10
243 Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), 53 (31/12/2013): 243–252. ECOLOGICAL ANALYSIS OF THE CARABID COMMUNITY (COLEOPTERA, CARABIDAE) FROM THE SUEVE MASSIF (NORTH-WEST SPAIN) Mª del Camino Peláez 1 & José Mª Salgado 2 1 C/ Catedrático Francisco Beceña, 10, 3º F. 33006 Oviedo, Spain – [email protected] 2 Department of Ecology and Animal Biology, University of Vigo. 36310 Vigo (Pontevedra), Spain – [email protected] Abstract: This study analyzes the ecological data obtained for the carabid community from the Sueve Massif (Asturias, Spain). We studied the frequencies of the different carabid species and their evolution along the seasons. We found that the most abundant species was Steropus (Steropidius) gallega, even though in spring we collected higher number of individuals of Nebria (Nebria) brevicollis and Paranchus albipes. The spatial distribution of the species was examined by means of their constancy analysis, find- ing two constant species, Steropus (Steropidius) gallega and Carabus (Megodontus) violaceus, and a great number of accidental ones. Finally, a detrended correspondence analysis (DCA) was performed. The DCA ordered the species according to their prefer- ences for altitude and loose or compacted material soils, and according to their light requirements. This analysis also allowed corre- lating carabid species to their habitats. Key words: Coleoptera, Carabidae, ecological analysis, Asturias, Sueve Massif. Análisis ecológico de la comunidad de carábidos (Coleoptera, Carabidae) del macizo del Sueve (noroeste de España) Resumen: La finalidad de este trabajo es analizar los datos ecológicos obtenidos para la comunidad de carábidos del Macizo del Sueve (Asturias, España). Se analiza la frecuencia de las diferentes especies y su distribución a lo largo del año, encontrándose que la más abundante es Steropus (Steropidius) gallega, si bien durante la primavera es superada en número por Nebria (Nebria) brevicollis y Paranchus albipes. Se examina la distribución espacial de las especies mediante el análisis de su constancia, señalándose dos especies constantes, Steropus (Steropidius) gallega y Carabus (Megodontus) violaceus y un gran número de especies accidentales. Por último, se realiza un Análisis de correspondencias sin tendencia (DCA), que permite separar a las especies según su preferencia por la altitud y por los sustratos de materiales sueltos o compactados y según su preferencia por la luz, así como relacionarlas con los hábitat que ocupan. Palabras clave: Coleoptera, Carabidae, análisis ecológico, Asturias, Macizo del Sueve. Introduction From de data obtained about the Carabidae (Coleoptera) of the Sueve Massif (Asturias) some faunistic, ecological and biogeographical studies have already been performed (Peláez & Salgado, 2002, 2006a, 2006b, 2007a, 2007b; Salgado & Peláez, 2004). In the present study the ecological analysis is completed through a global assessment of the carabid com- munity. The study of Carabidae, family that shows high biodi- versity (Ortuño & Toribio, 2005), reveals itself as really inter- esting because of the great capacity of adaptation of carabid beetles to different environmental conditions. Carabid species, except for the eurytopic ones, are typical of particular habi- tats. Therefore, they have shown to be excellent bioindicators (Meskens et al., 2002; Ortuño & Marcos, 2003) that could be used to evaluate the effects of the anthropic management and use of certain ecosystems (Dufrêne & Legendre, 1997; McGeoch, 1998; Rainio & Niemelä, 2003; Pearce & Venier, 2006; Taboada et al., 2006b; Tárrega et al., 2006; Paoletti et al., 2010; Taboada et al., 2011) and also in population studies and biological conservation (Kotze et al., 2011). When working with a great amount of data, statistical methods for their interpretation are required, being very useful diverse types of multivariate analysis, for instance those used by authors like Salgado et al. (1998), Taboada et al. (2003), Gutiérrez et al. (2004) or Michels et al. (2010) to analyze the connections between Carabidae communities and different ecological factors such as soil or vegetation characteristics, as these factors may condition the distribution of the carabid species. In this study the detrended correspondence analysis (DCA) has been used in order to complete previously ob- tained results on the spatial and temporal distribution of the species. The choice of the Sueve Massif to carry out this study is due to the presence of different types of vegetation, several lithologies, a wide altitudinal interval and various geograph- ical orientations in a quite small area, also close to the coast. This leads to the existence of a great variety of suitable habi- tats for these edaphic insects. Material and methods Study area The study was performed in the Sueve Massif foothills (north- west Spain), which covers an area of approximately 170 km 2 (Fig. 1). The Sueve Massif makes up one of the so called coastal mountain ranges of eastern Asturias, in the northern slope of the Cantabrian Mountain Chain. It is very close to the coast, trending northeast-southwest and presents several quite high summits. Its most characteristic aspect is the connection of both, sea and mountain, in a restricted area, so the highest summit, the Pienzu Peak, with 1159 m altitude, is only 5 km away from the sea. The mountain range was uplifted during the Alpine Orogeny (Alonso et al., 1996); its subsequent erosion has enhanced the calcareus formation, which displays sinkholes, limestone pavements, and other features of the karst modeling.

