de especies de

menor tamaño que el zorro (Junta de Andalucía 2010) (Tabla 7.1.).

Page 148: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

147

En el capítulo 3 de esta Tesis se han analizado de forma conjunta los datos obtenidos en

trabajos realizados en Castilla-La Mancha entre 2003 y 2007. El análisis de estos datos

muestra cómo el uso combinado de cebo vivo con orina de zorro como atrayente

oloroso incrementa la eficiencia de captura de zorros de las jaulas-trampa para esta

especie. También se pudo comprobar un ligero descenso en la tasa de captura de

especies no objetivo al utilizar valeriana como atrayente oloroso. Por lo tanto, el uso

combinado de atrayentes y cebos puede mejorar la eficiencia de captura y selectividad

de las jaulas-trampa. Sin embargo, no se encontró una combinación de cebos y

atrayentes que consiguiera de forma simultanea incrementar la eficiencia de captura y la

selectividad de las jaulas-trampa, y en cualquier caso la selectividad sigue siendo muy

baja (< 25%), aunque hay que ser cautos con estos resultados, debido el pequeño

tamaño de muestra. Los resultados de este capítulo coinciden con los de anteriores

trabajos en desaconsejar la homologación de las jaulas-trampa para su uso como método

de control de zorros en los cotos de caza. En cualquier caso estos resultados podrían

servir para mejorar otros métodos destinados a la captura de zorros.

Estudios previos han demostrado cómo el sistema Collarum (lazo propulsado de cuello)

es eficiente y selectivo para la captura de coyotes (Canis latrans) en Norteamérica

(Shivik et al. 2000, 2005). Los distintos ensayos realizados en España con este sistema

empleando una versión específica para zorros, incluidos los descritos en el capítulo 3,

han obtenido resultados similares en cuanto a su selectividad para capturar cánidos y

una eficiencia aceptable para capturar zorros, que puede mejorarse modificando el

diámetro de cierre del lazo (Tabla 7.1.). Aunque se ha señalado la posibilidad de utilizar

esta trampa en zonas con presencia de especies amenazadas como el lince ibérico

(Muñoz-Igualada et al. 2008), en la actualidad se desconoce el riesgo de captura para

esta especie, así como para otros carnívoros amenazados como el lobo (Canis lupus) o

el oso pardo (Ursus arctos). Se necesitan por tanto pruebas específicas en condiciones

controladas (sin el lazo, con registro en video) en zonas con presencia continuada de las

citadas especies amenazadas, o pruebas previas en cautividad que ayuden a esclarecer si

la trampa es inocua para estas especies.

Se considera que otros métodos como los lazos de acero tradicionales (con y sin tope),

así como sus versiones norteamericanas (lazo “americano” y Wisconsin; ver Herranz

2000 y Muñoz-Igualada 2010 respectivamente) son efectivos para capturar zorros y

muestran una mayor selectividad que las jaulas-trampa, siempre y cuando sean

Page 149: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

148

instalados de forma correcta (Tabla 7.1.). Sin embargo, es necesario matizar que los

lazos sin tope, están totalmente prohibidos en la actualidad por producir graves lesiones

y sufrimiento innecesario a los animales capturados (Herranz 2000; Duarte et al. 2012).

A pesar de que los lazos con tope son un método muy eficaz para capturar zorros, su

homologación en ciertas comunidades autónomas ha suscitado polémica al no

considerarse lo suficientemente selectivo (Barrull et al. 2011). El sistema de captura

Belisle (lazo de pie) ha sido evaluado en dos trabajos, que indican una buena eficiencia

de captura de zorros y una selectividad mayor que las jaulas-trampa, aunque no se ha

considerado suficiente para poder ser homologado (Tabla 7.1.).

De forma general los lazos con tope, el sistema Belisle y el Collarum para zorro

cumplen con los estándares internacionales de captura no cruel, como demuestra que

más del 80% de los animales capturados en los distintos estudios no presentaron

lesiones graves (Muñoz-Igualada et al. 2008, 2010; Junta de Andalucía 2010). En el

caso de las jaulas-trampa, la mayoría de trabajos realizados en España no han podido

evaluar de forma conveniente los daños relacionados con las capturas de zorros, debido

al bajo número de capturas conseguidas (< 20; Tabla 1). Sin embargo, la mayor parte de

estos trabajos encuentran una baja frecuencia de lesiones graves tanto en zorros como

en especies no objeto de control (Herranz 2000; Muñoz-Igualada et al. 2008; Junta de

Andalucía 2010). Estos resultados coinciden con los descritos para las jaulas trampa

usadas para capturar coyotes en Norteamérica (Way et al. 2002; Way 2012). Los

resultados del capítulo 3 son similares a los obtenidos en trabajos previos para las

jaulas-trampa y el sistema Collarum, con una baja frecuencia de lesiones graves. Sin

embargo, el bajo número de capturas conseguidas con ambos sistemas impidió un

análisis pormenorizado similar al realizado en otros trabajos (Muñoz-Igualada et al.

2008; Junta de Andalucía 2010). En cualquier caso para minimizar los daños es

fundamental la revisión de las trampas al menos una vez cada 24 horas, conclusión en la

que todos los trabajos coinciden.

Page 150: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

149

Tabla 7.1. Resumen de la información recopilada en los estudios que han evaluado los

sistemas de captura de zorro (JT: jaula-trampa, entre paréntesis el nº de entradas; LT: lazo

tradicional; LA: lazo americano; LW: lazo Wisconsin; Bel.: Belisle; Coll.: Collarum). Los

parámetros utilizados en cada estudio han sido estandarizados en función de la información

recopilada. Esfuerzo: expresado en trampas-noche. Zorros: número de zorros capturados. No

buscadas: número de capturas de especies distintas al zorro. Eficiencia de captura: individuos

capturados/1000 trampas-noche. Selectividad ISO: expresado como el % de zorros capturados

con respecto al total de capturas conseguidas. En negrita aparecen los resultados totales

(TOTAL) para cada sistema de captura además de la media±ES para los parámetros Eficiencia

de captura y Selectividad ISO (*). En la localidad de estudio se indica el número de localidades

(N) donde se han evaluado los diferentes métodos de captura y la Comunidad Autónoma (AN:

Andalucía; CLM: Castilla-La Mancha; CL: Castilla y León) (modificado de Díaz-Ruiz y

Ferreras 2013).

A. JAULAS-TRAMPA

Referencia Modelo Localidad Esfuerzo Capturas Eficiencia de

captura de Zorro

Selectividad

ISO % Zorros No buscadas

Herranz (2000) 1 JT(1) N=1 CLM 2576 1 19 0.39 5 JT(1) N=8 CLM 2596 3 86 1.16 3 JT(2) N=1 CLM 363 1 42 2.75 2

Duarte y Vargas (2001) 3 JT N=1 AN 2160 5 61 2.31 8 Ferreras et al. (2003) 2 JT(1-2) N=1 CLM 927 1 7 1.08 13 Moleón et al.(2003) 2 JT N=1 AN 1558 6 25 3.85 19

Ferreras et al. (2007) 2 JT(1-2)

N=2 CLM 1117 5 22 4.48 19

JT1-2) 736 0 12 0.00 0

Muñoz-Igualada et al. (2008) 3

JT(2)

N=4 CL

515 0 13 0.00 0 JT(2) 540 3 2 5.56 60 JT(2) 140 0 1 0.00 0 JT(2) 127 0 1 0.00 0

Junta de Andalucía (2010) 2 JT(2)

N= 2 AN 409 0 16 0.00 0

JT(2)a 417 1 7 2.40 13 TOTAL 14180 26 314 1.71 ± 0.50* 9.58 ± 4*

B. LAZOS

Herranz (2000) 1 LT/LA(con y

sin tope) N=9 CLM 14 506 27 21 1.86 56

Muñoz-Igualada et al. (2010) 3

LT-alar N= 2CLM 13 610 22 5 1.62 81 LW-alar N= 2CLM 9838 21 8 2.13 72

LW-al paso N= 2CLM 8550 21 9 2.46 70

Junta de Andalucía (2010) 2 LW-al paso

N= 1 AN 5363 8 1 1.49 89

LW-alar 22 292 12 10 0.54 55

Duarte et al. (2012) 3 LT-al paso (sin

tope) N= 1 AN 8568 13 7 1.52 65

TOTAL 32 319 124 61 1.66 ± 0.63* 69.8 ± 26.38*

Page 151: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

150

C. BELISLE

Muñoz-Igualada et al. (2008) 3 Bel. N=4 CL

538 13 5 24.16 72 574 10 2 17.42 83 406 3 4 7.39 43 317 1 2 3.15 33

Junta de Andalucía (2010) 2 Bel. N= 1 AN 1537 8 3 5.20 73

TOTAL 7372 35 16 11.47 ± 4.01* 60.89 ± 9.64* D. COLLARUM

Ferreras et al. (2007) 2 Coll. N=2 CLM 363 1 1 2.76 50 929 2 0 2.15 100

Muñoz-Igualada et al. (2008) 3 Coll. N=4 CL

535 10 1 18.69 91 562 8 1 14.23 89 359 2 0 5.57 100 297 2 0 6.73 100

Junta de Andalucía (2010) 2 Coll.

N= 2 AN 809 1 0 1.24 100

Coll.a 2057 20 0 9.72 100 TOTAL 5911 46 3 7.64 ± 2.20* 91.22 ± 6.11* 1: Tesis Doctoral; 2: Informe técnico; 3:Artículo científico. a: Modelos modificados

Las jaulas-trampa con reclamo vivo de urraca es uno de los métodos más empleados en

España para el control de las poblaciones de este córvido, y los cazadores españoles lo

consideran como un método eficaz para reducir las poblaciones de estas aves (Delibes-

Mateos et al. 2013). A pesar de ello, antes del trabajo que constituye el capítulo 4 de

esta Tesis Doctoral este método no había sido evaluado teniendo en cuenta los

estándares internacionales anteriormente citados. Dos breves ensayos previos habían

mostrado resultados contradictorios sobre la eficiencia de este sistema para capturar

urracas. Así, Herranz (2000) no consiguió capturar ninguna urraca, mientras que

Martínez de Castilla y Martínez (2004) lo consideran un método muy eficiente; además,

ninguno de los dos trabajos aporta información sobre su selectividad y sobre los daños

derivados de las capturas. En el capítulo 4 se evalúa por primera vez de forma

experimental este método de captura para urracas atendiendo a criterios de eficiencia,

selectividad y captura no cruel establecidos en los tratados internacionales. Los

resultados indican que es un método eficiente y muy selectivo (98%) para la captura de

urracas durante su época de reproducción. Además, se trata de un método de captura no

cruel puesto que ninguno de los animales capturados mostró ninguno de los indicadores

de malestar establecidos en los estándares. Al igual que en el caso de los métodos para

zorros, es imprescindible la revisión de las trampas al menos una vez cada 24 horas.

Hasta la fecha este método ha sido evaluado principalmente en zonas agrícolas.

Solamente existe una breve prueba realizada en una zona mixta de monte mediterráneo

y dehesas agrícolas durante época post-reproductora y con baja densidad de urracas, en

la que se capturaron dos ginetas y ninguna urraca (Ferreras et al. 2007).

Page 152: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

151

Por lo tanto, se necesitan nuevos estudios en escenarios más heterogéneos, con mayor

diversidad y abundancia de otras especies susceptibles de ser capturadas, que permitan

contrastar los resultados obtenidos en este trabajo.

Efectos del control de depredadores sobre las poblaciones de zorros y

urracas

El principal objetivo del control de depredadores es disminuir el impacto de éstos sobre

algunas especies presa, asumiendo por lo general que la extracción de depredadores

conlleva una disminución efectiva en la abundancia de sus poblaciones. Gran parte de

los trabajos existentes sobre control de depredadores evalúan el efecto sobre las

poblaciones de presas que se pretenden fomentar, prestando menor atención al efecto

sobre las poblaciones de la especie controlada (Smith et al. 2010).

La evaluación experimental de la efectividad de las extracciones de zorros para reducir

sus poblaciones es complicada, debido en parte a la dificultad de realizar estimas fiables

de la abundancia de las poblaciones de los carnívoros (incluido el zorro), que requieren

metodologías costosas y sofisticadas (Heydon et al. 2000; Schauster et al. 2002). El

foto-trampeo es un método de muestreo alternativo que, combinado con el uso de

nuevas y potentes herramientas de análisis estadístico, permite caracterizar el estado de

la poblaciones y detectar los cambios asociados a la gestión en especies poco

abundantes y elusivas, como los mamíferos carnívoros (Sarmento et al. 2011; Towerton

et al. 2011; Cove et al. 2012; Schuette et al. 2013).

Recientemente se ha utilizado el foto-trampeo combinado con modelos de ocupación

(del inglés Occupancy models, Mackenzy et al. 2006) para determinar el efecto de las

campañas de control de zorros sobre sus poblaciones y las de sus potenciales presas en

Australia (Towerton et al. 2011). En dicho trabajo no se encontraron diferencias en la

probabilidad de ocupación espacial de los zorros ni en sus índices de actividad tras las

campañas de control. Los resultados obtenidos en el capítulo 5 son similares a estos, ya

que no se observó ninguna relación entre la intensidad de extracción (control) de zorros

y la probabilidad de ocupación. Igualmente, los resultados obtenidos en esta Tesis

Doctoral han puesto de manifiesto la ausencia de relación entre la intensidad del control

de zorros y la actividad diaria de este carnívoro (capítulo 6), al igual que lo observado

en Australia (Towerton et al. 2011). Sin embargo, en el capítulo 5 se encontró una clara

reducción en la probabilidad de detección de zorros en zonas donde el control era

Page 153: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

152

intenso, lo que contradice la asunción de Towerton et al. (2011) sobre la asunción de

una probabilidad de detección de zorros similar en periodos pre y post extracción de

zorros. Recientemente se ha sugerido que la probabilidad de detección de una especie

está directamente relacionada con su abundancia (McCarthy et al. 2013). Si esta

relación existiera realmente en el caso de los zorros, los resultados del capítulo 5

indicarían que el control de depredadores, a partir de una cierta intensidad de extracción

y con cierta continuidad temporal, podría disminuir la abundancia local de las

poblaciones de zorro. Sin embargo, tanto los resultados de Towerton et al. (2011) como

los obtenidos en los capítulos 5 y 6 sugieren que las estimas de ocupación y los índices

de actividad posiblemente no sean buenas alternativas para evaluar cambios en las

abundancias de las poblaciones de zorro, ya que probablemente reflejan cambios

espaciales y temporales en el uso de los territorios. A pesar de ello, no se conoce con

exactitud la relación entre la abundancia real de determinadas especies, como en este

caso el zorro, y estos índices (estimas de ocupación, índices de actividad y probabilidad

de detección, estimados a partir de datos de foto-trampeo), lo que motivo frecuente de

discusión entre científicos (Anderson 2003; Royle y Nichols 2003; Mackenzie y

Nichols 2004; McCarthy et al. 2013; Sollman et al. 2013). Se necesitan, por lo tanto,

nuevos estudios basados en estimas fiables de la abundancia real de las poblaciones que

ayuden a probar la validez de estas nuevas metodologías de monitoreo para determinar,

entre otros aspectos, las consecuencias de determinadas medidas de gestión de fauna,

como control de zorros. Dichos estudios contribuirán a la mejora en la toma de

decisiones para la gestión de las poblaciones de las especies hacia las que se dirige la

gestión.

A diferencia de lo descrito previamente para los zorros, la abundancia de ciertas aves

como las urracas puede estimarse de forma más precisa mediante diferentes métodos;

entre otros destacan el conteo de nidos en época reproductora (Stoate y Szuczur 2001,

2005), o el método de muestreo de distancias (del inglés distance sampling) que permite

obtener estimas de densidad absoluta (Newson et al. 2008). A pesar de ello, no existen

muchos trabajos que hayan evaluado el efecto de las extracciones de urracas sobre sus

poblaciones. En general indican que el control durante la época de reproducción es

efectivo para la reducción de la abundancia de sus poblaciones a escala local y regional

(Stoate y Szuczur 2001, 2005; Chiron y Julliard 2007). Igualmente en España, Herranz

(2000) observó que mediante la caza de urracas adultas y la destrucción de sus nidos en

Page 154: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

153

un coto cinegético se consiguió una rápida y significativa reducción de la abundancia

del córvido. Los resultados obtenidos en el capítulo 4 muestran que las extracciones

experimentales realizadas con jaulas-trampa pueden reducir a corto plazo y a escala

local la densidad de urracas en lugares donde éstas son abundantes. Sin embargo, la

respuesta de las poblaciones de urracas tras el cese de las extracciones fue diferente en

las dos localidades de estudio. Probablemente estas diferencias se deban a las fechas de

inicio y fin del trampeo, desarrollado durante diferentes fases del ciclo reproductor de la

especie en cada una de las localidades. Se ha descrito que el control a lo largo de todo el

ciclo reproductor consigue una disminución en la población mantenida a lo largo del

tiempo, ya que se extraen parte de los individuos flotantes que rápidamente colonizan

los territorios vacantes (Chiron y Julliard 2007). De esta forma los resultados del

capítulo 4 sugieren que el trampeo desarrollado tan solo desde la puesta (inicio del

trampeo) hasta la incubación (final del trampeo) permite la incorporación de individuos

flotantes que probablemente completen el ciclo reproductor, contribuyendo a la

recuperación de la población. Sin embargo, el trampeo desarrollado en fases más

avanzadas del ciclo reproductor (eclosión-crianza de los pollos) no permitiría completar

de forma exitosa la reproducción a los individuos flotantes incorporados a la población,

manteniéndose la abundancia baja. Recientemente se ha descrito que el control de

urracas intensivo y continuado en el espacio y en el tiempo a escala regional puede

disminuir drásticamente las poblaciones de este córvido, llegando en algunos casos a

existir riesgo de extinción local (Chiron y Julliard 2013). En ningún caso esto debería

ser el objetivo o el resultado de cualquier plan de gestión de un depredador generalista

autóctono, como el zorro o la urraca.

Efectos sobre otras especies no objeto de control

Por lo general se suele asumir o esperar un efecto del control de depredadores sobre las

poblaciones de las especies que son objeto directo de la gestión, es decir, el depredador

que es controlado, así como de la(s) presa(s) que se pretenden recuperar o fomentar

(Saunders et al. 2010; Smith et al. 2010). Sin embargo, el control de depredadores

puede afectar a otras especies que no son contempladas en los planes de gestión, como

por ejemplo otros depredadores (Virgós y Travaini 2005), presas secundarias (Henke y

Bryant 1999) o especies que dependen de la especie controlada para completar su ciclo

reproductor (Martínez 2011).

Page 155: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

154

El control de depredadores desarrollado en gran parte de los cotos de caza españoles

podría jugar un papel importante en la composición y estructura de las comunidades de

carnívoros presentes en los mismos. Por ejemplo, se ha sugerido que el control no

selectivo e ilegal puede provocar una disminución de las abundancias de carnívoros y de

la riqueza específica de sus comunidades (Virgós y Travaini 2005; Beja et al. 2009). La

extracción ilegal de especies como la garduña o el tejón podría producir reducciones

significativas en sus poblaciones (Barrull et al. 2014) ya que estas especies presentan

menores tasas reproductivas y menor capacidad de dispersión que el zorro (Casanovas

et al 2012). Igualmente la extracción ilegal de competidores podría beneficiar al zorro

que al ver reducida la competencia podría incrementar su abundancia y expandir sus

poblaciones como se ha mostrado en Reino Unido con la extracción de tejones (Trewby

et al. 2008). Se estaría produciendo, por lo tanto, un efecto contrario al buscado con el

control de sus poblaciones (Lozano et al. 2013). Dentro de las comunidades de

mesocarnívoros ibéricos el zorro podría desempeñar un papel de competidor dominante

sobre algunas especies simpátricas de menor tamaño, como la garduña (Pereira et al.