ECOLOGICAL ANALYSIS OF THE CARABID COMMUNITY …sea-entomologia.org/PDF/Boletin53/243252BSEA53C... · gies to collect the beetles: (1) indirect method by pitfall trap-ping and (2)

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ECOLOGICAL ANALYSIS OF THE CARABID COMMUNITY …sea-entomologia.org/PDF/Boletin53/243252BSEA53C... · gies to collect the beetles: (1) indirect method by pitfall trap-ping and (2)

243

Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), nº 53 (31/12/2013): 243–252.

ECOLOGICAL ANALYSIS OF THE CARABID COMMUNITY (COLEOPTERA, CARABIDAE) FROM THE SUEVE MASSIF (NORTH-WEST SPAIN)

Mª del Camino Peláez1 & José Mª Salgado2

1 C/ Catedrático Francisco Beceña, 10, 3º F. 33006 Oviedo, Spain – [email protected] 2 Department of Ecology and Animal Biology, University of Vigo. 36310 Vigo (Pontevedra), Spain – [email protected] Abstract: This study analyzes the ecological data obtained for the carabid community from the Sueve Massif (Asturias, Spain). We studied the frequencies of the different carabid species and their evolution along the seasons. We found that the most abundant species was Steropus (Steropidius) gallega, even though in spring we collected higher number of individuals of Nebria (Nebria) brevicollis and Paranchus albipes. The spatial distribution of the species was examined by means of their constancy analysis, find-ing two constant species, Steropus (Steropidius) gallega and Carabus (Megodontus) violaceus, and a great number of accidental ones. Finally, a detrended correspondence analysis (DCA) was performed. The DCA ordered the species according to their prefer-ences for altitude and loose or compacted material soils, and according to their light requirements. This analysis also allowed corre-lating carabid species to their habitats. Key words: Coleoptera, Carabidae, ecological analysis, Asturias, Sueve Massif. Análisis ecológico de la comunidad de carábidos (Coleoptera, Carabidae) del macizo del Sueve (noroeste de España) Resumen: La finalidad de este trabajo es analizar los datos ecológicos obtenidos para la comunidad de carábidos del Macizo del Sueve (Asturias, España). Se analiza la frecuencia de las diferentes especies y su distribución a lo largo del año, encontrándose que la más abundante es Steropus (Steropidius) gallega, si bien durante la primavera es superada en número por Nebria (Nebria) brevicollis y Paranchus albipes. Se examina la distribución espacial de las especies mediante el análisis de su constancia, señalándose dos especies constantes, Steropus (Steropidius) gallega y Carabus (Megodontus) violaceus y un gran número de especies accidentales. Por último, se realiza un Análisis de correspondencias sin tendencia (DCA), que permite separar a las especies según su preferencia por la altitud y por los sustratos de materiales sueltos o compactados y según su preferencia por la luz, así como relacionarlas con los hábitat que ocupan. Palabras clave: Coleoptera, Carabidae, análisis ecológico, Asturias, Macizo del Sueve.

Introduction

From de data obtained about the Carabidae (Coleoptera) of the Sueve Massif (Asturias) some faunistic, ecological and biogeographical studies have already been performed (Peláez & Salgado, 2002, 2006a, 2006b, 2007a, 2007b; Salgado & Peláez, 2004). In the present study the ecological analysis is completed through a global assessment of the carabid com-munity.

The study of Carabidae, family that shows high biodi-versity (Ortuño & Toribio, 2005), reveals itself as really inter-esting because of the great capacity of adaptation of carabid beetles to different environmental conditions. Carabid species, except for the eurytopic ones, are typical of particular habi-tats. Therefore, they have shown to be excellent bioindicators (Meskens et al., 2002; Ortuño & Marcos, 2003) that could be used to evaluate the effects of the anthropic management and use of certain ecosystems (Dufrêne & Legendre, 1997; McGeoch, 1998; Rainio & Niemelä, 2003; Pearce & Venier, 2006; Taboada et al., 2006b; Tárrega et al., 2006; Paoletti et al., 2010; Taboada et al., 2011) and also in population studies and biological conservation (Kotze et al., 2011).

When working with a great amount of data, statistical methods for their interpretation are required, being very useful diverse types of multivariate analysis, for instance those used by authors like Salgado et al. (1998), Taboada et al. (2003), Gutiérrez et al. (2004) or Michels et al. (2010) to analyze the connections between Carabidae communities and different ecological factors such as soil or vegetation characteristics, as these factors may condition the distribution of the carabid

species. In this study the detrended correspondence analysis (DCA) has been used in order to complete previously ob-tained results on the spatial and temporal distribution of the species.

The choice of the Sueve Massif to carry out this study is due to the presence of different types of vegetation, several lithologies, a wide altitudinal interval and various geograph-ical orientations in a quite small area, also close to the coast. This leads to the existence of a great variety of suitable habi-tats for these edaphic insects.

Material and methods

Study area The study was performed in the Sueve Massif foothills (north-west Spain), which covers an area of approximately 170 km2 (Fig. 1). The Sueve Massif makes up one of the so called coastal mountain ranges of eastern Asturias, in the northern slope of the Cantabrian Mountain Chain. It is very close to the coast, trending northeast-southwest and presents several quite high summits. Its most characteristic aspect is the connection of both, sea and mountain, in a restricted area, so the highest summit, the Pienzu Peak, with 1159 m altitude, is only 5 km away from the sea.

The mountain range was uplifted during the Alpine Orogeny (Alonso et al., 1996); its subsequent erosion has enhanced the calcareus formation, which displays sinkholes, limestone pavements, and other features of the karst modeling.

Page 2: ECOLOGICAL ANALYSIS OF THE CARABID COMMUNITY …sea-entomologia.org/PDF/Boletin53/243252BSEA53C... · gies to collect the beetles: (1) indirect method by pitfall trap-ping and (2)

244

Fig. 1. Map of the study area and location of the sampling sites. Fig. 1. Mapa del área de estudio y situación de las localidades de muestreo.

There are two other processes that have influenced the relief: the coastal modeling that gave rise to beaches, cliffs and ma-rine abrasion platforms, and the fluvial incision, as the steep slopes that watercourses encounter when descending the Sueve Massif provide them with great erosive power (Farias & Marquínez, 1995).

The climate could be considered temperate, with quite mild temperatures; the winter snowfalls last very little, except in very shadow places, because of the strong sunshine of de southern slopes and the sea influence on the northern side. The vegetation in high altitude is poor, mainly composed by pastures; in the middle area the natural forests have disap-peared to a large extend, due to the expansion of meadows and cultivated fields; while in low elevations there are com-mon forests and meadows, intensely modified by farming, forestry and ranching purposes. Sampling methods We used two types of complementary sampling methodolo-gies to collect the beetles: (1) indirect method by pitfall trap-ping and (2) direct one by hand collecting. The combination of the data obtained by both sampling techniques provides a better understanding of the biodiversity of the Sueve Massif Carabidae.

Indirect sampling was performed in a systematic way. In 76 previously established sites, we placed 105 independent traps (depth 110 mm, diameter 75 mm) partly filled with beer, which were emptied monthly for two years. This sampling effort is considered sufficient to obtain a reasonable represen-tation of the carabid species that make up each community.

Direct sampling was carried out in 212 sites in an une-ven and sporadic way. For this reason, only the pitfall catches were taken into account for calculations in which the number of samples was included, excluding from the analysis those

carabid species which where only caught by hand collecting methods.