2012; Monterroso 2013). De hecho, se ha citado que los zorros pueden incluso dar

muerte a individuos del género Martes sp. (Palomares y Caro 1999). Bajo estas

condiciones, la extracción intensiva de zorros podría beneficiar a otros mesocarnívoros

simpátricos subordinados, como la garduña. Los resultados del capítulo 5 están en

concordancia con esto, ya que se observó que la extracción de zorros aumentaba la

probabilidad de ocupación por parte de la garduña. Sin embargo, el papel que

desempeña el zorro dentro de las comunidades de mesocarnívoros ibéricos no está claro,

desconociéndose en gran medida las interacciones ecológicas entre estas especies

(Monterroso et al. 2013). Se necesitan, por lo tanto, nuevos estudios sobre las

interacciones ecológicas intragremiales que ayuden a conocer los posibles efectos de las

medidas de control de zorros sobre la estructura de las comunidades de mesocarnívoros.

En el caso de la urraca se desconoce por completo las consecuencias que el control

intensivo de sus poblaciones pueda tener sobre otras especies. Así, el control podría

perjudicar indirectamente al críalo (Clamator glandarius), un ave parásita de los nidos

de urraca, que depende en gran medida de este córvido para completar su ciclo

reproductor (Martínez 2011), o incluso a otras aves que utilizan los nidos abandonados

de urraca para criar. Igualmente se desconoce el efecto del control sobre especies

potencialmente competidoras de la urraca como podría ser el cernícalo común (Falco

Page 156: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

155

tinnunculus) u otros córvidos como el arrendajo (Garrulus glandarius) y el rabilargo

(Cyanopica cyanea) con los que comparte ciertas preferencias ecológicas (Chirón y

Julliard 2007; Alonso 2010; Palomino et al. 2011). En estos casos podría existir un

efecto de “liberación” de competidores como lo anteriormente descrito para algunas

especies de mesocarnívoros. La evaluación de estos aspectos es, por lo tanto,

imprescindible en futuros trabajos que pretendan completar el conocimiento sobre el

control poblacional de este córvido.

Efectos sobre el comportamiento de los depredadores objeto de control

Diferentes trabajos indican que especies habitualmente cazadas pueden modificar sus

patrones de comportamiento espacio-temporal como respuesta al riesgo de muerte que

pueden suponer los humanos, siendo estos cambios más acentuados durante la época

hábil de caza (Ordiz et al. 2012; Ohashi et al. 2013). No obstante, en algunos casos la

simple presencia humana puede provocar igualmente fuertes respuestas

comportamentales en estas especies a través del miedo a ser matados (Martin et al.

2010). Por ejemplo, en algunas zonas con intenso control de depredadores se ha

observado como diferentes cánidos disminuyen su actividad diurna haciéndose más

nocturnos (Kitchen et al 2000; Rasmussen y Macdonald 2011; Brook et al 2012). A

pesar de estos ejemplos, uno de los aspectos menos estudiados sobre el control de

depredadores es como este puede influir sobre el comportamiento de la especie que es

objeto de control. En el caso del zorro, los humanos (y sus actividades) constituyen una

de las principales causas de mortalidad para la especie a escala mundial (Sillero-Zubiri

et al. 2004). Desde este punto de vista, cabría esperar cambios en el patrón de actividad

de esta especie asociados a la intensidad del control de depredadores. Los resultados

obtenidos en el capítulo 6 indican que la actividad del zorro es principalmente nocturna

y crepuscular, y que la actividad diurna se reduce en zonas donde el control de

depredadores es intenso. Los resultados de este capítulo también muestran que la

actividad de los zorros es mayor en zonas con poca presencia humana. Esto sugiere que

el “miedo a los humanos" podría ser un comportamiento intrínseco en el zorro,

relativamente independiente del grado de persecución de estos, derivado de la larga

historia de persecución que este cánido ha experimentado en gran parte de España

(Vargas 2002).

Page 157: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

156

Respecto a las urracas, Birkhead (1991) observó un comportamiento más esquivo de las

mismas ante la presencia humana en zonas donde éstas eran habitualmente cazadas.

Probablemente los cambios en el comportamiento de estas dos especies generalistas

derivados de las actividades humanas no suponen una amenaza directa para su

supervivencia y conservación, a diferencia de lo señalado para otras especies como el

oso pardo (Ordiz et al. 2012). Sin embargo, se desconocen las consecuencias directas o

indirectas que estos cambios en la actividad puedan suponer sobre otras especies, así

como en el funcionamiento de los ecosistemas de los que forman parte.

Futuras líneas de investigación

La comprensión de la ecología de depredadores generalistas abundantes es fundamental

para poder establecer medidas de gestión adecuadas que permitan conjugar la

conservación de los ecosistemas con un uso sostenible de los recursos naturales

presentes en estos. Los resultados obtenidos en esta Tesis Doctoral aportan información

de valor sobre esta temática, aunque la información existente sigue siendo escasa y a

menudo poco concluyente. De los resultados de este trabajo destacan algunos aspectos

que deberían estudiarse en mayor detalle en el futuro con vistas a mejorar la gestión de

estas especies. A continuación se proponen algunas líneas futuras de investigación

suscitadas a raíz de esta Tesis Doctoral:

El estudio de la alimentación de los depredadores generalistas, sigue siendo un

aspecto fundamental para mejorar la gestión de estas especies. En el caso del

zorro se hacen necesarios estudios a largo plazo que desvelen, entre otras

cuestiones, el papel de los recursos alimentarios secundarios en la dinámica

poblacional del cánido, y en la de sus principales presas. En el caso de la urraca

son necesarios trabajos que determinen su papel como depredador de huevos y

aves; en este sentido es fundamental combinar estudios experimentales en

cautividad y campo para determinar hasta qué punto el consumo de estos tipos

de alimento es subestimado por las metodologías convencionales (análisis de

contenidos de mollejas o de egagrópilas).

Para ninguna de las dos especies generalistas objeto de estudio en esta Tesis, se

ha podido comprobar si pueden llegar a especializarse en el consumo de algún

tipo de alimento en concreto a nivel específico. En este sentido diferentes

trabajos muestran la importancia de la especialización individual en la

Page 158: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

157

explotación de ciertos recursos alimentarios por parte de algunos depredadores

generalistas y cómo esto puede ser determinante en la estructuración y dinámica

de las comunidades de presas (Oro et al. 2005; Prught et al. 2008; Araújo et al

2011; Elbroch y Wittmer 2013). Estudios sobre si existe especialización trófica

en ciertos grupos de presas a nivel de individuo en especies como el zorro y la

urraca pueden aportar información relevante para mejorar la gestión de sus

poblaciones y de algunas de sus presas (especialmente para especies

amenazadas), como se ha mostrado en algunas especies de láridos a través del

control selectivo de individuos (ver Sanz-Aguilar et al. 2009).

Es necesario potenciar la investigación sobre la eficacia de medidas de gestión

alternativas al control letal de depredadores. Para ello se necesitan estudios sobre

la eficacia de estas actuaciones en la reducción del impacto de depredación de

algunos depredadores generalistas. A continuación se presentan ejemplos de

algunas medidas sobre las que sería interesante investigar:

- Papel del acceso a fuentes de alimentación subsidiarias de origen antrópico para

depredadores generalistas (Stone y Trost 1991; Bino et al. 2010), cuya

eliminación o control podría servir para reducir las abundancias de los mismos.

- Recuperación y fomento de depredadores apicales (Prugh et al. 2009). Sería

necesario investigar sobre el papel de depredadores como el lobo y el lince

ibérico en la estructuración de las comunidades tanto de otros depredadores

como en las poblaciones de presas.

- Condicionamiento aversivo por sabor. Sería deseable investigar si este método

provoca una reducción de la tasa de depredación sobre ciertas especies

(Marguire et al. 2009), y si permite mejorar la selectividad de algunos métodos

de captura (Phillips y Whinche 2011).

- Control de la fertilidad mediante anticoncepción y/o esterilización. Recientes

estudios muestran que estas medidas pueden ser eficaces para reducir el impacto

de depredación sobre ciertas presas (coyotes en Norteamérica, Seidler et al.

2014) y pueden ser relativamente eficaces para el control del tamaño poblacional

de las poblaciones de zorro (McLeod y Saunders 2014).

Page 159: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

158

Aunque el control letal debe ser una medida excepcional, es esperable que su

uso a corto o medio plazo siga siendo habitual tanto en programas de

conservación como de gestión de especies cinegéticas (Redpath et al. 2013), al

menos hasta que se encuentren mediadas alternativas efectivas. Aunque se ha

comprobado que es posible mejorar los sistemas de captura para depredadores

generalistas (Phillips y Whinchell 2011; Short et al. 2012; capítulos 3 y 4), aún

es necesario aclarar un buen número de aspectos. Por ejemplo, en esta Tesis

Doctoral se ha demostrado que se puede aumentar tanto la efectividad como la

selectividad de las cajas-trampa usando combinaciones de cebos y atrayentes y

oloroso. Sin embargo, no se ha podido determinar una combinación de estos que

permita mejorar la efectividad y selectividad de estos dispositivos. Por ello, es

importante seguir investigando en este y otros aspectos que permitan la mejora

de los métodos existentes, así como en el desarrollo de nuevos métodos que

cumplan con los diferentes criterios establecidos para la captura no cruel.

Se ha comprobado como las extracciones de urraca durante la época de

reproducción son eficaces para reducir la abundancia de sus poblaciones a corto

plazo. Las diferentes respuestas de las dos poblaciones de urracas estudiadas tras

el cese del trampeo plantean la hipótesis de que un control desarrollado durante

el ciclo reproductor completo, o al menos durante la fase de crianza de los

pollos, podría reducir la abundancia de forma duradera. Serían necesarios

nuevos trabajos experimentales a largo plazo que evalúen esta hipótesis.

Igualmente, sería necesario evaluar las consecuencias ecológicas del control

sobre otras especies no objetivo vinculadas a la dinámica poblacional de este

córvido, como por ejemplo el críalo europeo.

Los resultados de esta Tesis sugieren que la intensidad del control de zorros

podría disminuir la abundancia de los mismos y a un mismo tiempo

desencadenar procesos ecológicos como la “liberación de competidores”. Son

necesarios estudios experimentales para confirmar estos resultados, e igualmente

desvelar el efecto de esta medida de gestión sobre la diversidad y composición

de las comunidades de carnívoros.

Se necesitan nuevos estudios que permitan esclarecer la relación entre los

parámetros estimados mediante metodologías de occupancy a partir de datos de

Page 160: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

159

foto-trampeo, como por ejemplo la probabilidad de ocupación y la

detectabilidad, con la abundancia real de las poblaciones de las especies

estudiadas, ya que este aspecto fundamental es todavía causa de debate en la

comunidad científica.

CONCLUSIONES 1. Las variaciones en los hábitos de alimentación de los zorros ibéricos están

relacionadas con variables geográficas, tipos de hábitat y estacionalidad, que a

su vez determinan la disponibilidad de sus principales alimentos. Por lo tanto, la

flexibilidad trófica de este depredador refleja los patrones biogeográficos de la

distribución y abundancia de sus principales fuentes de alimento. No se encontró

ninguna relación significativa de la diversidad de la dieta con las variables

estudiadas. Estos resultados confirman al zorro como un depredador generalista

y oportunista a una escala biogeográfica mayor de lo que se había descrito hasta

ahora.

2. Aunque no llegan a especializarse en ninguno de sus principales recursos

alimentarios, los zorros en la Península Ibérica consumen conejos como

alimento principal en aquellos lugares donde estos son abundantes, y como

principales presas sustitutorias los micromamíferos, frutos y semillas cuando el

lagomorfo no es abundante.

3. La alimentación de la urraca durante su periodo reproductor en ambientes

agrícolas del centro-sur de la Península Ibérica, se basa principalmente en

artrópodos (mayormente coleópteros) y cereales. Las urracas incluyen en su

dieta huevos y aves con baja frecuencia y en baja proporción, por lo que su

impacto de depredación sobre este tipo de presas no parece importante. No

obstante, se desconocen los posibles sesgos asociados a la metodología de

estudio para la estima del consumo de estos alimentos.

4. Tanto el consumo de los principales grupos alimentarios como la diversidad de

la dieta de la urraca varió entre localidades, sin una influencia clara de factores

intrínsecos como el sexo y la edad. El patrón de alimentación observado

coincide con el de una especie generalista que utiliza los recursos en función de

Page 161: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

160

su disponibilidad, aunque se podría explicar también en parte por la fase del

ciclo reproductor.

5. El uso combinado de cebos y atrayentes puede mejorar la eficiencia de captura y

selectividad de las jaulas-trampa para capturar zorros. La combinación cebo

vivo-orina de zorro incrementó de forma significativa la eficiencia para capturar

zorros, mientras que el uso de extracto de valeriana consiguió disminuir

ligeramente la tasa de captura de especies no objeto de control. Sin embargo,

ninguna combinación de cebos y atrayentes de las ensayadas permitió de forma

simultanea incrementar la tasa de capturas de zorros y disminuir la de especies

no buscadas, no alcanzándose en ningún caso los umbrales mínimos de

selectividad establecidos como requisitos para su homologación.

6. El sistema de captura Collarum mostró una mayor selectividad que la obtenida

para las jaulas-trampa y una aceptable eficiencia de captura de zorros, superior a

la de las jaulas-trampa sin atrayentes. Los resultados obtenidos con este sistema

indican que es una alternativa aceptable a métodos tradicionales como las jaulas-

trampa para el control poblacional de zorros en cotos de caza de características

similares a los estudiados.

7. Las jaulas-trampa con reclamo de urraca viva, utilizadas durante la época de

reproducción son un método eficaz y muy selectivo para el control de las

poblaciones de urracas en ambientes agrícolas donde el córvido es abundante.

Estos resultados cumplen los estándares de captura establecidos para poder

utilizar estas trampas como método de control en medios agrícolas; sin embargo

se desconoce su funcionamiento en ambientes más complejos, donde exista una

mayor probabilidad de capturas de especies no buscadas.

8. Los sistemas de captura evaluados en esta Tesis no produjeron lesiones

consideradas como indicadores de malestar a ninguna de las especies objetivo,

tanto zorro como urraca. En cualquier caso es fundamental que en las campañas

de control efectuadas con cualquier sistema de captura, todas las trampas

instaladas sean revisadas al menos una vez cada 24 horas para evitar sufrimiento

innecesario a los animales capturados.

Page 162: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

161

9. Las extracciones de urracas consiguieron disminuir a corto plazo las densidades

del córvido en las dos localidades de estudio. Sin embargo, la respuesta de las

poblaciones tras el cese del control fue distinta entre ambas localidades. Se

observó una recuperación de la población tras el cese del control cuando las

extracciones se realizaron en las primeras fases del ciclo reproductor (puesta-

incubación), mientras que cuando se realizaron en fases más avanzadas de la

reproducción (eclosión-crianza de los pollos) la población se estabilizó tras el

cese del control a densidades menores.

10. La probabilidad de ocupación espacial por parte de los zorros no se vio afectada

por la intensidad del control de sus poblaciones, estando determinada

principalmente por el tipo de hábitat predominante. Por el contrario, la

probabilidad de detección de zorros disminuye con el incremento en la

intensidad de su control. Si se confirmase la relación positiva entre

detectabilidad y abundancia sugerida por algunos autores, estos resultados

sugerirían que la intensidad de control podría disminuir la abundancia de zorros.

11. La intensidad del control de zorros estuvo relacionada con el incremento en la

probabilidad de ocupación espacial de la garduña. Estos resultados sugieren que

el control intensivo de zorros puede desencadenar procesos de “liberación de

competidores” debido a la disminución numérica del zorro. Al mismo tiempo,

los resultados aportan nueva información sobre el papel desempeñado por cada

especie en una relación competitiva intragremial. De esta forma el zorro

desempeñaría un papel de competidor dominante y la garduña el de competidor

subordinado.

12. El zorro mostró una actividad principalmente crepuscular y nocturna solapando

parcialmente con la actividad de su principal presa, el conejo. Las variables más

relacionadas con su actividad fueron la disponibilidad de conejos y la presencia

humana, independientemente de la intensidad de control de zorros. La

disponibilidad de conejo parece determinar los ritmos de actividad diaria en

situaciones de baja perturbación humana, en las que los zorros incrementan su

actividad diurna para aumentar el solapamiento con la actividad de los conejos.

Sin embargo, la actividad de los zorros se reduce durante el día cerca de zonas

urbanizadas o donde el zorro es sometido a intenso control, como consecuencia

Page 163: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

162

de las perturbaciones humanas. Estos resultados demuestran que el zorro

presenta una elevada plasticidad comportamental que le permite adaptarse de

forma exitosa a diferentes condiciones ambientales, incluyendo la perturbación

humana.

Page 164: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

163

REFERENCIAS Akaike H (1973) Information theory and an extension of the maximum likelihood

principle. En: Petrov BN, Csaki F (Eds.) 2nd international symposium on

information theory. Akademiai Kiado, Budapest, Pp 267–281

Albone ES, Fox MW (1971). Anal gland secretion of the red fox. Nature 233: 569–570

Alonso CL (2010) Arrendajo – Garrulus glandarius. En: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Bautista, L. M. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/

Amores F (1975) Diet of the red fox (Vulpes vulpes) in the western Sierra Morena (South Spain). Doñana Acta Vertebrata 2: 221–239

Angelo IS (2000) Aspectos da ecologia da raposa (Vulpes vulpes) no Nordeste Algarvio. Relatorio de estagio para obtensçao da Licenciatura em Biologia Apliacada a los Recursos Animais Terrestres. Facultade de Ciências da Universidade de Lisboa, Departamento de Zoología e Antropología. Lisboa

Angulo E (2003) Factores que afectan a la distribución y abundancia del conejo en Andalucía. Tesis Doctoral, Universidad Complutense de Madrid

Angulo E, Villafuerte R (2003) Modelling hunting strategies for the conservation of wild rabbit populations. Biological Conservation 115: 291–301

Anderson DR (2003) Response to Engeman: index values rarely constitute reliable information. Wildlife Society Bulletin 31: 288–291

Aranda Y, Isern-Valberdú J, Pedrochi C (1995) Dieta estival del zorro Vulpes vulpes L. en pastos del Pirineo Aragonés: Relación con la abundancia de artrópodos. Lucas Mallada 7: 9–20

Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialization. Ecology Letters 14: 948–958

Arias-Del Razo I, Hernández L, Laundré JW, Myers O. (2011) Do predator and prey foraging activity patterns match? A study of coyotes (Canis latrans), and lagomorphs (Lepus californicus and Sylvilagus audobonii). Journal of Arid Environments 75: 112–118

Arnold TW (2010) Uninformative parameters and model selection using Akaike's information criterion. Journal of Wildlife Management 74: 1175–1178

Arnold J, Soulsbury CD, Harris S (2011) Spatial and behavioural changes by red foxes (Vulpes vulpes L., 1758) in response to artificial territory intrusion. Canadian Journal of Zoology 89: 808–815

Page 165: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

164

Arroyo B, Delibes-Mateos M, Díaz-Fernández S, Viñuela J (2012) Hunting management in relation to profitability aims, red-legged partridge hunting in central Spain. European Journal of Wildlife Research 58: 847–856

Baeyens G (1981) The role of the sexes in territory defence in the Magpie (Pica pica). Ardea 69: 69–82

Baker PJ, Robertson CPJ, Funk SM, Harris S (1998) Potential fitness benefits of group living in the red fox, Vulpes vulpes. Animal Behavior 56: 1411–1424

Baker PJ, Harris S, Robertson CPJ, Saunders G, White PCL (2001) Differences in the capture rate of cage-trapped red foxes Vulpes vulpes and an evaluation of rabies control measures in Britain. Journal of Applied Ecology 38: 823–835

Baker PJ, Harris S (2003) A review of the diet of foxes in rural Britain and a preliminary assessment of their impact as a predator. En: Tattersall F, Manly WM (Eds.) Conservation and Conflict – Mammals and Farming in Britain, 120–140. Linnean Society Occasional Publication No. 4,Westbury Publishing, Otley, UK

Baker PJ, Harris S (2006) Does culling reduce fox (Vulpes vulpes) density in commercial forests in Wales, UK? European Journal of Wildlife Research 52: 99–108

Baker PJ, Dowding CV, Molony SE, White PCL, Harris S. (2007) Activity patterns of urban red foxes (Vulpes vulpes) reduce the risk of traffic-induced mortality. Behavioral Ecology 18: 716–724

Ballesteros T, Degollada A (2002) Dieta de la guineu (Vulpes vulpes) al Parc Natural de Sant Llorenç del Munt i l´Obac. V Trobada d´Estudiosos de Sant Llorenç del Munt i l´Obac. Monografies, 35, Barcelona

Balme GA, Slotow R, Hunter LTB (2009) Impact of conservation interventions on the dynamics and persistence of a persecuted leopard (Panthera pardus) population. Biological Conservation 142: 2681–2690

Barea-Azcón J, Virgós E, Ballesteros-Duperón E, Moleón M, Chirosa M (2007) Surveying carnivores at large spatial scales: a comparison of four broad-applied methods. Biodiversity and Conservation 16: 1213–1230

Barea-Azcón JM, Ballesteros-Duperón E, Gil-Sánchez JM, Virgós E (2010) Badger Meles meles feeding ecology in dry Mediterranean environments of the southwest edge of its distribution range. Acta Theriologica 55: 45–52

Barrientos JA (1988) Bases para un curso práctico de entomología. Asociación española de Entomología. Departamento de Biología Animal de la Universidad de Salamanca. 754 Pp.

Barrientos R, Virgós E (2006) Reduction of potential food interference in two sympatric carnivores by sequential use of shared resources. Acta Oecologica 30: 107–116

Page 166: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

165

Barrull J, Mate I (2007) Alimentació dels mamífers carnívors en el Parc Natural de la Serra de Monsant. III Jornades del Parc Natural de la Serra de Monsant, Octubre 2007. Barcelona

Barrull J, Mate I, Casanovas JG, Salicrú M, Gosálbez J (2011) Selectivity of mammalian predator control in managed hunting areas: an example in a Mediterranean environment. Mammalia 75: 363–369

Barrull J, Mate I, Salicrú M, Palet J, Casanovas JG, Gosàlbez J, Ruiz-Olmo J (2014) Differential response of a carnivore community to predator control: a spatio-temporal observational study. Italian Journal of Zoology 81:2, 271–279

Barton K (2012) MuMIn, Multi–model inference. R package version 1.7.2. http,//CRAN.R–project.org/package=MuMIn

Bates D Maechler M (2010) lme4: Linear Mixed–effects Models Using S4 Classes. R package version 0.999375–37. http://lme4.r–forge.r-project.org/

Burnham KP, Anderson DR (2002) Model selection and multimodel inference : a practical information-theoric aproach. Springer 2nd edn. Verlag, New York, USA, 488pp

Beasley JC, Olson ZH, Beatty WS, Dharmarajan G, Rhodes OE Jr (2013) Effects of culling on mesopredator population dynamics. PLoS ONE 8(3): e58982

Begon M, Harper JL, Townsend CR (1996) Ecology: individuals, populations and communities. Blackwell Science, Oxford

Beja P, Gordinho L, Reino L, Loureiro F, Santos-Reis M, Borralho R (2009) Predator abundance in relation to small game management in southern Portugal: conservation implications. European Journal of Wildlife Research 55: 227–238

Belsley DA, Kuh E, Welsch RE (1980) Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. Wiley, New York

Belotti E, Heurich M, Kreisinger J, Šustr P, Bufka L (2012) Influence of tourism and traffic on the Eurasian lynx hunting activity and daily movements. Animal Biodiversity and Conservation 35: 235–246

Beltrán JF (1991) Temporal abundance pattern of the wild rabbit in Doñana, SW Spain. Mammalia 55: 591–599

Bermejo T, Guitián J (2000) Fruit consumption by foxes and martens in NW Spain in autumn: a comparison of natural and agricultural areas. Folia Zoologica 49: 89–92

Bernabeu RL (2000) Evaluación económica de la caza en Castilla-La Mancha. Tesis Doctoral, Universidad de Castilla–La Mancha

Bernard J (2008) Normativa española y europea sobre control de predadores. En: Garrido JL (Ed.) Especialista en control de predadores. FEDENCA-ESCUELA ESPAÑOLA DE CAZA, pp 47–64

Page 167: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

166

Berry O, Tatler J, Hamilton N, Hilmer S, Hitchen Y, Algar D (2013) Slow recruitment in a red-fox population following poison baiting: a non-invasive mark–recapture analysis. Wildlife Research 40: 615–623

Bielby J, Donnellyb CA, Popec LC , Burkec T, Woodroffea R (2014) Badger responses to small-scale culling may compromise targeted control of bovine tuberculosis. Proceedings of the National Academy of Sciences of the United States of America 111: 9193–9198

Bino G, Dolev A, Yosha D, Guter A, King R, Saltz D, Kark S (2010) Abrupt spatial and numerical responses of overabundant foxes to reduction in anthropogenic resources. Journal of Applied Ecology 47: 1262–1271

Birkhead TR (1991) The Magpies. The ecology and behaviour of Black-billed and Yellow-billed Magpies. T and A D Poyser, Londres. 270 Pp

Blanco JC (1986) On the diet, size and use of home range and activity patterns of a red fox in central Spain. Acta Theriologica 31: 547–556

Blanco JC (1988) Estudio ecológico del zorro en la Sierra de Guadarrama. Tesis Doctoral. Universidad de Oviedo

Blanco JC, Reig S, Cuesta L (1992) Distribution, status and conservation problems of the wolf Canis lupus in Spain. Biological Conservation 60:73–80

Blanco JC, Villafuerte R (1993) Factores ecológicos que influyen sobre las poblaciones de conejos. Incidencia de la enfermedad hemorrágica. Informe Inédito. Empresa de Transformación Agraria, S.A., Madrid

Blanco, J.C. (1998) Mamíferos de España, vol. I & II. Editorial Planeta

Blanco-Aguiar JA, García JF, Ferreras P, Viñuela J, Villafuerte R (2001) Effect of game management on artificial nest predation in central Spain. En 25th International Union of Game Biologists (IUGB) and the 9th International Symposium Perdix, Limasol, Chipre

Blanco-Aguiar JA, Virgos E, Villafuerte R (2003) Perdiz Roja (Alectoris rufa). En: M. R. y D.M.J. C. (Eds.) Atlas de las aves reproductoras de España (Pp. 212–213). Dirección General de Conservación de la Naturaleza y Sociedad Española de Ornitología. Madrid, España

Blanco-Aguiar JA (2007) Variación espacial en la biología de la perdiz roja (Alectoris rufa): una aproximación multidisciplinar. Tesis Doctoral. Universidad Complutense de Madrid

Blas J, Perez-Rodriguez L, Bortolotti GR, Vinuela J, Marchant TA (2006) Testosterone increases bioavailability of carotenoids: insights into the honesty of sexual signalling. Proceedings of the National Academy of Sciences of the United States of America 103:18633–18637

Blondel J, Aronson J (1999) Biology and Wildlife of the Mediterranean Region. Oxford University Press, Oxford, UK

Page 168: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

167

Boitani L, Fuller T (2000) Research Techniques in Animal Ecology Methods: Controversies and Consequences. Columbia University Press, New York

Boitiani L, Ciucci P, Raganella-Pelliccioni E (2010) Ex-post compensation payments for wolf predation on livestock in Italy: a tool for conservation? Wildlife Research 37: 722–730

Borralho R, Rego F, Vaz-Pinto P (1996) Is driven transect sampling suitable for estimating red-legged partridge Alectoris rufa densities? Wildlife Biology 2: 259–268

Boza MD (2002) El trampeo y demás artes de caza tradicionales en la Península Ibérica. Editorial Hispano Europea S.A, Barcelona

Brand CJ, Keith LB, Fisher CA (1976) Lynx responses to changing snowshoe hare densities in central Alberta. Journal of Wildlife Management 40: 416–428

Braña F, Del Campo JC (1980) Estudio de la dieta del zorro (Vulpes vulpes L.), en la mitad occidental de la Cordillera Cantábrica. Boletín Ciencias Naturale I.D.E.A. 26: 135–146

Brook LA, Johnson CN, Ritchie EG (2012) Effect of predator control on behavior of an apex predator and indirect consequences for mesopredator suppression. Journal of Applied Ecology 49: 1278–1286

Buitron D (1988) Female and male specialization in parental care and its consequences in black-billed magpies. Condor 90:29–39

Bur MT, Stapanian MA, Bernhardt G, Turner MW (2008) Fall diets of Red-breasted Merganser (Mergus serrator) and Walleye (Sander vitreus) in Sandusky Bay and adjacent waters of western lake Erie. American Midland Naturalist 159: 147–161

Burnham KP, Anderson RR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New York

Burnham KP, Anderson RR, Laake JL (1980) Estimation of density from line transect sampling of biological populations. Wildlife Monographs 72: 1–202

Burnham KP, Anderson DR (2002) Model selection and multimodel inference.2nd edn. New York: Springer

Calvete C, Estrada R, Villafuerte R, Osacar JJ, Lucientes J (2002) Epidemiology of viral haemorrhagic disease (VHD) and myxomatosis in free-living population of wild rabbits. Veterinary Record 150: 776–782

Calvete C, Estrada R, Angulo E, Cabezas-Ruíz S (2004) Habitat factors related to wild rabbit conservation in an agricultural landscape. Landscape Ecology 19: 531–542

Page 169: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

168

Calviño F, Canals JLS, Bas S, De Castro A, Guitián J (1984) Régimen alimenticio del zorro (Vulpes vulpes L.) en Galicia, Noroeste de la Península Ibérica. Boletín Estación Central Ecología 13: 83–90

Calzada J (2000) Impacto de la Depredación y Selección de Presa del Lince y el Zorro Sobre el Conejo. Tesis Doctoral. Universidad de León

Capinera JL (2010) Insects and Wildlife: Arthropods and their Relationships with Wild Vertebrate Animals.Wiley-Blackwell, Oxford, UK

Carvalho JC (2001) Distribuçao e abundancia do Coelho-bravo: influência da qualidade do habitat e dos predadores. Disertação para obtenção do Grau de Mestre em Ciências do Ambiente. Universidade do Minho. Braga

Carvalho JC, Gomes P (2004) Foods habits and trophic niche overlap of the red fox, European wild cat and common genet in the Peneda-Gerês National Park. Journal of Zoology London 263: 275–283

Carvalho JC, Cardoso P, Crespo LC, Henriques S, Carvalho R, Gomes P (2011) Biogeographic patterns of spiders in coastal dunes along a gradient of mediterraneity. Biodiversity and Conservation 4: 873–894

Casanovas JG, Barrull J, Mate I, Zorrilla JM, Ruiz-Olmo J, Gosálbez J, Salicru M (2012) Shaping carnivore communities by predator control:competitor release revisited. Ecological Research 27: 603–614

Casas F (2008) Gestión agraria y cinegética: efectos sobre la perdiz roja (Alectoris rufa) y aves esteparias protegidas. Tesis Doctoral. Universidad de Castilla La Mancha

Castroviejo J, Palacios F, Garzón J, Cuesta L (1975) Sobre la alimentación de los cánidos ibéricos. XII Congress of the IUGB, Lisboa (Portugal)

Caut S, Casanovas JG, Virgós E, Lozano J, Witmer GW, Courchamp F (2007) Rats dying for mice: Modelling the competitor release effect. Austral Ecology 32: 858–868

Cavallini P, Lovari S (1994) Home range, habitat selection and activity of the red fox in a Mediterranean coastal ecotone. Acta Theriologica 39: 279–287

Chacarov N, Krüger O (2010) Mesopredator release by an emergent superpredator: A natural experiment of predation in a three level guild. PLoS ONE 5(12): e15229

Chapman RF (1998) The Insects: Structure and Function. Cambridge University Press, Cambridge, UK

Chavez AS, Gese EM (2006) Landscape Use and Movements of Wolves in Relation to Livestock in a Wildland–Agriculture Matrix. Journal of Wildlife Management 70: 1079–1086

Chinery, M (1997) Guía de campo de los insectos de España y de Europa. Ediciones Omega, S.A., Barcelona

Page 170: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

169

Chiron F, Julliard R (2007) Responses of songbirds to magpie reduction in an urban habitat. Journal of Wildlife Management 71: 2624–2631

Chiron F, Julliard R (2013) Assessing the effects of trapping on pest bird species at the country level. Biological Conservation 158: 98–106

Ciuti S, Northrup JM, Muhly TB, Simi S, Musiani M, Pitt JA, Boyce MS (2012) Effects of humans on behaviour of wildlife exceed those of natural predators in a landscape of fear. Plos One 7: e50611

Clavero M, Prenda J, Delibes M (2003) Trophic diversity of the otter (Lutra lutra L.) in temperate and Mediterranean freshwater habitats. Journal of Biogeography 30: 761–769

Close B, Banister K, Baumans U, Bernoth EM, Bromage N, Bunyan J (1996) Recommendations for euthanasia of experimental animals, Part 1. Laboratory Animals 30: 293–316

Close B, Banister K, Baumans U, Bernoth EM, Bromage N, Bunyan J, Erhardt W, Flecknell P (1997) Recommendations for euthanasia of experimental animals: Part 2. Laboratory Animals 31:1–32

Conferencia Sectorial de Medio Ambiente (2011) Directrices técnicas para la captura de especies cinegéticas predadoras: homologación de métodos de captura y acreditación de usuarios. Documento aprobado por la Conferencia Sectorial de Medio Ambiente, 13 de julio de 2011

Conover M (2002) Resolving human-wildlife conflicts: the science of wildlife damage management. Lewis Publisher, New York. 418 pp

Contesse P, Hegglin D, Gloor S, Bontadina F, Deplazes P (2004) The diet of urban foxes (Vulpes vulpes) and the availability of anthropogenic food in the city of Zurich, Switzerland. Mammalian Biology 69: 81–95

Corbelle-Rico EJ, Rico-Boquete E (2008) La actividad de las juntas de extinción de animales dañinos en España. En Actas de resumen del IX Congreso de la Asociación de Historia Contemporánea, Pag. 1944–1968, Universidad de Murcia, Murcia, España

Cove MV, Jones BM, Bossert AJ, Clever DR, Dunwoody RK, White BC, Jackson VL (2012) Use of camera traps to examine the mesopredator release hypothesis in a fragmented Midwestern landscape. American Midland Naturalist 168: 456–465

Crooks KR, Soulé ME (1999) Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400: 563–566

Daan S, Tinbergen JM (1997) Adaptation of life histories. En: Krebs JR, Davies NB (Eds.) Behavioural Ecology: an Evolutionary Approach, 311–333. Wiley-Blackwell, Oxford, UK

Davis ML, Kelly MJ, Stauffer DF (2011) Carnivore co-existence and habitat use in the Mountain Pine Ridge Forest Reserve, Belize. Animal Conservation 14: 56–65

Page 171: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

170

Day MG (1966) Identification of hair and feather remains in the gut a faeces of stoats and weasels. J Zool 148:201–217

De Cavalho Alves AS (1995) A Raposa (Vulpes vulpes silacea Miller, 1907) na Regiao de Onor no Parque Natural de Montesinho. Ecologia Trófica, Uso do Espaço e Uso do Tempo. Relatorio de estágio para obtençao da licenciatura em recursos faunísticos e ambiente. Facultade de Ciências da Universidade de Lisboa, (Portugal)

Delibes M, Hiraldo F (1981) The rabbit as prey in the Iberian Mediterranean ecosystem. En: Myers K, MacInnes CD (Eds.) Proceedings of the I World Lagomorph Conference. University of Guelph, Ontario, Canada. Pp 614–622

Delibes-Mateos M (2006) Relaciones entre los cambios poblacionales del conejo, la gestión cinegética, el hábitat y los depredadores: implicaciones para la conservación. Tesis Doctoral, Universidad de Castilla-La Mancha

Delibes-Mateos M, Redpath S, Angulo E, Ferreras P, Villafuerte R (2007) Rabbits as a keystone species in southern Europe. Biological Conservation 137: 149 –156

Delibes-Mateos M, Delibes M, Ferreras P, Villafuerte R (2008a) Key role of European rabbits in the conservation of the western Maditerranean basin hot spot. Conservation Biology 22: 1106–1117

Delibes-Mateos M, Fernández de Simón J, Ferreras P, Villafuerte R (2008b) Feeding responses of the red fox (Vulpes vulpes) to different wild rabbit (Oryctolagus cuniculus) densities: a regional approach. European Journal of Wildlife Research 54: 71–78

Delibes-Mateos M, Ferreras P, Villafuerte R (2008c) Rabbit populations and game management: the situation after 15 years of rabbit haemorrhagic disease in central-southern Spain. Biodiversity and Conservation 17: 559–574

Delibes-Mateos M, Ferreras P, Villafuerte R (2009) European rabbit populations trends and associated factors: a review of the situation in the Iberian Peninsula. Mammal Review 39: 124–140

Delibes-Mateos M, Díaz-Fernández S, Ferreras P, Viñuela J, Arroyo B (2013) The role of economic and social factors driving predator control in small game estates in central Spain. Ecology and Society 18(2): 28

Delibes-Mateos M, Díaz-Ruiz F, Caro J, Ferreras P (2014) Activity patterns of the vulnerable guiña (Leopardus guigna) and its main prey in the Valdivian rainforest of southern Chile. 79: 393–397

Dell’Arte GL, Laaksonen T, Norrdahl K, Korpimaki E (2007) Variation in the diet composition of a generalist predator, the red fox, in relation to season and density of main prey. Acta Oecologica 31: 276–281

Devesa JA (1991) Las gramineas de Extremadura. Grasses of Extremadura, Spain. University of Extremadura, Badajoz (Spain). 358 pp

Page 172: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

171

Díaz–Ruiz F, Delibes–Mateos M, García–Moreno JL, López–Martín JM, Ferreira C, Ferreras P (2013) Biogeographical patterns in the diet of an opportunistic predator, the red fox Vulpes vulpes in the Iberian Peninsula. Mammal Review 43: 59–70

Díaz-Fernández S, Viñuela J, Arroyo B. (2012) Harvest of red-legged partridge in central Spain. J.Wildlife Manage 76:1354–1363