In Peláez & Salgado, 2006a the sampling sites are listed (Fig. 1), showing for each of them: locality, vegetation type, lithology, altitude, slope orientation, UTM coordinates and sampling type (direct, indirect or both). Statistical analysis We calculated the species frequency or relative abundance, defined as the percentage of individuals of each carabid spe-cies in relation to the total number of individuals collected (Dajoz, 1979). For this analysis, we considered the carabid catches obtained from both collecting methodologies together, as well as by the indirect and direct sampling separately.

We also analyzed the annual evolution of the frequency of the carabid species captured with at least 100 individuals. Besides, we examined the constancy of the carabid species caught by indirect sampling, defined as the relation between the percentage of samples in which a particular species was collected and the total number of samples (Dajoz, 1979).

A detrended correspondence analysis (DCA) was per-formed to correlate carabid beetles and sampling sites (Hill, 1979; Hill & Gausch, 1980), assuming a unimodal (Gaussian) response of the carabid abundance to the environment (Jongman et al., 1995; Quinn & Keough, 2002). For this analysis we elaborated a quantitative data matrix (number of individuals of each species) based on the carabid catches obtained by indirect sampling. After a preliminary test and having into account the high number of data represented, we decided to exclude from the analysis the species registered in less than three sampling sites. The DCA was performed with CAP (Community Analysis Package) 3.11 computer program; the plane defined by the axes 1 and 2 has been graphically represented and interpreted.

Page 3: ECOLOGICAL ANALYSIS OF THE CARABID COMMUNITY …sea-entomologia.org/PDF/Boletin53/243252BSEA53C... · gies to collect the beetles: (1) indirect method by pitfall trap-ping and (2)

245

Fig. 2. Annual distribution of the most abundant carabid species. Fig. 2. Distribución anual de las especies más frecuentes.

Results

A total of 14993 carabid beetles belonging to 196 species were collected. 8357 carabid individuals (115 species) were captured using pitfall traps, whereas 6636 individuals (188 species) were collected by direct sampling (hand collecting). Frequency or relative abundance The examined species of Carabidae are represented in the Sueve Massif in a very uneven manner. The frequency or relative abundance was analyzed for each species, considering the total of catches as well as the indirect and direct sampling separately.

The most abundant carabid species, considering all the captures, were Steropus (Steropidius) gallega (27.95 %), Nebria (Nebria) brevicollis (6.18 %), Paranchus albipes (6.02 %) and Pterostichus (Oreophilus) cantaber (4.82 %) (Peláez & Salgado, 2006a). The first of them, S. gallega is a generalist species (Peláez & Salgado, 2006b; Taboada et al., 2008), that involves nearly half of the captures by indirect sampling (47.11 %), followed by P. cantaber (6.34 %). On the other hand the main species caught by direct sampling were P. albipes and N. brevicollis, with frequencies of 11.65 and 11.39 % respectively.

Other usual carabid species in pitfall traps were Carabus (Megodontus) violaceus (3.03 %), Poecilus (Poe-cilus) cupreus (2.72 %), Carabus (Tachypus) cancellatus (2.35 %), Nebria (Nebria) brevicollis (2.03 %), Anchomenus (Anchomenus) dorsalis (2.01 %), Trechus (Trechus) barnevi-llei (2 %), Abax (Abax) parallelepipedus (1.88 %) and Carabus (Mesocarabus) macrocephalus (1.85 %).

However, several carabid species from the tribe Bembidiini that were poorly represented or totally absent from indirect sampling, were greatly caught by hand collec-ting, like Bembidion (Bembidionetolitzkya) tibiale (Duft-schmid, 1812) (4.37 %), Bembidion (Ocydromus) decorum (Panzer, 1799) (3.48 %), Bembidion (Bembidionetolitzkya) atrocaeruleum Stephens, 1828 (3.27 %) and Bembidion (Peryphanes) deletum (2.76 %); together with other species like Chlaenius (Chlaeniellus) vestitus (4.6 %), Pterostichus (Pterostichus) cristatus (3.9 %), S. gallega (3.81 %) and P. cantaber (2.89 %).