Díaz-Ruiz F, García JT, Pérez-Rodríguez L, Ferreras P (2010) Experimental evaluation of live cage-traps for black-billed magpies Pica pica management in Spain. European Journal of Wildlife Research 56: 239–248

Díaz–Ruiz F, Delibes–Mateos M, García–Moreno JL, López–Martín JM, Ferreira C, Ferreras P (2013) Biogeographical patterns in the diet of an opportunistic predator, the red fox Vulpes vulpes in the Iberian Peninsula. Mammal Review 43: 59–70

Díaz-Ruiz F, Ferreras P (2013) Conocimiento científico sobre la gestión de depredadores generalistas en España: el caso del zorro (Vulpes vulpes) y la urraca (Pica pica). Ecosistemas 22: 40–47

Di Bitetti MS, De Angelo CD, Di Blanco YE, Paviolo A (2010) Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecologica 36: 403–412

Dickman CR (2010) The impacts and management of foxes Vulpes vulpes in Australia. Mammal Review 40: 181–211

Dos Santos Correia MP (1993) A comunidade de carnívoros da Reserva Natural da Serra da Malcata: uma partilha de recursos. Relatorio de estágio para obtençao da licenciatura em recursos faunísticos e ambiente. Facultade de Ciências da Universidade de Lisboa, Lisboa

Dos Santos Marquez IJ (2003) Study of the interactions between the red fox (Vulpes vulpes Linnaeus) and the free-roaming cat (Felis catus, Linnaeus) in the wood of Valdelatas, Madrid. Estágio Professionalizante da Licenciatura em Biologia Aplicada a os Recursos Animais, variante Terrestres. Facultade de Ciências, Universidade do Lisboa, Lisboa

Duarte J, Vargas JM (2001) Son selectivos los controles de predadores en los cotos de caza? Galemys 13: 1–9

Duarte J., Farfán MA, Fa JE, Vargas JM (2012) How effective and selective is traditional Red Fox snaring? Galemys 24: 1–11

Dudús L, Zalewski A, Koziol O, Jakubiec Z, Król N (2014) Habitat selection by two predators in an urban area: The stone martenand red fox in Wrocław (SWPoland). Mammalian Biology 79: 71–76

Eden SF (1989) The social organisation of non-breeding magpies Pica pica. Ibis 131: 141–153

Page 173: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

172

Elbroch LM, Wittmer HU (2013) The effects of puma prey selection and specialization on less abundant prey in Patagonia. Journal of Mammalogy 94: 259–268

Eriksen A, Wabakken P, Zimmermann B, Andreassen HP, Arnemo JM, Gundersen H, Liberg O, Linnell J, Milner JM, Pedersen HC, Sand H, Solberg E, Storaas T (2009) Encounter frequencies of GPS-collared wolves and moose in a Scandinavian wolf territory. Ecological Research 24: 547–557

Eriksen A, Wabakken P, Zimmermann B, Andreassen HP, Arnemo JM, Gundersen H, Liberg O, Linnell J, Milner JM, Pedersen HC, Sand H, Solberg E, Storaas T (2011) Activity patterns of predator and prey: a simultaneous study of GPS-collared wolves and moose. Animal Behavior 81: 423–431

Erpino MJ (1968) Age determination in the Black-billed Magpie. Condor 70:91–92

Esmeriz JP (2001) Ecologia alimentar da raposa (Vulpes vulpes Linnaeus 1758) no Parque Natural da Serra da Estrela. Disertaçao de Mestrado em Ecologia Aplicada apresentada à Facultade de Ciências da Universidade do Porto, Porto

Estrada A, Caro J, Beja P, Borralho L, Casas F, Delibes-Mateos M, Díaz-Fernández S, Gordinho L, Reino L, Viñuela J, Arroyo B (2012) Does hunting management affect non-game bird species? En: Proceedings of the International Conference on Hunting for Sustainability: Ecology, Economics and Society. IREC, Ciudad Real, Pp. 97

European Union–Canada–Russian Federation (1998) Agreement on International Humane Trapping Standards between the European Community, Canada and the Russian Federation. Official Journal L 42 of 14 February 1998, 43–57

Fedriani JM (1996) Dieta anual del zorro Vulpes vulpes en dos hábitats del Parque Nacional de Doñana. Doñana Acta Vertebrata 23: 143–152

Fedriani JM, Ferreras P, Delibes M (1998) Dietary response of the Eurasian badger, Meles meles, to a decline of its main prey in the Doñana National Park. Journal of Zoology 245: 214–218

Fedriani JM, Palomares F, Delibes M (1999) Niche relations among three sympatric Mediterranean carnivores. Oecología 121: 138–148

Fedriani JM, Delibes M. (2009) Seed dispersal in the Iberian pear, Pyrus bourgaeana: a role for infrequent mutualists. Ecoscience, 16: 311–321

Fernández JM, Ruiz de Azua N (2005) Dieta y solapamiento trófico primaveral del zorro rojo Vulpes vulpes y de Martes sp. en simpatría en Álava (norte de España). Ecología 19: 167–182

Fernández de Simón J (2013) Predation and the recovery of European rabbit populations in central-southern Iberian Peninsula. An assessment of the predator pit hypothesis. Tesis Doctoral. Universidad de Castilla la Mancha

Fernández-Juricic E, Jokimäki J, McDonald JC, Melado F, Toledano A, Mayo C, Martín B, Fresneda I, Martín V (2004) Effect of opportunistic predation on

Page 174: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

173

antipredator bahavioural responses in a guild ground foragers. Oecologia 140:183–190

Fernández-Olalla M (2011) Seguimiento y gestión de sistemas depredador presa: aplicación a la conservación de fauna amenazada. Tesis Doctoral. Universidad Politécnica de Madrid, Madrid

Ferreras P, Aldama JJ, Beltrán JF, Delibes M (1994) Immobilization of the endangered iberian lynx with Xylazine and Ketamine-hydroclhloride. Journal of Wildlife Diseases 30: 65–68

Ferreras P, Terriza J, López B, Reglero M, Castro F (2003) Homologación de métodos de control de predadores en Castilla la Mancha: bases científicas. Convenio de Colaboración entre la Consejería de Agricultura y Medio Ambiente de la Junta de Comunidades de Castilla la Mancha y el IREC-CSIC. Informe inédito

Ferreras P, Villafuerte R, Mateo A (2006) Incidencia de la depredación sobre nidos de perdiz roja (Alectoris rufa) en Navarra. Departamento de Medio Ambiente, Ordenación del Territorio y Vivienda del Gobierno de Navarra- IREC-CSIC. Informe inédito

Ferreras P, Luna S, Díaz-Ruiz F (2007) Evaluación de la selectividad y eficacia de métodos de control de depredadores para urraca y zorros en Castilla-La mancha. Convenio de Colaboración entre la Consejería de Agricultura y Medio Ambiente de la Junta de Comunidades de Castilla-La Mancha y el IREC-CSIC. Informe inédito

Ferreras, P., Buenestado, P., Díaz-Ruiz, F. and Fernández de Simon (2009) Desarrollo de índices de abundancia de depredadores generalistas y niveles para su control en Castilla-La Mancha. Convenio de Colaboración entre la Consejería de Agricultura y Medio Ambiente de la Junta de Comunidades de Castilla la Mancha y el IREC-CSIC. Informe inédito

Ferreras P, Mateo-Moriones A, Villafuerte R (2010) Influencia de la depredación sobre la perdiz roja en Navarra. Gobierno de Navarra, IREC-CSIC. Informe Final Inédito

Ferreras P, Travaini A, Zapata SC, Delibes M (2011) Short-term responses of mammalian carnivores to a sudden collapse of rabbits in Mediterranean Spain. Basic and Applied Ecology 12: 116–124

Ferreira C, Touza J, Rouco C, Díaz-Ruíz F, Fernández de Simón J, Ríos-Saldaña CA, Ferreras P, Villafuerte R, Delibes-Mateos M (2013) Habitat management as a generalized tool to boost European rabbit (Oryctolagus cuniculus) populations in the Iberian Peninsula: A cost-effectiveness analysis. Mammal Review 44: 30–43

Fleming PJS, Allen LR, Berghout MJ, Meek PD, Pavlov PM, Stevens P, Strong K, Thompson JA, Thompson PC (1998) The performance of wild-canids traps in Australia, efficiency, selectivity and trap-related injuries. Wildlife Research 25: 327–338

Page 175: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

174

Foster VC, Sarmento P, Sollmann R, Tôrres N, Jácomo ATA, Negrôes N, Fonseca C, Silveira L (2013) Jaguar and puma activity patterns and predator-prey interactions in four Brazilian biomes. Biotropica 45: 373–379

Fournier DA, Skaug HJ, Ancheta J, Ianelli J, Magnusson A, Maunder M, Nielsen A, Sibert J (2012) AD Model Builder, using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software 27: 233–249

Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. Journal of Avian Biology 30: 116–121

Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annual Review of Ecology and Systematics 19: 207–233

Gálvez MR (2004). Régimen jurídico de la actividad cinegética en España: análisis de las disposiciones autonómicas e intervención pública. Tesis Doctoral. Universidad de Málaga.

García JT, García FJ, Alda F, González JL, Aramburu MJ, Cortés Y, Prieto B, Pliego B, Pérez M, Herrera J, García-Román L (2012) Recent invasion and status of the raccoon (Procyon lotor) in Spain. Biological Invasions 14: 305–1310

Garrote G, Perez de Ayala R, Pereira P, Robles F, Guzman N, García FJ, Iglesias MC, Hervás J, Fajardo I, Simón M, Barroso JL (2011) Estimation of the Iberian lynx (Lynx pardinus) population in the Doñana area, SW Spain, using capture–recapture analysis of camera-trapping data. European Journal of Wildlife Research 57: 355–362

Giller PS, Sangpradub N (1993) Predatory foraging behaviour and activity patterns of larvae of two species of limnephilid cased caddis. Oikos 67: 351–357

Gomes A, Pereira J, Bugoni L (2009) Age-specific diving and foraging behavior of the Great grebe (Podicephorus major). Waterbirds 32:149–156

Gómez-Villamandos RJ (2003) Anestesia, analgesia y eutanasia. En: Bienestar Animal, Pp. 37–42

González LM, Oria J, Sánchez R, Margalida A, Aranda A, Prada L, Caldera J, Molina, JI (2008) Status and habitat changes in the endangered Spanish Imperial Eagle Aquila adalberti population during 1974–2004: implications for its recovery. Bird Conservation International 18: 242–259

González-Prat F (1995a) Resultados preeliminares de la dieta del zorro (Vulpes vulpes L.) en Cataluña. II Jornadas de Conservación y Estudio de los Mamíferos (SECEM), Soria

González-Prat F (1995b) Importancia del zorro (Vulpes vulpes L.) en la distribución del palmito (Chamaerops humilis) en la cordillera litoral catalana. II Jornadas de Conservación y Estudio de los Mamíferos (SECEM), Soria

Page 176: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

175

Gooch S, Baillie SR, Birkhead TR (1991) Magpie Pica pica and songbirds populations. Restrospective investigation of trends in population density and breeding success. Journal of Applied Ecology 28: 1068–1086

Goodrich JM, Seryodkin I, Miquelle DG, Bereznuk SL (2011) Conflicts between Amur (Siberian) tigers and humans in the Russian Far East. Biological Conservation 144: 584–592

Gompper ME, Kays RW, Ray JC, Lapoint SD, Bogan DA, Cryan JR (2006) A comparison of noninvasive techniques to survey carnivore communities in Northeastern North America. Wildlife Society Bulletin 34: 1142–1151

Gortázar C (1999) Ecología y Patología del Zorro (Vulpes vulpes, L.) en el Valle Medio del Ebro. Consejo de Protección de la Naturaleza de Aragón, Zaragoza

Goszczynski J, Jedrzejewska B, Jedrzejewski W (2000) Diet composition of badgers (Meles meles) in a pristine forest and rural habitats of Poland compared to other European populations. Journal of Zoology 250: 495–505

Graham K, Beckerman AP, Thirgood S (2005) Human-predator-prey conflicts: ecological correlates, prey losses and patterns of management. Biological Conservation 122: 159–171

Groom DW (1993) Magpie Pica pica predation on Blackbird Turdus merula nests in urban areas. Bird Study 40: 55–62

Guitián J, Callejo A (1983) Structure dúne communaute de carnivores dans la cordillere cantabrique occidentale. Terre Vie 37: 145–161

Guitián J, Munilla I (2010) Responses of mammal dispersers to fruit availability: rowan (Sorbus aucuparia) and carnivores in mountain habitats of northern Spain. Acta Oecologica 36: 242–247

Hadjisterkotis N (2003) The effect of corvid shooting on the populations of owls, kestrels and cuckoos in Cyprus, with notes on corvid diet. Zeitschrift für Jagdwissenschaft 49:50–60

Halle S (2000) Ecological relevance of daily activity patterns. En: Halle S, Stenseth NC (Eds.) Activity patterns in small mammals: An ecological approach. Springer, New York, Pp. 67–90

Hanski I, Hansson L, Henttonen H (1991) Specialist predators, generalist predators, and the microtine rodent cycle. Journal of Animal Ecology 60: 353–367

Harding EK, Doak DF, Albertson JD (2001) Evaluating the effectiveness of predator control: the non-native red fox as a case study. Conservation Biology 15: 1114–1122

Harihar A, Pandav B (2012) Influence of connectivity, wild prey and disturbance on occupancy of tigers in the human-dominated western Terai Arc landscape. PLos ONE 7(7): e40105

Page 177: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

176

Hartová-Nentvichová M, Šálek M, Červený J, Koubek P (2010) Variation in the diet of the red fox (Vulpes vulpes) in mountain habitats: effects of altitude and season. Mammalian Biology 75: 334–340

Harrington LA, Harrington AL, Macdonald DW (2009). The smell of new competitors, the response of American mink, Mustela vison, to the odours of otter, Lutra lutra and polecat, M. putorius. Ethology 115: 421–428

Harris S, Soulsbury C, Iossa G (2006) A scientific review on proposed humane trapping standards in Europe. The ISO Standards and the European proposal for a proposed Directive on humane trapping standards. University of Bristol, School of Biological Sciences, Bristol, United Kingdom

Headland TN, Greene HW (2011) Hunter–gatherers and other primates as prey, predators, and competitors of snakes. Proceedings of the National Academy of Sciences of the United States of America 108: 1470–1474

Helldin JO, Liberg O, Gloersen G (2006) Lynx (Lynx lynx) killing red foxes (Vulpes vulpes) in boreal Sweden – frequency and population effects. Journal of. Zoology 270: 657–663

Henke SE, Bryant FC (1999) Effects of coyote removal on the faunal community in western Texas. Journal of Wildlife Management 63: 1066–1081

Henry C, Poulle ML, Roeder JJ (2005) Effect of sex and female reproductive status on seasonal home range size and stability inrural red foxes (Vulpes vulpes). Ecoescience 12: 202–209

Hernandez M, Margalida A (2009) Poison-related mortality effects in the endangered Egyptian vulture (Neophron percnopterus) population in Spain. European Journal of Wildlife Research 55: 415–423

Herranz J, Yanes M, Suárez F (1999) Efecto de los predadores sobre la caza menor y evaluación de sistemas selectivos para regular los niveles de predación. Informa final. CSIC, Madrid. Pp 318

Herranz J (2000) Efectos de la depredación y del control de depredadores sobre la caza menor en Castilla-La Mancha. Tesis Doctoral. Universidad Autónoma de Madrid

Herrera CM (1976) A trophic diversity index for presence–absence food data. Oecologia 25: 187–191

Heydon MJ, Reynolds JC (2000) Demography of rural foxes (Vulpes vulpes) in relation to cull intensity in three contrasting regions of Britain. Journal of Zoology 251: 265–276

Heydon MJ, Reynolds JC, Short MJ (2000) Variation in abundance of foxes (Vulpes vulpes) between three regions of rural Britain, in relation to landscape and other variables. Journal of Zoology 251: 253–264

Page 178: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

177

Hill RA, Dunbar RIM (2002) Climatic determinants of diet and foraging behaviour in baboons. Evolutionary Ecology 16: 579–593

Hines JE, Mackenzie D (2013) Presence Softwere 5.8

Hiraldo F, Delibes M, Calderón J (1979) El quebrantahuesos Gypaetus barbatus (L.) Sistemática, taxonomía, biología, distribución y protección. Monografías 22. Ministerio de Agricultura - Instituto Nacional para la Conservación de la Naturaleza, Sevilla

Högstedt G (1980) Prediction and test of the effects of interspecific competition. Nature 283: 64–66

Holt AR, Davies ZG, Tyler C, Staddon S (2008) Meta-analysis of the effects of predation on animal prey abundance: evidence from UK vertebrates. PLoS ONE 3:e2400

Hounsome T, Delahay R (2005) Birds in the diet of the Eurasian badger Meles meles: a review and meta-analysis. Mammal Review 35: 199–209

Hudson P, Dobson AP, Newborn D (1992) Do parasites make prey vulnerable to predation? Red grouse and parasites. Ecology 61: 681–692

Inskip C, Zimmerman A (2009) Human-felid conflict: a review of patterns and priorities worldwide. Oryx 43: 18–34

InstitutoGeografico Nacional (2013) CORINE land-cover 2006 and satellite orthophotos. http://www.ign.es/

International Organization for Standardization (1999) TC191. Animal (mammal) traps. Part 5, methods for testing restraining traps. International Standard ISO/DIS 10990–5. International Organization for Standardization, Geneva, Switzerland

Iossa G, Soulsbury CD, Harris S (2007) Mammal trapping: a review of animal welfare standards of killing and restraining traps. Animal Welfare 16: 335–352

Janko C, Schröder W, Linke S, König A (2012) Space use and resting site selection of red foxes (Vulpes vulpes) living near villages and small towns in Southern Germany. Acta Theriologica 57: 245–250

Jerosch S, Götz M, Klar N, Roth M (2010) Characteristics of diurnal resting sites of the endangered European wildcat (Felis silvestris silvestris), implications for its conservation. Journal for Nature Conservation 18: 45–54

Jiguet F (2002) Arthropods in diet of Little Bustards Tetrax tetrax during the breeding season in western France. Bird Study 49:105–109

Johnson A, Vongkhamheng C, Saithongdam T (2009) The diversity, status and conservation of small carnivores in a montane tropical forest in northern Laos. Oryx 43: 626–633

Page 179: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

178

Jorgenson JW, Novonty M, Carmack M, Copland GB, Wilson S, Katona S, Whitten WK (1978) Chemical scent constituents in the urine of the red fox (Vulpes vulpes) during the winter season. Science 199: 796–798

Junta de Andalucía (2010) Estandarización de métodos de captura no crueles de acuerdo con la norma ISO10990-5. Informe Inédito Final. Consejería de Medio Ambiente. Junta de Andalucía

Kareiva P, Marvier M (2012) What is Conservation Science? BioScience 62: 962–969

Kauhala K, Helle P, Helle E (2000) Predator control and the density and reproductive success of grouse populations in Finland. Ecography 23: 161–168

Kay B, Gifford E, Perry R, Van de Ven R (2000) Trapping efficiency for foxes (Vulpes vulpes) in central New South Wales: age and sex biases and the effects of reduced fox abundance. Wildlife Research 27: 547–552

Keedwell RJ, Maloney RF, Murray DP (2002) Predator control for protecting kaki (Himantopus novaezelandiae) lessons from 20 years of management. Biological Conservation 105: 369–374

Kelly MJ, Holub EL (2008) Camera trapping of carnivores: trap success among camera types and across species, and habitat selection by species, on Salt Pond Mountain, Giles County, Virginia. Northeast Naturalits 15: 249–262

Kidawa D, Kowalczyk R (2011) The effects of sex, age, season and habitat on diet of the red fox Vulpes vulpes in northeastern Poland. Acta Theriol. 56: 209–218

Kitchen AM, Gese EM, Schauster ER. (2000) Changes in coyote activity patterns due to reduced exposure to human persecution. Canadian Journal of Zoology 78: 853–857

Kjellander P, Nordstrom J (2003) Cyclic voles, prey switching in red fox, and roe deer dynamics – a test of the alternative prey hypothesis. Oikos 101: 338–344

Klare U, Kamler JF, Macdonald DW (2011) A comparison and critique of different scat-analysis methods for determining carnivore diet. Mammal Review 41: 294–312

Knauer F, Küchenhoff H, Pilz S (2010) A statistical analysis of the relationship between red fox Vulpes vulpes and its prey species (grey partridge Perdix perdix, brown hare Lepus europaeus and rabbit Oryctolagus cuniculus) in Western Germany from 1958 to 1998. Wildlife Biology 16: 56–65

Kopij G (2005) Diet of some insectivorous passerines in semi-arid regions of South Africa. Ostrich 76:85–90

Krebs CJ (2002) Beyond population regulation and limitation. Wildlife Research 29: 1–10

Kronfeld-Schor N, Dayan T (2003) Partitioning of time as an ecological resource. Annual Review of Ecological Systems 34: 153–181

Page 180: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

179

Kryštofková M, Fousová P, Exnerová A (2011) Nestling diet of the common magpie (Pica pica) in urban and agricultural habitats. Ornis Fennica 88: 138–146

Langley PJW, Yalden DW (1977) The decline of rarer carnivores in Great Britain during the nineteenth century. Mammal Review 7: 95–16

Le Vaillant M, Le Bohec C, Prud’Homme O, Wienecke B, Le Maho Y, Kato A, Ropert-Coudert Y (2013) How age and sex drive the foraging behaviour in the king penguin. Marine Biology 160:1147–1156

Levi T, Wilmers CC (2012) Wolves-coyotes-foxes: a cascade among carnivores. Ecology 93: 921–929

Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Canadian Journal of Zoology 68: 619–640

Linkie M, Ridout MS (2011) Assessing tiger-prey interactions in Sumatran rainforests. Journal of Zoology 284: 224–229

Liu Y, Wang SY, Shi L (2011) Effects of age and sex on diet composition of Phrynocephalus grumgrzimailoi. Chinese Journal of Zoology 46:111–117

Ljung PE, Widemo F, Ericsson G (2014) Trapping in predator management: catching the profile of trap users in Sweden. European Journal of Wildlife Research 60: 681–689

Lodé T (1997) Trophic status and feeding habits of the European Polecat (Mustela putorius L. 1758). Mammal Review 27: 177–184

Long RA, MacKay P, Zielinski WJ, Ray JC (2008) Noninvasive survey methods for carnivores. Island Press.Washington.

Long RA, Donovan TM, MacKay P, Zielinsky WJ, Buzas JS (2011) Predicting carnivore occurrence with noninvasive survey and occupancy modeling. Landscape Ecology 26: 327–340

López G, López-Parra M, Garrote G, Fernández L, Rey-Wamba T, Arenas-Rojas R, García-Tardío M, Ruiz G, Zorrilla T, Moral M, Simón MA (2014) Evaluating mortality rates and casualties in a critically endangered felid across its whole distribution range. European Journal of Wildlife Research 60: 359–366

López-Bao JV, Sazatornil V, Llaneza L, Rodríguez A (2013). Indirect effects on heathland conservation and wolf persistence of contradictory policies that threaten traditional free-ranging horse husbandry. Conservation Letters 6:448–455

López-Martín JM (1999) Inedited data from this author

López-Martín JM (2010) Zorro – Vulpes vulpes. En: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Cassinello, J. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/

Page 181: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

180

Loureiro F, Bissonete JA, Macdonald DW, Santos-Reis M (2009) Temporal variation in the availability of Mediterranean food resources: do badgers Meles meles track them? Wildlife Biology 15: 197–206

Lozano J, Casanova JG, Cabezas-Díaz S, Virgós E, Mangas JG (2006a) El control de depredadores en España, más que discutible. Quercus 239: 80–82

Lozano J, Moleón M, Virgós E (2006b) Biogeographical patterns in the diet of the wildcat, Felis sylvestris Schreber, in Eurasia: factors affecting the trophic diversity. Journal of Biogeography 33: 1076–1085

Lozano J, Casanovas JG, Virgós E, Zorrilla JM (2013) The competitor release effect applied to carnivore species: how red foxes can increase in numbers when persecuted. Animal Biodiversity and Conservation36.1: 37–46

Lozano J, Casanova JG, Cabezas-Díaz S, Virgós E, Mangas JG (2006) El control de depredadores en España, más que discutible. Quercus 239: 80–82

Lozano J, Casanovas JG, Virgós E, Zorrilla JM (2013) The competitor release effect applied to carnivore species: how red foxes can increase in numbers when persecuted. Animal Biodiversity and Conservation 36.1: 37–46

Luque-Larena JJ, Mougeot F, Viñuela J, Jareño D, Arroyo L, Lambin X, Arroyo B. (2013) Recent large-scale range expansión and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic and Applied Ecology 14: 432–441

Macdonald DW (1979) Some observations and field experiments on the urine marking behaviour of the red fox, Vulpes vulpes L. Zeitschrift fur Tierpsychologie 51: 1–22

Macdonald DW, Buesching CD, Stopka P, Henderson J, Ellwood SA, Baker SE (2004) Encounters between two sympatric carnivores: red foxes (Vulpes vulpes) and European badgers (Meles meles). Journal of Zoology 263: 385–392

Macdonald DW, Reynolds JC (2004). Red Fox. En: Sillero-Zubiri C, Hoffmann M, MacDonald DW (Eds.) (2004) Canids: Foxes, Wolves, Jackals and Dogs. IUCN/SSC Canid Specialist Group, Gland, Switzerland and Cambridge, UK, Pp.129–136

Mackenzie D, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilitiesare less than one. Ecology 83: 2248–2255

Mackenzie D, Nichols JD (2004) Occupancy as a surrogate for abundance estimation. Animal Biodiversityand Conservation 27: 461–467

Mackenzie D, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic Press, Oxford

Madden CF, Arroyo B, Amar A (en prensa) A review of the impacts of crows, ravens and Eurasian Magpies on bird productivity and abundance. Ibis

Page 182: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

181

Maguire GS,D, Stojanovic D, Weston MA (2009) Conditioned taste aversion reduces fox depredation on model eggs on beaches. Wildlife Research 36: 702–708

Mangas JG, Lozano J, Cabezas-Díaz S, Virgós E (2008) The priority value of scrubland habitats for carnivoreconservation in Mediterranean ecosystems. Biodiversity and Conservation17: 43–51

Mañosa S (1994) Goshawk diet in a Mediterranean area of northeastern Spain. Journal of Raptor Research 28: 84–92

Marks CA (2010) Haematological and biochemical responses of red foxes (Vulpes vulpes) to different capture methods and shooting. Animal Welfare 19: 223–234

Márquez C, Vargas JM, Villafuerte R, Fa JE (2013) Risk mapping of illegal poisoning of avian and mammalian predators. The Journal of Wildlife Management 77: 75–83

Marti R, Del Moral JC (Eds.) (2003) Atlas de las aves reproductoras de España. SEO/BirdLife y Direccion General de Conservacion de la Naturaleza. Madrid

Martín M (2008) Caracterització de la dieta de la guineu (Vulpes vulpes) al Parc del Garraf. En: V Trobada d’Estudiosos del Garraf. Diputació de Barcelona, Barcelona. Pp. 81–88

Martin J, Basille M, Van Moorter B, Kindberg J, Allaine D, Swenson JE (2010) Coping with human disturbance: Spatial and temporal tactics of the brown bears (Ursus arctos). Canadian Journal of Zoology 88: 875–883

Martínez JG (2011) Urraca – Pica pica. En: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Morales, M. B. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/

Martínez JG, Soler M, Soler JJ, Paracuellos M, Sánchez J (1992) Alimentación de los pollos de urraca (Pica pica) en relación con la edad y disponibilidad de presas. Ardeola 39: 35–48

Martínez-Abraín A, Crespo J, Jiménez J, Pullin A, Stewart G, Oro D (2008) Friend or foe: societal shifts from intense persecution to active conservation of top predators. Ardeola 55: 111–119

Martínez-Abraín A, Crespo J, Berdugo M, Gutiérrez L, Lafuente A, Mañas A, de Miguel JM (2013) Causes of human impact to protected vertebrate wildlife parallel long-term socio-economical changes in Spain. Animal Conservation 16: 286–294

Martínez de Castilla A, Martínez A (2004) ¿Es beneficioso controlar las urracas? Trofeo Diciembre 2004: 58–62

Masi S, Cipolletta C, Robbins MM (2009) Western lowland gorillas (Gorilla gorilla gorilla) change their activity patterns in response to frugivory. American Journal of Primatology 71: 91–100

Page 183: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

182

Mateo–Moriones A, Villafuerte R, Ferreras P (2012) Does fox control improve red–legged partridge (Alectoris rufa) survival? An experimental study in Northern Spain. Animal Biodiversity and Conservation 35: 395–404

Matos HM, Santos MJ, Palomares F,.Santos-Reis M (2009) Does riparian habitat condition influence mammalian carnivore abundance in Mediterraneanecosystems? Biodiversity and Conservation18: 373–386

Matthews SM, Beecham JJ, Quigley H, Greenleaf SS, Leithead HM (2006) Activity patterns of American black bears in Yosemite National Park. Ursus 17: 30–40

McCade RE, McCade TR (1984) Of slings and arrows: a historical retrospection. En: Halls LK, (Ed.) White-Tailed Deer: Ecology and Management. Pp. 19–72. Stackpole Books, Harrisburg

McCarthy MA, Moore JL, Morris WK, Parris KM, Garrard GE, Vesk PA, Rumpff L, Giljohann KM, Camac JS, Bau SS, Friend T, Harrison B, Yue B (2013) The influence of abundance on detectability. Oikos 122:717–726

McLeod SR, Saunders G (2014) Fertility control is much less effective than lethal baiting for controlling foxes. Ecological Modelling 273: 1– 10

Medina FM, Bonnaud E, Vidal E, Tershy BR, Zabaleta ES, Donlan CJ, Keitt BS, Corre ML, Horwath SV, Nogales M (2011) A global review of the impacts of invasive cats on island endangered vertebrates. Global Change Biology 17: 3503–3510

Millán J, Gortázar C, Tizzani P, Buenestado FJ (2002) Do helminths increase the vulnerability of released pheasants to fox predation? Journal of Helminthology 76: 225–229

Miller JR, Hobbs NT (2000) Recreational trails, human activity, and nest predation in lowland riparian areas. Landscape Urban Planing 50:227–236

Moberly RL,White PCL,Webbon CC, Baker PJ, Harris S (2004) Modelling the costs of fox predation and preventive measures on sheep farms in Britain. Journal of Environmental Management 70: 129–143

Monterroso P, Moreira P, Castro D, Nery F, Sarmento P (2006) Predação sobre coelho-bravo (Oryctolagus cuniculus) em ecossistemas Mediterrâneos. En: Ferreira C, Alves PC (Eds.) Gestao de populações de coelho-bravo (Oryctolagus cuniculus algirus), Federaçao Alentejana de Caçadores (Eds.). Pp. 49–79

Monterroso P, Alves PC, Ferreras P (2011) Evaluation of attractants for non-invasive studies of Iberian carnivore communities. Wildlife Research 38: 446–454

Monterroso P (2013) Ecological interactions and species coexistence in Iberian mesocarnivores communities. Tesis Doctoral, Universidad de Oporto, Portugal

Monterroso P, Alves PC, Ferreras P (2013) Catch me if you can: diel activity patterns of mammalian prey and predators. Ethology 119: 1044–1056

Page 184: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

183

Monteverde MJ, Piudo L (2011) Activity patterns of the culpeo fox (Lycalopex culpaeus magellanica) in a non-hunting area of northwestern Patagonia, Argentina. Mammal Study 36: 119–125

Musiani M, Paquet PC (2004) The practices of wolf persecution, protection, and restoration in Canada and the United States. BioScience 54: 50–60

Muñoz-Igualada J, Shivik JA, Domínguez FG, Lara J, González LM (2008) Evaluation of cage-traps and cable restraint devices to capture red foxes in Spain. Journal of Wildlife Management 72: 830–836

Muñoz-Igualada J, Shivik JA, Domínguez FG, González LM, Moreno AA, Olalla MF, García CA (2010) Traditional and new cable restraint systems to capture fox in central Spain. Journal of Wildlife Management 74: 181–187

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853–858

Narváez M, Blanco JC, Barrios L (2008) Estudio de los carnívoros predadores de la ZEPA de la Sierra Norte de Sevilla. En: Cuenca I, Menor A (Eds.) Investigación científica y conservación en el Parque Natural Sierra Norte de Sevilla, D.G. Sostenibilidad en la Red de Espacios Naturales, Consejería de Medio Ambiente, Junta de Andalucía. Pp. 241–254

Negrões NM (2000) Conflicto Homem-Raposa: o exemplo da região de Castro Laboreiro. Disertação para prestação de provas de Mestrado em Ciências do Ambiente-Ramo Qualidade Ambiental. Departamento de Biologia, Universidade do Minho, Braga

Newsome AE, Catling PC, Cooke BD, Smyth R (2001) Two ecological universes separated by the Dingo Barrier fence in semi-arid Australia: interactions between landscapes, herbivory and carnivory, with and without dingoes. Rangeland Journal 23: 71–98

Newson SE, Evans KL, Noble DG, Greenwood JJD, Gaston KJ (2008) Use of distance sampling to improve estimates of national population sizes for common and widespread breeding birds in the UK. Journal of Applied Ecology 45: 1330–1338

Newson SE, Rexstad EA, Baillie SR, Buckland ST, Aebischer NJ (2010) Population change of avian predators and grey squirrels in England: is there evidence for an impact on avian prey populations? Journal of Applied Ecology 47:244–252

Nicoll M, Norris K (2010) Detecting an impact of predation on bird populationsdepends on the methods used to assess the predators. Methods in Ecology and Evolution 1: 300–310

Njau JK, Blumenschine RJ (2012) Crocodylian and mammalian carnivore feeding traces on hominid fossils from FLK 22 and FLK NN 3, Plio-Pleistocene, Olduvai Gorge, Tanzania. Journal of Human Evolution 63: 408–417

Page 185: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

184

Ohashi H, Saito M, Horie R, Tsunoda H, Noba H, Ishii H, Kuwabara H, Hiroshige Y, Koike S, Hoshino Y, Toda H, Kaji K. (2013) Differences in the activity pattern of the wild boar Sus scrofa related to human disturbance. European Journal of Wildlife Research 59: 167–177

O’Mahony D, Lambin X, MacKinnon JL, Coles CF (1999) Fox predation on cyclic field vole populations in Britain. Ecography 22: 575–581

Ontiveros D, Pleguezuelos JM, Caro J (2005) Prey density, prey detectability and food habits: the case of Bonelli’s eagle and the conservation measures. Biological Conservation 123: 19–25

Ordeñana MA, Crooks KR, Boydston EE, Fisher RN, Lyren LM., Siudyla S., Haas CD, Harris S, Hathaway SA, Turschak GM, Miles AK, Van Vuren DH (2010) Effects of urbanization on carnivore species distribution and richness. Journal of Mammalogy 91: 1322–1331

Ordiz A, Støen OG, Sæbø S, Kindberg J, Delibes M, Swenson JE. (2012) Do bears know they are being hunted? Biological Conservation 152: 21–28

Oro D, De León A, Mínguez E, Furness RW (2005) Estimating predation on breeding European storm-petrels (Hydrobates pelagicus) by yellow-legged gulls (Larus michahellis). Journal of Zoology 265: 421–429

Otero C (1995) Control de depredadores en la gestión integrada de un territorio. En: Predación, caza y vida silvestre. Fundación “La Caixa”/Aedos, Barcelona, Pp 151–180

Packer C, Ikanda D, Kissui B, Kushnir H (2005) Lion attacks on humans in Tanzania. Nature 436: 927–928

Padial B, Avila E, Gil-Sánchez JM (2002) Feeding habits and overlap among red fox (Vulpes vulpes) and stone marten (Martes foina) in two Mediterranean mountain habitats. Mammal Biology 67: 137–146

Palomares F, Ruiz-Martínez I (1994) Die Ditche des Rotfuchses und die Beute an Niederwild während der Periode der Jungenaufzucht im Südosten Spaniens. Zeitschrift für Jagdwissenschaft 40: 145–155

Palomares F, Gaona P, Ferreras P, Delibes M (1995) Positive effects on game species of top predators by controlling smaller predator populations: an example with lynx, mongooses, and rabbits. Conservation Biology 9: 295–305

Palomares F, Caro TM (1999) Interspecific killing among mammalian carnivores. The American Naturalist 153: 492–508

Palomares F (2001) Comparison of 3 methods to estimate rabbit abundance in Mediterranean environment. Wildlife Society Bulletin 29: 578–585

Palomares F, Rodríguez A, Godoy JA, Goritz F, Jewgenow K, Roldán E, López-Bao JV, Soto C (2010) Reproducción, genética, condición física, y tamaño de la población de los linces del Parque Nacional de Doñana en relación con un

Page 186: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

185

programa de alimentación suplementaria: evaluación científica de varios métodos de estudio y seguimiento. Informe Inédito. EBD-CSIC, Organismo Autónomo de Parques Nacionales, MIMAM. España

Palomino D, Carrascal LM, Potti J (2011) Distribution of Azure-winged Magpies Cyanopica cooki in Spain: both local and large-scale factors considered. Acta Ornithologica, 46: 71–82

Palomo LJ, Gisbert J, Blanco JC (2007) Atlas y Libro Rojo de los Mamíferos Terrestres de España. Dirección General de Conservación de la Naturaleza – SECEM-SECEMU, Madrid, 586 Pp.