The least abundant carabid species deserve also atten-tion, since they may be the most sensitive to the environmen-tal disturbances (Moreno, 2001). This is the case of the 30 species represented by only one specimen, for example Dyschiriodes (Eudyschirius) semistriatus (Dejean, 1825), hygrophilous, marsh-inhabiting and with dig habits species (Ortuño & Toribio, 1996); Trechus (Trechus) distigma Kiesenwetter, 1851, typically forest species (Jeanne, 1967; Aubry et al., 1981); Trechus (Trechus) schaufussi Putzeys, 1870, a forest (Zaballos & Jeanne, 1994) and orophilous species (Jeanne, 1976b); riverside carabids like Elaphropus (Tachyura) ferroa Kopecký, 2003, Lionychus albonotatus (Dejean, 1825) and Lionychus quadrillum (Duftschmid, 1812); or marsh-inhabiting species like Drypta (Drypta) dentata (Jeanne, 1972; Novoa, 1975); hygrophilous species like Stomis pumicatus (Panzer, 1796); Amara (Amara) eurynota (Panzer, 1796) and Amara (Amara) lucida (Duftschmid, 1812), both lapidicolous species (Zaballos, 1987), as well as Acinopus (Acinopus) picipes (Olivier, 1795), Harpalus (Harpalus) cupreus Dejean, 1829 and Harpalus (Harpalus) smaragdinus (Duftschmid, 1812); eurytopic spe-cies like Harpalus (Harpalus) sulphuripes Germar, 1824 and Brachinus (Brachinus) crepitans, that is also eurythermal and xerophile (Thiele. 1977); and species typical of open areas like Harpalus (Harpalus) anxius (Duftschmid, 1812), Harpalus (Harpalus) serripes (Quensel, 1806), Ophonus (Metophonus) cordatus (Duftschmid, 1812), that lives in dry and sunny areas (Jeanne, 1971) and Ophonus (Metophonus) melletii (Heer, 1837), found in cultivated fields (Briel, 1964). Annual evolution Figure 2 represents the seasonal evolution of the number of individuals of the carabid species collected with 100 or more specimens. In the Y-axis, 500 has been established as the maximum abundance value, in order to point out relative low values of several carabid species, although Steropus (Steropidius) gallega exceeded this value in summer and autumn (with 1431 and 2008 captured individuals respec-tively).

Page 4: ECOLOGICAL ANALYSIS OF THE CARABID COMMUNITY …sea-entomologia.org/PDF/Boletin53/243252BSEA53C... · gies to collect the beetles: (1) indirect method by pitfall trap-ping and (2)

246

In spring, the most frequent carabid species were Nebria (Nebria) brevicollis, Paranchus albipes, S. gallega, Bembi-dion (Bembidionetolitzkya) tibiale, Pterostichus (Oreophilus) cantaber, Chlaenius (Chlaeniellus) vestitus, Poecilus (Poe-cilus) cupreus, Agonum (Agonum) muelleri, Anchomenus (Anchomenus) dorsalis and Bembidion (Peryphus) cruciatum. In summertime some species appeared more frequently: S. gallega, P. cantaber, P. albipes, Pterostichus (Pterostichus) cristatus, Bembidion (Ocydromus) decorum, Bembidion (Bembidionetolitzkya) atrocaeruleum, Carabus (Tachypus) cancellatus, P. cupreus, C. vestitus, Bembidion (Peryphanes) deletum and Bembidion (Metallina) lampros. In autumn the most frequent species were S. gallega, N. brevicollis, Trechus (Trechus) barnevillei, Calathus (Calathus) fuscipes, Carabus (Megodontus) violaceus, P. cantaber, P. cristatus, P. albipes, Laemostenus (Antisphodrus) peleus and Carabus (Mesoca-rabus) macrocephalus. During the winter we found mainly S. gallega, N. brevicollis, Ocys (Ocys) harpaloides, Leistus (Leistus) barnevillei, P. albipes, T. barnevillei, Trechus (Trechus) obtusus and Bembidion (Peryphus) cruciatum. Constancy We calculated the constancy of the 115 carabid species caught by indirect sampling, and values are shown in Appen-dix A.

Depending on their constancy value three categories of species were distinguished (Dajoz, 1979):

– Constant species, present in more than 50% of the samples.