Panek M (2013) Long-term changes in the feeding pattern of red foxes Vulpes vulpes and their predation on brown hares Lepus europaeus in western Poland. European Journal of Wildlife Research 59: 581–586

Pärt T (2001) The effects of territory quality on age-dependent reproductive performance in the northern wheatear, Oenanthe oenanthe. Animal Behaviour 62: 379–388

Penteriani V, Delgado MM (2010) Búho real – Bubo bubo. En: Enciclopedia Virtual de los Vertebrados Españoles. Salvador A, Bautista LM (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/

Pereira P, Alves da Silva A, Alves J, Matos M, Fonseca C.(2012) Coexistence of carnivores in a heterogeneous landscape: habitatselection and ecological niches. Ecological Research27: 745–753

Phillips RB, Whinche CS (2011) Reducing nontarget recaptures of an endangered predator using conditioned aversion and reward removal. Journal of Applied Ecology 48: 1501–1507

Pianka ER (1966) Latitudinal gradients in species diversity: a review of concepts. American Naturalist 100: 33–46

Piorno V (2006) Gestión cinegética y conservación del conejo de monte. Tesis Doctoral, Universidad de Vigo

Ponz A, Gil-Delgado JA, Barba E (1999) Factors affecting prey preparation by adult Magpies feeding nestlings. Condor 101: 818–823

Ponz A, Gil-Delgado JA (2004) Biología reproductiva de la urraca Pica pica en un área de montaña de Aragón. Ardeola 51: 411–423

Potts GR (1980) The effects of modern agriculture, nest predation and game management on the population ecology of partridges (Perdix perdix and Alectoris rufa). Advances in Ecological Research 11: 2–79

Progioni C, Balestrieri A, Remonti L, Cavada L (2008) Differential use of food and habitat by sympatric carnivores in theeastern Italian Alps. Italian Journal of Zoology 75: 173–184

Page 187: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

186

Prugh LR, Arthur SM, Ritland CE (2008) Use of faecal genotyping to determine individual diet. Wildlife Biology 14: 318–330

Prugh LR, Stoner CJ, Epps WC, Bean WT, Ripple WJ, Laliberte AS, Brashares JS (2009) The rise of the mesopredator. BioScience 59: 779–791

Pullin AS, Stewart GB (2006) Guidelines for systematic review in conservation and environmental management. Conservation Biology 20: 1647–1656

Putman RJ (1984) Facts from faeces. Mammal Review 14: 79–97

QGIS Development Team (2013) QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

R Development Core Team (2012). R, A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http,//www.R-project.org/

Rasmussen GSA, Macdonald DW. (2011) Masking of the zeitgeber: African wild dogs mitigate persecution by balancing time. Journal of Zoology 286: 232–242

Recio MR, Virgós E (2010) Predictive niche modelling to identify potential areas of conflicts between human activities and expanding predator populations: a case study of game management and the grey mongoose, Herpestes ichneumon, in Spain. Wildlife Research 37: 343–354

Redpath SM, Young J, Evely A, Adams WM, Sutherland WJ, Whitehouse A, Amar A, Lambert RA, Linnell JDC, Watt A, Gutiérrez RJ (2013) Understanding and managing conservation conflicts. Trends in Ecology and Evolution 28: 100–109

Reynolds JC, Aebischer N (1991) Comparison and quantification of carnivore diet by faecal analysis: a critique, with recommendations, based on a study of the fox Vulpes vulpes. Mammal Review 21: 97–122

Reynolds JC, Goddard HN, Brockless MH (1993) The impact of local fox (Vulpes vulpes) removal on fox populations at two sites in southern England. Gibier Faune Sauvage 10: 319–334

Reynolds JC, Tapper SC (1995) The ecology of the red fox Vulpes vulpes in relation to small game in rural southern England. Wildlife Biology 1: 105–119

Reynolds JC, Tapper SC (1996) Control of mammalian predators in game management and conservation. Mammal Review 26: 127–156

Reynolds JC, Stoate C, Brockless MH, Aebischer NJ, Tapper SC (2010) The consequences of predator control for brown hares (Lepus europaeus) on UK farmland. European Journal of Wildlife Research 56: 541–549

Ridout MS, Linkie M (2009) Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics 14: 322–337

Page 188: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

187

Ríos-Saldaña CA (2010) Los Planes Técnicos de Caza de Castilla-La Mancha y su Aplicación en la Gestión y Conservación de las Especies Cinegéticas. Tesis Doctoral Universidad de Castilla-La Mancha

Ripple WJ, Wirsing AJ, Wilmers CC, Letnic M (2013) Widespread mesopredator effects after wolf extirpation. Biological Conservation 160: 70–79

Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson M, Schmitz OJ, Smith DW, Wallach AD, Wirsing AJ (2014) Status and ecological effects of the world’s largest carnivores. Science 343: 1241484

Ritchie EG, Johnson CN (2009) Predator interactions, mesopredator release and biodiversity conservation. Ecology Letters 12: 982–998

Rivas-Martínez S (1987) Nociones sobre Fitosociología, Biogeografía y Bioclimatología. In: Peinado M, Rivas-Martínez S (eds) La Vegetación de España, 15–57. Universidad de Alcalá de Henares, Madrid

Rivas-Martínez S, Penas A, Díaz TE (2004) Mapa Bioclimático de Europa, Bioclimas, http://www.globalbioclimatics.org/form/maps.htm

Rodríguez A, Delibes M (2002) Internal structure and patterns of contraction in the geographic range of the Iberian lynx. Ecography 25: 314–328

Rodríguez A, Delibes M (2003) Population fragmentation and extinction in the Iberian lynx. Biological Conservation 109: 321–331

Rodríguez A, Delibes M (2004) Patterns and causes of non-natural mortality in the Iberian lynx during a 40-year period of range contraction. Biological Conservation 118: 151–161

Roos S, Pärt T (2004) Nest predators affect spatial dynamics of breeding red-backed shrikes (Lanius collurio). Journal of Animal Ecology 73:117–127

Roper TJ, Mickevicius E (1995) Badger Meles meles diet: a review of literature from the former Soviet Union. Mammal Review 25: 117–129

Rosalino LM, Santos-Reis M (2009) Fruit consumption by carnivores in Mediterranean Europe. Mammal Review 39: 67–78

Rosalino LM, Rosa S, Santos-Reis M (2010) The role of carnivores as Mediterranean seed dispersers. Annales Zoologici Fennici 47: 195–205

Rosenzweig ML (1995) Species Diversity in Space and Time. Cambridge University Press, Cambridge, UK

Roughton RD (1982) A synthetic alternative to fermented egg as a canid attractant. The Journal of Wildlife Management 46: 230–234

Rowcliffe JM, Carbone C (2008).Surveys using camera traps: are we looking to a brighter future? Animal Conservation 11: 185–186

Page 189: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

188

Royle JA, Nichols JD (2003) Estimating abundance from repeated presence-absence data or point counts. Ecology 84:777–790

Ruette S, Stahl P, Albaret M (2003) Factors affecting trapping success of red fox Vulpes vulpes, stone marten Martes foina and pine marten M. martes in France. Wildlife Biology 9: 11–19

Ruiz-Olmo J, Blanch F, Vidal F (2003) Relationships between the red fox and waterbirds in the Ebro delta natural park, N.E. Spain. Waterbirds 26: 217–225

Sala OE, Chapin III FS, Armesto JJ, Berlow E, Bloomfield J, Irzo R, Huber-Samwald E, Huenneke KF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100 Science 87: 1770–1774

Šálek M, Kreisinger J, Sedláček F, Albrecht T (2010) Do prey densities determine preferences of mammalian predators for habitat edges in an agricultural landscape? Landscape and Urban Planning 98: 86–91

Salo P, Banks PB, Dickman CR, Korpimaki E (2010) Predator manipulation experiments: impacts on populations of terrestrial vertebrate prey. Ecological Monographs 80: 531–546

Sangay T, Vernes K (2008) Human–wildlife conflict in the Kingdom of Bhutan, patterns of livestock predation by large mammalian carnivores. Biological Conservation 141: 1272–1282

Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002) The Human footprint and the last of the wild. BioScience 52: 891–904

Santos MJ, Matos HM, Baltazar C, Grilo C, Santos-Reis M (2009) Is polecat (Mustela putorius) affected by ‘mediterraneity’? Mammalian Biology 74: 448–455

Sanz-Aguilara A, Martínez-Abraín A, Tavecchiaa G, Mínguez E, Oro D (2009) Evidence-based culling of a facultative predator: Efficacy and efficiency components. Biological Conservation 142: 424–431

Sarmento P (1996) Feeding habits of the weasel Mustela nivalis in relation to prey abundance. Oikos 26: 378–384

Sarmento P, Cruz J (1998) Ecologia e conservação do lince-ibérico e da comunidade de carnívoros da Serra da Malcata. Inedited Report, Reserva Natural da Serra da Malcata, ICN/RNSM

Sarmento P, Cruz J, Eira C, Fonseca C (2009) Habitat selection and abundance of common genets Genetta genetta using camera capture-mark-recapture data. European Journal of Wildlife Research 56:59–66

Sarmento PB, Cruz J, Eira C, Fonseca C (2011) Modeling the occupancy of sympatric carnivorans in a Mediterranean ecosystem. European Journal of Wildlife Research 57: 119–131

Page 190: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

189

Saunders G, Harris S (2000) Evaluation of attractants and bait preferences of captive red foxes (Vulpes vulpes). Wildlife Research 27: 237–243

Saunders GR, Gentle MN, Dickman CR (2010) The impacts and management of foxes Vulpes vulpes in Australia. Mammal Review 40: 181–211

SEO/BIRDLIFE (2002) Tendencias de las poblaciones de aves comunes en España (1996–2001). Programa SACRE. Informe 2001. SEO/BirdLife, Madrid

Schauster ER, Gese EM, Kitchen AM (2002) An evaluation of survey methods for monitoring swift fox abundance. Wildlife Society Bulletin 30: 464–477

Schuette P, Wagner AP, Wagner ME, Creel S (2013) Occupancy patterns and niche partitioning within a diverse carnivore community exposed to anthropogenic pressures. Biological Conservation 158: 301–312

Seal US, Kreeger TJ (1987). Chemical immobilization of furbearers. En: Novak M, Baker JA, Obbard ME, Malloch B (Eds.) Wild Furbearer Management and Conservation in North America. Ontario Trappers Association, Ontario

Seidler RG, Geseb EM, Conner MM (2014) Using sterilization to change predation rates of wild coyotes: A test case involving pronghorn fawns. Applied Animal Behaviour Science 154: 83–92

Sergio F, Hiraldo F (2008) Intraguild predation in raptor assemblages: a review. Ibis 150: 132–145

Sergio F, Caro T, Brown D, Clucas B, Hunter J, Ketchum J, McHugh J, Hiraldo F (2008) Top predators as conservation tools: Ecological rationale, assumptions, and efficacy. Annual Review of Ecology, Evolution and Systematics 39: 1–19

Servin J, Rau JR, Delibes M (1991) Activity pattern of the red fox Vulpes vulpes in Doñana, SW Spain. Acta Theriologica 36: 369–373

Shivik JA, Gruver KS, De Liberto TJ (2000) Preliminary evaluation of new cable restraints to capture coyotes. Wildlife Society Bulletin 28: 606–613

Shivik JA, Martin DJ, Pipas MJ, Turnan J, DeLiberto TJ (2005). Initial comparison: jaws, cables, and cage-traps to capture coyotes. Wildlife Society Bulletin 33: 1375–1383

Short MJ, Weldon AW, Richardson SM, Reynolds JC (2012) Selectivity and injury risk in an improved neck snare for live-capture of foxes. Wildlife Society Bulletin 36: 208–219

Sillero-Zubiri C, Laurenson MK (2001) Interactions between carnivores and local communities: conflict or coexistence? En: Gittleman J, Funk K, MacDonald D, Wayne R (Eds.) Carnivore conservation, conservation biology series 5. Cambridge University Press, Cambridge, Pp 282–312

Sillero-Zubiri C, Schwitzer D (2004) Management of wild canids in human-dominated landscapes. En: Sillero-Zubiri C, Hoffman M, Macdonald DW (Eds.) Canids:

Page 191: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

190

foxes, wolves, jackals and dogs. Status survey and conservation action plan. IUCN, Gland, Pp. 257–266

Sillero-Zubiri C, Hoffmann M, Macdonald DW (2004) Canids: Foxes, Wolves, Jackals and Dogs. Status Survey and Conservation Action Plan. IUCN/SSC Canid Specialist Group. Gland, Switzerland and Cambridge

Sillero-Zubiri C (2009) Family Canidae (Dogs). En: Wilson DE, Mittermeier RA (Eds.) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Editions, Barcelona, Pp 352–446

Silva AP, Rosalino LM, Johnson PJ, Macdonald DW, Anderson N, Kilshaw K (2013) Local-level determinants of wildcat occupancy in Northeast Scotland. European Journal of Wildlife Research 59: 449–453

Sinclair ARE, Pech RP (1996) Density dependence, stochasticity, compensation and predator regulation. Oikos 75: 164–173

Sinclair ARE, Mduma S, Brashares JS (2003) Patterns of predation in a diverse predator-prey system. Nature 425: 288–290

Smith GC, Cheeseman C, Clifton-Hadley RS, Wilkinson D (2001) A model of bovine tuberculosis in the badger Meles meles: an evaluation of control strategies. Journal of Applied Ecology 38: 509–519

Smith RK, Pullin AS, Stewart GB, Sutherland WJ (2010) Effectiveness of predator removal for enhancing bird populations. Conservation Biology 24: 820–829

Smedshaug CA, Selas V, Lund SE, Sonerud GA (1999) The effect of a natural reduction of red fox Vulpes vulpes on small game hunting bags in Norway. Wildlife Biology 5: 157–166

Smith GC, Cheeseman C, Clifton-Hadley RS, Wilkinson D (2001) A model of bovine tuberculosis in the badger Meles meles: an evaluation of control strategies. Journal of Applied Ecology 38: 509–519

Smith RK, Pullin AS, Stewart GB, Sutherland WJ (2010) Effectiveness of predator removal for enhancing bird populations. Conservation Biology 24: 820–829

Sobrino R, Acevedo P, Escudero MA, Marco J, Gortázar C (2008) Carnivore population trends in Spanish agrosystems after the reduction in food availability due to rabbit decline by rabbit haemorrhagic disease and improved waste management. European Journal of Wildlife Research 55: 161–165

Soler JJ, Soler M (1991) Análisis comparado del régimen alimenticio durante el periodo otoño-invierno de tres especies de córvidos en un área de simpatría. Ardeola 38: 69–89

Soler JJ, Soler M, Martínez JG (1993) Grit ingestion and cereal consumption in five corvid species. Ardea 81: 143–149

Page 192: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

191

Soler JJ, Martínez JG, Soler M, Møller AP (1999) Host sexual selection and cuckoo parasitism: an analysis of nest size in sympatric and allopatric magpie Pica pica populations parasitized by the great spotted cuckoo Clamator glandarius. Proceedings of the Royal Society of London B 266: 1–7

Soler JJ (2012) Críalo europeo – Clamator glandarius. En: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Morales, M. B. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/

Soler M, Alcalá N, Soler JJ (1990) Alimentación de la grajilla Corvus monedula en tres zonas del sur de España. Doñana Acta Vertebrata 17: 17–48

Soler M, Martínez JG, Soler JJ (1996) Effects of brood parasitism by the Great Spotted Cuckoo on the breeding success of the Magpie host: an experimental study. Ardeola 43: 87–96

Sollman R, Mohamed A, Samejima H, Wilting A (2013) Risky business or simple solution – Relative abundance indices fromcamera-trapping. Biological Conservation 159: 405–412

Soriguer RC (1981) Biología y dinámica de una población de conejos (Oryctolagus cuniculus) en Andalucía occidental. Doñana Acta Vertebrata 8: 1–379

Soriguer RC, Carro C, Fandos P, Márquez FJ (2003) La diversidad y abundancia de los micromamíferos ibéricos. En: Universidad de Jaen (Ed.) In Memorian al Prof. Dr. Isidoro Ruiz Martínez, Pp. 439–478

Statsoft (2001) STATISTICA for Windows. Versión. 6.0. Statsoft Inc., Tulsa

StatSoft (2011) Statistica© (Data Analysis Software System), Version 10, Tulsa

Stefanescu C, Herrando S, Páramo F (2004) Butterfly species richness in the north-west Mediterranean Basin: the role of natural and human-induced factors. Journal of Biogeography 31: 905–915

Stoate C, Szczur J (2001) Could game management have a role in the conservation of farmland passerines? A case study from a Leicestershire farm. Bird Study 48: 279–292

Stoate C, Szczur J (2005) Predator control as part of a land management system: impacts on breeding success and abundance of passerines. Wildlife Biology in Practice 1: 53–59

Stone E, Trost CH (1991). The effects of supplemental food on nest dispersion in black-billed magpies. Condor 93: 452–454

Suárez F, Yanes M, Herranz J, Manrique J (1993) Nature reserves and the conservation of Iberian shrubsteppe passerines: the paradox of nest predation. Biological Conservation 64: 77–81

Page 193: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

192

Such-Sanz A (2003) Dieta estival del zorro rojo (Vulpes vulpes, Linnaeus, 1758) en naranjales del País Valencià. VI Jornadas de la Sociedad Española para la Conservación y estudio de los Mamíferos (SECEM). Ciudad Real

Sunquist ME, Sunquist FC (1989) Ecological constraints on predation by large felids. En: Gittleman J (Ed.) Carnivore behavior, ecology, and evolution, Vol 1. Cornell University Press, Ithaca, New York, Pp 283–301

Sunquist ME (1989) Comparison of spatial and temporal activity of red foxes and gray foxes in north-central Florida. Florida Field Naturalist 17: 11–18

Suvorov P, Svobodová J, Koubová M, Dohnalová L (2012) Ground nest depredation by European Black-billed Magpies Pica pica: an experimental study with artificial nests. Acta Ornithologica 47: 55–61

Tapper SC, Potts GR, Brockless MH (1996) The effect of an experimental reduction in predation pressure on the breeding success and population density of grey partridges Perdix perdix. Journal of Applied Ecology 33: 965–978

Teerink BJ (1991) Hair of West -European mammals. Atlas and identification key. Cambridge University Press: Cambridge

Thirgood SJ, Redpath SM, Haydon DT, Rothery P, Newton I, Hudson PJ (2000b) Habitat loss and raptor predation: disentangling long- and short-term causes of red grouse declines. Proceedings of the Royal Society of London Series 267: 651–656

Thirgood SJ, Redpath SM, Newton I, Hudson P (2000a) Raptors and red grouse: conservation conflicts and management solutions. Conservation Biology 14: 95–104

Thomson DL, Green RE, Gregory RD, Baillie SR (1998) The widespread declines of songbirds in rural Britain do not correlate with the spread of their avian predators. Proceedings of the Royal Society of Lond B 265: 2057–2062

Torre I (2004) Distribution, Population Dynamics and Habitat Selection of Small Mammals in Mediterranean Environments: the Role of Climate, Vegetation Structure, and Predation Risk. Tesis Doctoral. Universidad de Barcelona

Torre I, Arrizabalaga A, Díaz M (2002) Ratón de campo (Apodemus sylvaticus). Galemys 14: 1–26

Towerton AL, Penman TD, Kavanagh RP, Dickman CR (2011) Detecting pest and prey responses to fox control across the landscape using remote cameras. Wildlife Research 38: 208–220

Travaini A, Laffitte R, Delibes M (1996) Leg-hold trapping red-foxes (Vulpes vulpes) in Doñana National Park, efficiency, selectivity, and injuries. Journal of Wildlife Research 1: 52–56

Treves A, Karanth KU (2003) Human-carnivore conflict and perspectives on carnivore management worldwide. Conservation Biology 17: 1491–1499

Page 194: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

193

Treves A, Naughton-Treves L, Harper EK, Mladenoff DJ, Rose RA, Sickley TA, Wydeven AP (2004) Predicting human-carnivore conflict, a spatial model derived from 25 years of data on wolf depredation on livestock. Conservation Biology 18: 114–125

Treves A, Naughton-Treves L (2005) Evaluating lethal control in the management of human-wildlife conflict. En: RW Woodroofe, Thirgood S, Rabinowitz A (Eds.) People and Wildlife, Conflict or Coexistence? Cambridge University Press, Cambridge. Pp. 86–106

Treves A, Bruskotter J (2014) Tolerance for predatory wildlife. Science 344: 476–477

Trewby LD, Wilson GJ, Delahay RJ, Walker N, Young R, Davison J, Cheeseman C, Robertson PA, Gorman ML, McDonald RA (2008) Experimental evidence of competitive release in sympatric carnivores. Biology Letters 4: 170–172

Tryjanowski P, Sparks TH, Kamieniarz R, Panek M (2009) The relationship between hunting methods and sex, ageand body weight in a non-trophy animal, the red fox. Wildlife Research 36: 106–109

Tuomainen U, Candolin U (2011) Behavioural responses to human-induced environmental change. Biological Reviews 86: 640–657

United States of America–European Community (1998) Standards for the humane trapping of specified terrestrial and semi-aquatic mammals between the United States of America and the European community. Official Journal L 219 of 7 August 1998: 0026–0037

Urios V, Plou J (1986) Estudio de la densidad y alimentación del zorro común (V. vulpes) en la provincia de Valencia. Informe inédito. Conselleria de Agricultura de Valencia. Valencia

Valkama J, Korpimaki E, Arroyo B, Beja P, Bretagnolle V, Bro E, Kenward R, Mañosa S, Redpath SM, Thirgood SJ, Viñuela J (2005) Birds of prey as limiting factors of gamebird populations in Europe, a review. Biological Reviews 80: 171–203

Valverde JA (1971) El lobo español. Montes 159: 229–241

Vargas JM (2002) Alerta cinegética. Reflexiones sobre el futuro de la caza en España. Otero, Madrid, España. 398 Pp

Vericad JR (1971) Estudio faunístico y biológico de los mamíferos del Pirineo. Informe inédito. CSIC, Jaca

Vickery J, Carter N, Fuller RJ (2002) The potential value of managed cereal field margins as foraging habitats for farmland birds in the UK. Agriculture, Ecosystems & Environment 89: 41–52

Villafuerte R, Viñuela J, Blanco JC (1998) Extensive predator persecution caused by population crash in a game species: the case of red kites and rabbits in Spain. Biological Conservation 84: 181–188

Page 195: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

194

Villar N, Lambin X, Evans D, Pakeman R, Redpath S (2013) Experimental evidence that livestock grazing intensity affects the activity of a generalist predator. Acta Oecologica 49: 12–16

Virgós E, Llorente M, Cortés Y (1999) Geographical variation in genet (Genetta genetta L.) diet: a literature review. Mammal Review 29: 119–128

Virgós E (2001) Relative value of riparian woodlands in landscapes with different forest cover for mediumsizedIberian carnivores. Biodivers Conservation 10: 1039–1049

Virgós E (2002) Are habitat generalists affected by forest fragmentation? A test with Eurasian badgers (Meles meles) in coarse-grained fragmented landscapes of Central Spain. Journal of Zoology 258: 313–318

Virgós E, Cabezas-Díaz S, Malo A, Lozano J, López-Huertas D (2003) Factors shaping European rabbit abundance in continuous and fragmentedpopulations of central Spain. Acta Theriologica 48: 113–122

Virgós E, Revilla E, Mangas G, Barea-Azcón JM, Rosalino LM, De Marinis AM (2005) Revisión de la dieta del tejón (Meles meles) en la Península Ibérica: comparación con otras localidades de su área de distribución natural. En: Virgós E, Revilla E, Mangas JG, Domingo-Roura X (Eds.) Ecología y Conservación del Tejón en Ecosistemas Mediterráneos. Sociedad Española para la Conservación y Estudio de los Mamíferos, Málaga. Pp. 67–80

Virgós E, Travaini A (2005) Relationship between small-game hunting and carnivore diversity in central Spain. Biodiversity and Conservation 14: 3475–3486

Virgós E, Cabezas-Díaz S, Mangas JG, Lozano J (2010) Spatial distribution models in a frugivorous carnivore, the stone marten (Martes foina): is the fleshy-fruit availability a useful predictor? Animal Biology 60: 423–436

Virgós E, Lozano J, Mangas JG (2010) El debate sobre el control de los depredadores. Quercus 292: 80–81

Voigt DR, Macdonald DW (1984) Variation in the spatial and social behaviour of the red fox. Acta Zoologica Fennica 171: 261–265

Vulla E, Hobson KA, Korsten M, Leht M, Martin AJ, Lind A, Männil P, Valdmann H, Saarma U (2009) Carnivory is positively correlated with latitude among omnivorous mammals: evidence from brown bears, badgers and pine martens. Annales Zoologici Fennici 46: 395–415

Wang SW, Macdonald DW (2009) Feeding habits and niche partitioning in a predator guild composed of tigers, leopards and dholes in a temperate ecosystem in central Bhutan. Journal of Zoology 277: 275–283

Wang XH, Trost CH (2000) Trapping territorial black-billed Magpies. Journal of Field Ornithology 71: 730–735

Page 196: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

195

Way J G, Ortega IM, Auger P J, Strauss EG (2002) Box-trapping eastern coyotes in southeastern Massachusetts. Wildlife Society Bulletin 30: 695–702

Way JG (2012) Seasonal and study site variation in box-trapping eastern coyotes. Canids News 15.2 (On-line). URL: http,//www. http,//canids.org/canidnews/15/Box-trapping_eastern_coyotes.pdf

Webbon CC, Baker PJ, Cole NC, Harris S (2006) Macroscopic prey remains in the winter diet of foxes Vulpes vulpes in rural Britain. Mammal Review 36: 85–97

Whitfield DP, McLeod DRA, Watson J, Fielding AH, Haworth PF (2003) The association of grouse moor in Scotland with the illegal use of poisons to control predators. Biological Conservation 114: 157–163

Whitfield DP, Fielding AH, Mcleod DRA, Morton K, Stirling-Aird P, Eaton MA (2007) Factors constraining the distribution of Golden Eagles Aquila chrysaetos in Scotland: Capsule between 1992 and 2003 persecution appeared to be the main influential factor. Bird Study 54: 199–211

Whittaker RJ, Araújo MA, Jepson P, Ladle RJ,Watson JEM, Willis KJ (2005) Conservation biogeography: assessment and prospect. Diversity and Distributions 11: 3–23

Williams D, Acevedo P, Gortázar C, Escudero MA, Labarta JL, Marco J, Villafuerte R (2007) Hunting for answers: rabbit (Oryctolagus cuniculus) population trends in northeastern Spain. European Journal of Wildlife Research 53: 19–28

Wingfield JC, Ball GF, Dufty AM, Hegner RE, Ramenofsky M (1987) Testosterone and aggression in birds. American Scientist 75: 602–608

Woodroffe R, Frank, LG (2005) Lethal control of African lions (Panthera leo): local and regional population impacts. Animal Conservation 8: 91–98

Woodroffe R, Thirgood S, Rabinowitz A (2005) People and wildlife, conflict or co-existence? Cambridge University Press: Cambridge

Yanes M, Suyárez F (1996) Incidental nest predation and lark conservation in an Iberian semiarid shrubsteppe. Conservation Biology 10: 881–887

Yanes M, Martín JM; Suárez F (1997) Aspectos ecológicos del zorro (Vulpes vulpes) en la R.O. de Las Almoladeras, Almería: su implicación en la gestión de un enclave estepario protegido. Investigación y gestión 1: 73–80

Yanes M, Herranz J, De la Puente J, Suárez F (1998) La perdiz roja. Identidad de los depredadores e intensidad de la depredación. En: I Curso. La perdiz roja. FEDENCA, Alcobendas, Madrid, Pp 135–147

Yom-Tov Y, Yom-Tov S, Barreiro J, Blanco JC (2007) Body size of the red fox Vulpes vulpes in Spain: the effect of agriculture. Biological Journal of the Linnean Society 90: 729–734

Page 197: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

196

Zapata SC, Travaini A, Ferreras P, Delibes M (2007) Analysis of trophic structure of two carnivore assemblages by means of guild identification. European Journal of Wildlife Research 53: 276–286

Zar JH (1984) Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, USA

Zhou YB, Newman C, Xu WT, Buesching CD, Zalewski A, Kaneko Y, Macdonald DW, Xie ZQ (2011) Biogeographical variation in the diet of Holarctic martens (genus Martes, Mammalia: Carnivora: Mustelidae): adaptive foraging in generalists. Journal of Biogeography 38: 137–147

Zinkivskay A, Nazir F, Smulders TV (2009) What–Where–When memory in magpies (Pica pica). Animal Cognition 12: 119–125

Zuberogoitia I, González-Oreja JA, Zabala J, Rodríguez-Refojos C (2010) Assessing the control/eradication of an invasive species, the American mink, based on field data; how much would it cost? Biodiversity and Conservation 19: 1455–1469

Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Springer, New York

Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. New York: Springer Science+Business Media

Page 198: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

197

APÉNDICES

Page 199: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

198

Appendix 1.1. Studies of the diet of the red fox in Iberia used in this review, with an indication of the latitude (Lat.), longitude (Long.) and altitude (Alt.) where the study took place, year, sample size, duration of the study, predominant habitat, season and type of material. The Map ID (see Fig. 1) is also shown.

Reference Lat. Long. Map ID Year Sample

size Study

duration Habitat Season Material

Amores (1975) 38.17 -5.25 1 1973 121 22 M. Scrub Annual Stomach

Angelo (2000) 37.38 -7.63 2 1999 81 9 - Annual Scat

Angelo (2000) 37.38 -7.63 2 1999 42 3 - Winter Scat

Ballesteros & Degollada (2002) 41.68 2.02 3 1997 140 12 Forest Annual Scat

Barrull and Mate (2007) 41.32 0.97 4 2006 985 21 - Annual Scat

Barrull and Mate (2007) 41.32 0.97 4 2006 354 5,25 - Autumn Scat

Barrull and Mate (2007) 41.32 0.97 4 2006 205 5,25 - Spring Scat

Barrull and Mate (2007) 41.32 0.97 4 2006 241 5,25 - Summer Scat

Barrull and Mate (2007) 41.32 0.97 4 2006 185 5,25 - Winter Scat

Bermejo and Guitián (2000) 42.57 -6.63 5 1990 30 4 - Autumn Scat

Bermejo and Guitián (2000) 42.85 -6.82 6 1990 44 3 - Autumn Scat

Blanco (1986) 40.75 -4 7 1984 97 7 Forest Annual Scat

Blanco (1986) 40.75 -4 7 1984 30 2 Forest Autumn Scat

Blanco (1986) 40.75 -4 7 1984 18 2 Forest Spring Scat

Blanco (1986) 40.75 -4 7 1984 49 3 Forest Summer Scat

Blanco (1988) 40.75 -4 7 1985 414 27 Forest Annual Scat

Blanco (1988) 40.75 -4 7 1985 90 6 Forest Autumn Scat

Blanco (1988) 40.75 -4 7 1985 104 9 Forest Spring Scat

Blanco (1988) 40.75 -4 7 1985 131 6 Forest Summer Scat

Blanco (1988) 40.75 -4 7 1985 92 6 Forest Winter Scat

Page 200: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

199

Reference Lat. Long. Map ID Year Sample

size Study

duration Habitat Season Material

Narváez, et al. (2008) 37.92 -5.75 8 2005 138 24 M. Scrub Annual Scat

Braña & Del Campo (1980) 43.1 -5.83 9 1978 68 36 Forest Annual Stomach

Calviño et al. (1984) 42.83 -8.22 10 1978 429 84 - Annual Stomach

Calviño et al. (1984) 42.83 -8.22 10 1978 230 21 - Autumn Stomach

Calviño et al. (1984) 42.83 -8.22 10 1978 24 21 - Spring Stomach

Calviño et al. (1984) 42.83 -8.22 10 1978 49 21 - Summer Stomach

Calviño et al. (1984) 42.83 -8.22 10 1978 158 21 - Winter Stomach

Calzada (2000) 37.15 -6.43 11 1996 1295 35 M. Scrub Annual Scat

Carvalho and Gomes (2004) 41.82 -7.78 12 1999 193 12 M. Scrub Annual Scat

Carvalho (2001) 41.82 -7.78 12 2000 193 12 M. Scrub Annual Scat

Carvalho (2001) 41.82 -7.78 12 2000 38 3 M. Scrub Autumn Scat

Carvalho (2001) 41.82 -7.78 12 2000 44 3 M. Scrub Spring Scat

Carvalho (2001) 41.82 -7.78 12 2000 65 3 M. Scrub Summer Scat

Carvalho (2001) 41.82 -7.78 12 2000 46 3 M. Scrub Winter Scat

Castroviejo et al. (1984) 37.15 -6.43 13 1984 81 12 - Annual Stomach

Castroviejo et al. (1984) 40.42 -3.67 14 1984 103 12 - Annual Stomach

Castroviejo et al. (1984) 39.5 -6.33 15 1984 230 12 - Annual Stomach

Castroviejo et al. (1984) 42.42 -8.63 16 1984 120 12 - Annual Stomach

Castroviejo et al. (1984) 43.42 -7.25 17 1984 75 12 - Annual Stomach

De Carvalho and Alves Alexandre (1994) 41.92 -6.6 18 1993 656 12 Forest Annual Scat

Delibes Mateos et al. (2007) 38.48 -4.5 19 2002 35 3 - Summer Scat

Delibes Mateos et al. (2007) 38.48 -4.5 19 2002 24 3 - Summer Scat

Delibes Mateos et al. (2007) 38.48 -4.5 19 2002 25 3 - Summer Scat

Page 201: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

200

Reference Lat. Long. Map ID Year Sample

size Study

duration Habitat Season Material

Delibes Mateos et al. (2007) 38.48 -4.5 19 2002 114 3 - Summer Scat

Delibes Mateos et al. (2007) 38.48 -4.5 19 2002 31 3 - Summer Scat

Dos Santos Correia (1993) 40.3 -7.07 20 1991 241 15 Annual Scat

Esmeriz (2001) 40.58 -7.58 21 1998 207 12 Forest Annual Scat

Esmeriz (2001) 40.58 -7.57 21 1998 176 12 Forest Annual Scat

Esmeriz (2001) 40.58 -7.57 21 1998 26 3 Forest Autumn Scat

Esmeriz (2001) 40.58 -7.57 21 1998 48 3 Forest Autumn Scat

Esmeriz (2001) 40.58 -7.57 21 1998 92 3 Forest Spring Scat

Esmeriz (2001) 40.58 -7.57 21 1998 23 3 Forest Spring Scat

Esmeriz (2001) 40.58 -7.57 21 1998 73 3 Forest Summer Scat

Esmeriz (2001) 40.58 -7.57 21 1998 65 3 Forest Summer Scat

Esmeriz (2001) 40.58 -7.57 21 1998 16 3 Forest Winter Scat

Esmeriz (2001) 40.58 -7.57 21 1998 40 3 Forest Winter Scat

Fedriani (1996) 37.15 -6.43 11 1996 129 24 M. Scrub Annual Scat

Fedriani (1996) 37.15 -6.43 11 1996 164 24 Agr/Dehesa Annual Scat

Fedriani et al. (1999) 37.15 -6.43 11 1993 293 26 M. Scrub Annual Scat

Fedriani et al. (1999) 37.15 -6.43 11 1993 99 M. Scrub Spring Scat

Fedriani et al. (1999) 37.15 -6.43 11 1993 123 M. Scrub Summer Scat

Fernández and Ruiz de Azua (2005) 43 -2.83 22 1997 191 5 Forest Spring Scat

González-Prat (1995)a 41.77 4.45 23 1995 - 3 - Autumn Scat

González-Prat (1995)a 42.5 0.58 24 1995 - 3 - Winter Scat

González-Prat (1995)b 41.3 1.8 25 1995 - 12 M. Scrub Annual Scat

Guitian and Callejo (1983) 42.55 -7.27 26 1978 38 60 Agr/Dehesa Annual Scat

Page 202: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

201

Reference Lat. Long. Map ID Year Sample

size Study

duration Habitat Season Material

Herranz et al. (1999) 39.5 -2.83 27 1975 105 12 - Annual Stomach

Dos Santos Marques (2003) 40.53 -3.67 28 2002 70 8 M. Scrub Annual Scat

López (1999) 41.8 1.1 29 1999 661 22 - Annual Scat

López (1999) 41.8 1.1 29 1999 113 6 - Autumn Scat

López (1999) 41.8 1.1 29 1999 248 6 - Spring Scat

López (1999) 41.8 1.1 29 1999 143 6 - Summer Scat

López (1999) 41.8 1.1 29 1999 155 4 - Winter Scat

Martín (2008) 41.3 1.8 25 1999 428 11 Annual Scat

Monterroso et al. (2006) 37.65 -7.63 30 2005 45 12 M. Scrub Annual Scat

Negrões (2000) 42.03 -8.13 31 1998 490 24 Agr/Dehesa Annual Scat

Negrões (2000) 42.03 -8.13 31 1997 90 6 Agr/Dehesa Autumn Scat

Negrões (2000) 42.03 -8.13 31 1998 144 6 Agr/Dehesa Spring Scat

Negrões (2000) 42.03 -8.13 31 1998 151 6 Agr/Dehesa Summer Scat

Negrões (2000) 42.03 -8.13 31 1997 105 6 Agr/Dehesa Winter Scat

Padial et al. (2002) 37.07 -3.55 32 1997 132 12 M. Scrub Annual Scat

Padial et al. (2002) 37.13 -3.38 33 1997 74 12 Forest Annual Scat

Palomares and Ruiz-Martínez (1994) 37.37 -2.83 34 1991 38 1 M. Scrub Spring Scat

Palomares and Ruiz-Martínez (1994) 37.37 -2.83 34 1991 90 1 M. Scrub Spring Scat

Sarmento et al. (1999) 40.3 -7.07 20 1996 306 12 M. Scrub Annual Scat

Sarmento et al. (1999) 40.3 -7.07 20 1996 63 3 M. Scrub Autumn Scat

Sarmento et al. (1999) 40.3 -7.07 20 1996 59 3 M. Scrub Spring Scat

Sarmento et al. (1999) 40.3 -7.07 20 1996 125 3 M. Scrub Summer Scat

Sarmento et al. (1999) 40.3 -7.07 20 1996 59 3 M. Scrub Winter Scat

Page 203: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

202

Reference Lat. Long. Map ID Year Sample

size Study

duration Habitat Season Material

Such-Sanz (2003) 38.95 -0.58 35 1998 41 4 Agr/Dehesa Summer Scat

Such-Sanz (2003) 39.07 -0.27 36 1998 40 4 Agr/Dehesa Summer Scat

Urios and Plou (1986) 39.42 -0.83 37 1985 237 24 - Annual Stomach

Vericard (1971) 42.52 -0.75 38 1971 66 12 Forest Annual Stomach

Yanes et al. (1996) 36.83 -2.42 39 1993 69 3 M. Scrub Spring Scat

Page 204: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

203

Appendix 1.2. Fox diets as described in the reviewed studies (see Figure 1 and Appendix S1). The information is presented as the frequency of occurrence (FO) of each prey group.We also indicate the values of trophic diversity (Herrera diversityindex, D) recorded for each study

Reference ID Lagomorph Micromammals Birds Reptiles Invertebrates Fruits/seed Carrion/garbage D