– Accessory species, present in 25% to 50% of the sam-ples.

– Accidental species, present in less than 25% of the samples.

Only two carabid species can be considered constant: Steropus (Steropidius) gallega and Carabus (Megodontus) violaceus, with values of 92.11% and 60.53% respectively.

Carabus (Chrysocarabus) lineatus (48.68%), Carabus (Mesocarabus) macrocephalus (48.68%), Notiophilus bigu-ttatus (36.84%), Nebria (Nebria) brevicollis (35.53%), Carabus (Archicarabus) nemoralis (34.21%), Leistus (Leistus) barnevillei (34.21%), Trechus (Trechus) obtusus (34.21%), Trechus (Trechus) barnevillei (31.58%), Synuchus vivalis (28.95%), Carabus (Oreocarabus) amplipennis (27.63%), Pterostichus (Oreophilus) cantaber (27.63%) and Agonum (Agonum) muelleri (25%) were classified as accesso-ry species (constancy values are indicated in brackets). The other remaining 101 carabid species were accidental. Detrended correspondence analysis (DCA) The results of the DCA are shown in Figures 3 and 4 that represent, respectively, the layout of the carabid species and of the sampling sites depending on the coordinates provided by the first two axes of the multivariate analysis.

Discussion

About carabid species representation Three carabid species exert the greatest influence in the carabid community of the Sueve Massif: the generalist S. gallega, N. brevicollis, shown as ubiquitous and euryhygric (Loreau, 1978) and P. cantaber, a forest species (Jeanne, 1965; Taboada et al., 2004; Taboada et al., 2006b; Taboada

et al., 2008), because of their large numbers and quite big body size.

Other carabid species that dominated the studied Carabidae community were: P. albipes, C. vestitus, P. cristatus, T. barnevillei, P. cupreus, B. tibiale and C. violaceus. About the temporal distribution of the carabid species The carabid community of the Sueve Massif varies along the year, due to the biological cycles of the different species (Thiele, 1977; Peláez & Salgado, 2007a).

It is worth noting that during the spring, N. brevicollis and P. albipes, winter-active species (Jaskuła & Soszyńska-Maj, 2011), exceeded the number of the most abundant species in the study area, S. gallega. The case of P. albipes is easily understandable, since it is a typical spring-breeding carabid (Zaballos, 1986b; Peláez & Salgado, 2007a); howe-ver N. brevicollis is an autumn-breeding species (Thiele, 1977; Kwiatkowski, 2011), as well as S. gallega (Peláez & Salgado, 2007a). According to Alderweireldt (1989) the high activity of this species throughout the spring and at the beginning of summer is due to the intense search for food that has to be stored as reserve material for the summer diapause period.

Other species, sometimes with relative low frequency values, achieved certain importance in particular seasons. This is the case of B. tibiale, A. dorsalis and A. muelleri in March, April and May. They are spring-breeding species (Peláez & Salgado, 2007a). In the first quarter June-July-August the dominant species were C. cancellatus, a spring-breeding carabid (Thiele, 1977; Kwiatkowski, 2011) that keeps activity in summer (Ortuño & Marcos, 2003; Peláez & Salgado, 2007a) and several species of the genus Bembidion, like B. decorum, B. atrocaeruleum and B. lampros, riverside inhabitants (Ortuño & Toribio, 1996) that are spring-breeding species and whose imagos have an early appearance in the summer period due to the mild climate in the study area (Peláez & Salgado, 2007a). In the autumn period we found frequent species like L. peleus, troglophile and abundant in caves (Vives & Vives, 1982; Salgado, 1985; Salgado & Vázquez, 1993), that most likely is an autumn-breeding carabid (Peláez & Salgado, 2007a) and other typical autumn-breeding species like T. barnevillei, C. fuscipes and C. violaceus (Benest & Cancela da Fonseca, 1980; Peláez & Salgado, 2007a). In December, January and February species like O. harpaloides and L. barnevillei were active, as they breed at the end of autumn and their egg-laying period proba-bly lasts until winter (Peláez & Salgado, 2007a). About the spatial distribution of the carabid species Spatial distribution of carabid species is determined by local environmental conditions (Shibuya et al., 2011), since they are sensitive to changes in hydrological regime and vegetation structure (Moran et al., 2012).

Only two species appeared as constants: S. gallega and C. violaceus. The high constancy of S. gallega confirms the predominance of this species, very adapted to the climate and ecological conditions of the Sueve Massif (Peláez & Salgado, 2006a, 2006b). On the other hand, C. violaceus is a generalist in relation to lithology, as it has been collected in all the studied substrates (Peláez & Salgado, 2007b).

Page 5: ECOLOGICAL ANALYSIS OF THE CARABID COMMUNITY …sea-entomologia.org/PDF/Boletin53/243252BSEA53C... · gies to collect the beetles: (1) indirect method by pitfall trap-ping and (2)

247

Fig. 3. Detrended correspondence analysis (eigenvalues: 0.63 for axis 1, and 0.43 for axis 2) for carabid spe-cies. Carabid names are a combination of 2 (genus name) by 2 (species name) letters: see Appendix A. Fig. 3. Análisis de correspondencias sin tendencia (eigenvalues: 0,63 para el eje 1 y 0,43 para el eje 2) para las especies de carábidos. Los nombres de las especies se indican con un código que resulta de la combinación de dos letras del nombre genérico y dos del nombre específico: ver Anexo A. Fig. 4. Detrended correspondence analysis (eigenvalues: 0.63 for axis 1, and 0.43 for axis 2) for sampling sites. B = Beech forest, C = crop, D = bramble woodland or ruderal site, E = Eucalyptus forest, G = gorse forest, H = heathland, L = holly forest, M = mixed forest, N = pine forest, P = pasture or meadow, R = riparian woodland, S = beach (sandy spot), V = beach (beside river). Fig. 4. Análisis de correspondencias sin tendencia (eigenvalues: 0,63 para el eje 1 y 0,43 para el eje 2) para los puntos de muestreo. B = hayedo, C = cultivo, D = zarzal o zona ruderal, E = eucaliptal, G = tojal, H = brezal, L = bosque de acebos, M = bosque mixto, N = pinar, P = pastizal o prado, R = bosque de ribera, S = playa (zona arenosa), V = playa (orilla de río).

The great number of accidental species indicates the

heterogeneous character of the sampling sites, as a result of the great variety of habitats in the Sueve Massif. About the detrended correspondence analysis (DCA) When working with a high number of variables, the statistical calculations provide a big quantity of data that result of little utility. For this reason, it is convenient to use a simplification method to reduce the number of variables while maintaining the degree of information as similar as possible to the original level, resolving in a simple way, a complex ecological prob-lem (Legendre & Legendre, 1984).

The distribution of the species and sampling sites res-ponded mainly to the degree of influence exerted by the most frequent species in the study area, Steropus (Steropidius)

gallega, which appeared in the central part of the species graph (Fig. 3). This species was associated to a group of sam-pling sites that included most of the mixed forests and adja-cent areas, together with a gorse-heather and an orchard (Fig. 4); in all of these sites the species appeared much more fre-quently than any other species.

The first axis divided the carabid species according to their altitude preference and the degree of consolidation of the substrate. The highest values belonged to species that live at low altitude and over loose materials of different sizes, while the lowest values corresponded to species that live in high elevations and over consolidated substrates.

Sampling sites located in the left side of Figure 4 repre-sent pine forests, heather moors and adjacent places, as well as a holly wood and a beech forest, and two native forest

Page 6: ECOLOGICAL ANALYSIS OF THE CARABID COMMUNITY …sea-entomologia.org/PDF/Boletin53/243252BSEA53C... · gies to collect the beetles: (1) indirect method by pitfall trap-ping and (2)