Amores (1975) 1 71.1 38.8 29.7 0 60.3 0 6.6 12.5

Angelo (2000) 2 11.59 6.04 4.79 0.25 58.69 16.37 0 12.1

Angelo (2000) 2 29.29 16.16 9.09 0 12.12 30.3 3 8.3

Ballesteros and Degollada (2002) 3 1.3 44 12 2 60 60 0 10.3

Barrull and Mate (2007) 4 1.22 12.69 7.51 1.01 41.83 70.86 11.06 7.4

Barrull and Mate (2007) 4 1.41 12.15 4.24 0.56 29.38 80.51 11.86 7.8

Barrull and Mate (2007) 4 0.49 16.1 11.22 0 58.05 43.41 20 8.3

Barrull and Mate (2007) 4 1.24 8.3 8.3 2.9 57.26 70.54 3.73 7.4

Barrull and Mate (2007) 4 1.62 15.67 8.65 0.54 27.57 83.24 9.19 7.5

Bermejo and Guitián (2000) 5 0 16.6 3.3 0 26.6 100 20 9.5

Bermejo and Guitián (2000) 6 0 70.4 22.7 0 20.4 4.5 9.1 9.9

Blanco (1986) 7 9.3 38.1 0 0 47.4 70.1 26.8 12.5

Blanco (1986) 7 0 23.38 0 0 63.3 70 26.66 10.6

Blanco (1986) 7 17.85 67.85 0 0 60.7 7.15 3.55 9.7

Blanco (1986) 7 8.23 34.3 0 0 85.74 46.97 34.66 8.4

Blanco (1988) 7 22 40.3 11.1 2.2 47.3 33.4 20 5.2

Blanco (1988) 7 13.3 28.9 5.6 0 34.4 61.2 22.2 7.0

Blanco (1988) 7 16.3 51 12.5 6.7 53.8 18.3 18.3 4.9

Blanco (1988) 7 10.7 29.8 13.7 1.5 74.8 54.9 27.5 5.1

Blanco (1988) 7 50 52.2 7.6 0 6.5 4.3 8.7 8.3

Narváez et al. (2008) 8 0.7 44.2 6.5 2.9 82.6 8 5 7.7

Page 205: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

204

Reference ID Lagomorph Micromammals Birds Reptiles Invertebrates Fruits/seed Carrion/garbage D

Braña and Del Campo (1980) 9 0 64.7 23.52 5.8 45.6 40 19 8.5

Calviño et al. (1984) 10 5.6 53.4 16.5 0.23 49.9 54.1 71.6 5.7

Calviño et al. (1984) 10 2.6 44.7 18.4 2.6 34.2 78.9 2.6 5.4

Calviño et al. (1984) 10 20.5 59.1 6.8 2.3 31.8 2.3 11.4 6.9

Calviño et al. (1984) 10 27.7 24.6 7.7 13.8 55.4 4.6 3.1 6.1

Calviño et al. (1984) 10 10.9 87 13 0 8.7 15.2 0 6.4

Calzada (2000) 11 73 6 9 0 72 16 16 9.1

Carvalho and Gomes (2004) 12 19.6 65.7 10.8 7.8 27.5 17.7 2.9 5.8

Carvalho (2001) 12 17.1 51.3 10.9 5.7 34.7 21.2 4.1 5.8

Carvalho (2001) 12 2.6 44.7 18.4 2.6 34.2 78.9 2.6 6.4

Carvalho (2001) 12 20.5 59.1 6.8 2.3 31.8 2.3 11.4 6.8

Carvalho (2001) 12 27.7 24.6 7.7 13.8 55.4 4.6 3.1 6.2

Carvalho (2001) 12 10.9 87 13 0 8.7 15.2 0 9.8

Castroviejo et al. (1984) 13 0 29 2.5 1.2 3.7 61 37.3 11.1

Castroviejo et al. (1984) 14 13 47 0 0 21 61 25 12.7

Castroviejo et al. (1984) 15 14 34 12 0 35 42 26.5 8.7

Castroviejo et al. (1984) 16 6 33 0.8 0 53 57 10 10.3

Castroviejo et al. (1984) 17 0 34 0 0 25 54.6 26 16.9

De Carvalho and A. Alexandre (1994) 18 7.93 96.96 86.44 0 0 28.97 15.55 12.5

Delibes Mateos et al. (2007) 19 37.2 31.4 62.9 20 91.4 37.1 11.4 3.2

Delibes Mateos et al. (2007) 19 69.6 30.4 39.1 8.7 95.6 17.4 8.7 4.0

Delibes Mateos et al. (2007) 19 84 40 48 12 88 16 12 3.5

Delibes Mateos et al. (2007) 19 49.1 37.7 51.7 14.9 92.1 23.7 7.9 3.6

Page 206: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

205

Reference ID Lagomorph Micromammals Birds Reptiles Invertebrates Fruits/seed Carrion/garbage D

Delibes Mateos et al. (2007) 19 19.3 48.4 51.6 16.1 93.5 19.3 16.1 3.6

Dos Santos Correia (1993) 20 11.1 23.4 9.9 3.5 36.2 17.3 9.7 6.3

Esmeriz (2001) 21 29 42 27 0 46 51 0 12.1

Esmeriz (2001) 21 1 56 11 0 81 20 0 14.0

Esmeriz (2001) 21 4 51 37 0 51 67 0 8.6

Esmeriz (2001) 21 0 41 3 0 95 27 0 11.5

Esmeriz (2001) 21 26 48 22 0 45 25 0 8.5

Esmeriz (2001) 21 0 73 21 0 82 3 0 11.4

Esmeriz (2001) 21 28 29 26 0 47 76 0 8.1

Esmeriz (2001) 21 0 40 3 0 90 28 0 11.5

Esmeriz (2001) 21 31 43 38 0 38 50 0 8.0

Esmeriz (2001) 21 2 90 12 0 49 10 0 9.9

Fedriani (1996) 11 55.8 7 7 8.5 83.7 24.8 27.1 4.9

Fedriani (1996) 11 53 6.1 16.5 9.1 93.3 6.7 23.1 5.2

Fedriani et al. (1999) 11 53.6 0 0 0 89.1 14.7 22.5 16.8

Fedriani et al. (1999) 11 55.6 0 0 0 92.9 2 19.2 11.7

Fedriani et al. (1999) 11 65 0 0 0 90.2 13 22.8 10.8

Fernández & Ruiz de Azua (2005) 22 1.1 64.3 17.8 2.1 62.3 37.7 17.2 5.9

González-Prat (1995)a 23 33.33 25.93 55.56 0 14.81 66.67 25.93 5.9

González-Prat (1995)a 24 6.67 20 46.67 0 13.33 46.67 93.34 6.4

González-Prat (1995)b 25 24.8 0 18.55 0 8.25 100 15.3 13.2

Guitian and Callejo (1983) 26 0.64 18.82 1.94 0.43 38.96 38.09 0.21 10.5

Herranz et al. (1999) 27 32.4 34.3 37.1 0 20 80 10.5 8.2

Page 207: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

206

Reference ID Lagomorph Micromammals Birds Reptiles Invertebrates Fruits/seed Carrion/garbage D

Dos Santos Marques (2003) 28 66 24 17 0 11 30 11 9.0

López (1999) 29 33.13 35.1 3.63 0.45 8.17 21.33 1.51 8.3

López (1999) 29 27.43 32.74 2.65 2.65 12.39 36.28 1.76 7.2

López (1999) 29 37.5 41.53 4.44 0 6.85 9.27 1.2 9.2

López (1999) 29 34.97 36.36 4.9 0 12.59 20.28 0 9.8

López (1999) 29 29.03 25.81 1.94 0 2.58 32.9 1.93 9.6

Martín (2008) 25 8.64 8.4 3.7 0 14.7 35.05 5.14 11.1

Monterroso et al. (2006) 30 52.9 44.7 19.9 0 16.5 30.5 0 12.6

Negrões (2000) 31 17.1 44.1 16.3 0.8 54.1 43.1 16.9 5.4

Negrões (2000) 31 17.8 41.1 12.2 1.1 48.9 63.3 10 5.5

Negrões (2000) 31 22.2 47.9 11.8 2.1 47.2 15.3 25.7 5.3

Negrões (2000) 31 12.6 22.5 15.9 0 78.1 68.9 13.9 6.5

Negrões (2000) 31 16.2 72.4 26.7 0 33.3 26.7 15.2 6.4

Padial et al. (2002) 32 24.2 27.3 6.1 4.6 28 41 28.8 5.2

Padial et al. (2002) 33 0 52.7 4.1 1.4 32.4 42 34.2 9.9

Palomares and Ruiz-Martínez (1994) 34 0.7 58.5 8.1 22.2 54.8 14.1 13.3 6.0

Palomares and Ruiz-Martínez (1994) 34 0 72.2 10 11.1 17.8 0 2.2 10.5

Sarmento et al. (1999) 20 7.5 39.9 11.4 7.5 59.1 41.3 7.5 5.3

Sarmento et al. (1999) 20 9.5 27 7.9 3.2 66.7 57.1 11.1 5.5

Sarmento et al. (1999) 20 1.7 59.3 22 16.9 74.6 11.9 10.2 5.4

Sarmento et al. (1999) 20 6.4 28.8 11.2 4 48.8 56.8 3.2 6.1

Sarmento et al. (1999) 20 13.6 62.7 6.8 10.2 69.5 18.6 10.2 5.1

Such-Sanz (2003) 35 22 34 34 10 61 85 0 5.9

Page 208: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

207

Reference ID Lagomorph Micromammals Birds Reptiles Invertebrates Fruits/seed Carrion/garbage D

Such-Sanz (2003) 36 25 82 85 3 72 48 0 5.7

Urios and Plou (1986) 37 9.4 13.4 26.3 0.9 17 48.8 12.3 6.5

Vericard (1971) 38 7.6 39.93 15.1 1.5 15.5 39.69 15.47 6.2

Yanes et al. (1996) 39 97.1 2.9 11.6 1.4 49.2 0 8.7 8.7

Page 209: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

208

Appendix 2.1. Detailed description of magpie diet composition. The No. of analyzed gizzards (Gizzard), and the minimum No. of items found (Items) for each food group are shown. For each food group, we also present the frequency of occurrence (FO), the relative frequency of occurrence (RF) and the average % volume (VOL). Data is independently presented in terms of overall magpie diet (Total) and in each study area (A1 and A2).

Gizzards Items (n = 1016) FO RF VOL Food type Total (n = 118) A1 (n = 61) A2 (n = 57) Total A1 A2 Total A1 A2 Total A1 A2 Total A1 A2 Coleoptera 98 47 51 195 79 116 83.05 77.05 89.47 20.04 13.53 29.82 29.69 14.18 46.30 Formicidae 29 25 4 165 149 16 24.58 40.98 7.02 16.96 25.51 4.11 5.76 10.07 1.16 Isopoda 8 5 3 9 6 3 6.78 8.20 5.26 0.92 1.03 0.77 1.84 1.84 1.84 Hymenoptera 5 2 3 6 2 4 4.24 3.28 5.26 0.62 0.34 1.03 1.97 1.34 2.63 Dermaptera 5 2 3 6 2 4 4.24 3.28 5.26 0.62 0.34 1.03 0.47 0.25 0.70 Araneida 5 3 2 5 3 2 4.24 4.92 3.51 0.51 0.51 0.51 0.64 1.07 0.19 Diptera 1 0 1 1 0 1 0.85 0.00 1.75 0.10 0.00 0.26 0.21 0.00 0.44 Arthropoda larva 1 1 0 2 2 0 0.85 1.64 0.00 0.21 0.34 0.00 0.17 0.33 0.00 Hemiptera 3 2 1 4 2 2 2.54 3.28 1.75 0.41 0.34 0.51 0.39 0.10 0.70 Arthropoda 111 56 55 393 245 148 94.07 91.80 96.49 40.39 41.95 38.05 41.14 29.16 53.96 Gastropoda 11 10 1 20 19 1 9.32 16.39 1.75 2.06 3.25 0.26 3.07 5.89 0.05 Hordeum sp. 27 19 8 274 212 62 22.88 31.15 14.04 28.16 36.30 15.94 14.05 18.77 9.00 Avena sp. 13 2 11 114 6 108 11.02 3.28 19.30 11.72 1.03 27.76 4.92 1.48 8.61 Triticum sp. 8 7 1 36 21 15 6.78 11.48 1.75 3.70 3.60 3.86 2.92 4.26 1.49 Indet. Seeds 31 13 18 66 27 39 26.27 21.31 31.58 6.78 4.62 10.03 14.20 11.92 16.65 Cereal seed 79 43 36 490 266 224 66.95 70.49 63.16 50.36 45.55 57.58 36.10 36.43 35.75 Fruit 5 5 0 5 5 0 4.24 8.20 0.00 0.51 0.86 0.00 1.55 3.00 0.00 Eggs 6 5 1 6 5 1 5.08 8.20 1.75 0.62 1.03 0.26 2.63 3.61 1.58 Other vegetal 40 27 13 39 26 13 33.90 44.26 22.81 4.01 4.45 3.34 10.75 16.20 4.93 Passeriforme 15 13 2 15 13 2 12.71 21.31 3.51 1.54 2.23 0.51 1.20 2.21 0.12 Galliforme 1 1 0 1 1 0 0.85 1.64 0.00 0.10 0.17 0.00 0.04 0.08 0.00 Birds 20 17 3 22 19 3 16.95 27.87 5.26 2.16 3.08 0.77 3.87 5.90 1.70 Apodemus sylvaticus 2 2 0 2 2 0 1.69 3.28 0.00 0.21 0.34 0.00 0.05 0.10 0.00 Felis sp. 1 1 0 1 1 0 0.85 1.64 0.00 0.10 0.17 0.00 0.01 0.02 0.00 Indet. mammal 1 1 0 1 1 0 0.85 1.64 0.00 0.10 0.17 0.00 0.01 0.02 0.00 Mammals 4 4 0 4 4 0 3.39 6.56 0.00 0.41 0.68 0.00 0.07 0.13 0.00 Reptile 1 1 0 1 1 0 0.85 1.64 0.00 0.10 0.17 0.00 0.21 0.41 0.00 Non-food remains Gastrolith 10 8 2 37 33 4 8.47 6.78 1.69 3.64 3.25 0.39 0.51 0.25 0.79 Plastic 5 3 2 6 3 3 4.24 4.92 3.51 0.62 0.51 0.77 0.13 0.18 0.07

Page 210: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

209

Appendix 2.2.

Page 211: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

210

Appendix 2.3.

Page 212: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

211

Appendix 3.1. Description and design of the cage-traps models evaluated. Units of size

descriptions are in cm

Model Size Capture

Entrances Live Bait Chamber Capture system (width x length x height)

A 1020 x 2000 x 1000 1 no guillotine-type door+outrigger B 450 x 950 x 500 1 no guillotine-type door+outrigger C 360 x 1450 x 550 2 lateral guillotine-type door+outrigger D 450 x 1520 x 500 2 lateral guillotine-type door+outrigger E 450 x 2300 x 500 2 central guillotine-type door+outrigger

Model A (CT01 type)

Page 213: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

212

Model B (CT01 type)

Model C (CT02 type)

Page 214: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

213

Model D (CT02 type)

Model E (CT03 type)

Page 215: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

214

Appendix 3.2. Overall results obtained for each bait-attractant combination (A). Overall

results obtained for each trap-type-bait-attractant combination (B). Effort: number of trap-nights

Efficiency: foxes/1000 trap-nights; NTcr: non-targets /1000 trap-nights.

Captures Bait Attractant Effort Fox Non-target Efficiency NTcr Selectivity

Dead

Control 654 1 7 1.53 10.71 13 COLL 40 0 0 0.00 0.00 - FAS 138 0 1 0.00 7.25 0 FU 199 0 2 0.00 10.05 0 VAL 72 0 0 0.00 0.00 -

Alive

Control 434 1 14 2.31 32.30 7 COLL 44 0 0 0.00 0.00 - FAS 39 0 1 0.00 25.64 0 FU 205 3 11 14.63 53.66 21 VAL 243 1 4 4.12 16.46 20

Captures CT Type Bait Attractant Effort Fox Non-target Efficiency NTcr Selectivity

A

Dead

Control 8 0 1 0 125.00 0 COLL nt nt nt nt nt nt FAS nt nt nt nt nt nt FU 23 0 1 0 43.48 0 VAL 8 0 0 0 0 -

Alive

Control 137 1 12 7.30 87.59 8 COLL 21 0 0 0 0 - FAS 16 0 1 0 62.5 0 FU 72 2 11 27.78 152.78 15 VAL 86 0 4 0 46.51 0

B

Dead

Control 303 1 4 3.30 13.20 20 COLL nt nt nt nt nt nt FAS nt nt nt nt nt nt FU 120 0 1 0 8.33 0 VAL 16 0 0 0 0 -

Alive

Control nt nt nt nt nt nt COLL nt nt nt nt nt nt FAS nt nt nt nt nt nt FU nt nt nt nt nt nt VAL nt nt nt nt nt nt

C

Dead

Control 343 0 2 0 5.83 0 COLL 40 0 0 0 0 - FAS 138 0 1 0 7.25 0 FU 56 0 0 0 0 - VAL 48 0 0 0 0 -

Alive

Control 297 0 2 0 6.73 0 COLL 23 0 0 0 0 - FAS 23 0 0 0 0 - FU 133 1 0 7.52 0 100 VAL 157 1 0 6.37 0 100

TOTAL 2068 6 40 2.90 19.34 13

(A)

(B)

Page 216: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

215

Appendix 4.1. Trap models employed in the experiments: models 1–3 have four capture chambers (a),

whereas model 4 has two capture chambers (b).

a

b

Page 217: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

216

Appendix 5.1. Habitat composition of studied sites (%) and rabbit availability (rabbit

detections per 100 trap days) for each study locality (Map ID). Localities are ordered according

to the increasing intensity of fox control.

Page 218: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

217

Appendix 5.2. Carnivores detected during camera trap surveys in each locality (Study site). For each species and locality we show the naïve site occupancy (i.e. proportion of cameras that recorded the presence of the species). We show the overall mean naïve occupancy (mean (SE)). “Detection” is the proportion of localities where each species was present. “1-week positive” is the number of positive 1-week sampling occasions and respective proportion (in brackets) over all sampling occasions for mesocarnivores in each of the study localities.

Study site (Map ID) Red fox Stone marten Common genet Egyptian

mongoose Eurasian badger Least weasel Wildcat

1 0.35 nd nd nd nd 0.10 nd 2 0.20 nd nd nd nd nd 0.07 3 0.56 nd nd nd nd 0.06 nd 4 0.59 nd nd 0.12 nd 0.06 nd 5 0.63 0.32 0.26 nd 0.05 nd nd 6 0.50 0.60 0.25 nd 0.05 nd nd 7 0.40 0.20 0.05 0.05 0.05 nd 0.10 8 0.50 0.40 0.05 0.05 0.10 0.05 nd 9 0.87 0.27 0.20 0.07 0.07 nd nd 10 0.57 nd 0.07 0.21 nd nd nd 11 0.95 0.35 0.10 0.10 0.30 nd 0.10 12 0.67 0.33 nd nd nd 0.06 nd

Detection (%) 100 58 58 50 50 42 25

Mean Naïve Occupancy (SE) 0.57 (0.06) 0.21 (0.06) 0.08 (0.03) 0.05 (0.02) 0.05 (0.02) 0.03 (0.01) 0.02 (0.01)

1-week positive 254 (31.7 %) 65 (8.1 %) 22 (2.7 %) 17 (2.1 %) 12 (1.5 %) 5 (0.6 %) 5 (0.6 %)

Page 219: Ecología y gestión de depredadores - digital.csic.esdigital.csic.es/bitstream/10261/142648/1/zorroyurraca.pdf · No obstante, existen también numerosos ejemplos de otros depredadores

218