248

formations of little extension in the study area (Peláez & Sal-gado, 2006b); all these sites are located in the core of the Sueve Massif over rocky soils, either calcareous or siliceous, and belong to the areas that are the highest in altitude and the least influenced by human activities. These sites have in common the outstanding presence of Pterostichus (Oreo-philus) cantaber, a forest specialist found in beech woods by Novoa (1979) and inside caves by Salgado & Vázquez (1993), collected with higher number of individuals than S. gallega. Also several forest or generalist species that inhabit woodlands were related to these sampling sites, such as Carabus (Megodontus) violaceus, Carabus (Mesocarabus) macrocephalus, orophilous species (Argibay & Salgado, 1991) and abundant in oak woods, harvesting meadows and heather moors (Alonso et al., 1988), Carabus (Oreocarabus) amplipennis, living in forests at a certain altitude (Argibay & Salgado, 1991; Forel & Leplat,1998), Leistus (Leistus) barnevillei, Notiophilus biguttatus, which demonstrate clear preferences for pine forests (Novoa, 1975; Ortuño & Toribio, 1996), Trechus (Trechus) suturalis, Abax (Abax) parallele-pipedus, forest species (Amiet, 1959; Jeanne, 1968b; Loreau, 1978; Balazuc & Roux, 1980; Drach & Faille, 1981; Vázquez & Salgado, 1986; Herrera & Arricibita, 1990; Taboada et al., 2006b) also found in beech woods (Casale & Brandmayr, 1985) and inside caves (Salgado & Vázquez, 1993), Calathus (Neocalathus) rotundicollis or Cryobius cantabricus. The last two species showed the lowest values for the first DCA axis (Fig. 3) and a clear preference for beech and holly forests situated over limestones. The forest character of C. rotundicollis has been pointed out by several authors like Greenslade (1965), Jeanne (1968b), Novoa (1979), Serrano (1983), Zaballos (1986c), Salgado et al. (1997), Taboada et al. (2006a) or Taboada et al. (2008), while C. cantabricus has been catalogued as a forest specialist species (Taboada et al., 2004) and related to beech forests (Taboada et al., 2003).

Disperse sampling sites located in the right zone of Fi-gure 4 mainly correspond to beaches, bramble patches, ruderal areas and riverbank forests, situated over non-compacted clay, sandy or rocky soils and in low altitude. These sites were associated to the presence of C. violaceus, a generalist species (Taboada et al., 2004), N. brevicollis, found in riverbanks by Jeannel (1941), Focarile (1983), Zaballos (1986a) and Novoa et al. (1999), Trechus (Trechus) bar-nevillei, that lives in forests and caves (Jeannel, 1927; Jeanne, 1967; Salgado & Vázquez, 1993), Asaphidion curtum, typical from riverbanks, shores of lakes and sweet water ponds, most-ly with herbaceous vegetation (Focarile, 1964), Bembidion (Peryphus) cruciatum, riverside species (Serrano, 1983) and common in beaches (Puel, 1937), Penetretus rufipennis, that lives among rocks or under them in humid areas (Mateu & Colas, 1954) and along torrent and stream banks (Jeanne, 1968a), Agonum (Agonum) muelleri, abundant in riverbank forests due to its moisture needs (Casale et al., 1993), Anchomenus (Ancho-menus) dorsalis, found in ash woods (Novoa, 1977) and meadows with human influence (Novoa, 1979), Paranchus albipes, that lives in shadow banks, sandy or rocky (Serrano, 1988) and also appears in the banks of subterranean watercourses (Jeanne, 1968b), the entrance of caves (Jeannel, 1942; Herrera & Arricibita, 1990) or inside them (Salgado & Vázquez, 1993), Anisodactylus (Anisodac-tylus) binotatus, eurytopic species (Kwiatkowski, 2011) common under stones close to calm waters (Jeannel, 1942;

Balazuc & Roux, 1980; Herrera & Arricibita, 1990) or Chlaenius (Chlaeniellus) vestitus. The highest values for axis 1 (Fig. 4) corresponded to two beach areas over sandy soil, close to watercourses mouths, dominated respectively by the two species with the highest values for this axis (Fig. 3): Omophron (Omophron) limbatum, that lives in damp sand, close to watercourses (Jeanne, 1966; Novoa, 1975; Lemos, 1983; Vázquez & Salgado, 1986; Ortuño & Toribio, 1996) and usually found in sandy beaches (Jeannel, 1941) and C. vestitus, halophilic species (Serrano & Borges, 1988; Ortiz et al., 1989; Serrano et al., 1990) that is found under vegetal debris and stones along rivers (Contarini & Garagnani, 1980).

The second axis separated the carabid species according to their light preferences. This way the highest values be-longed to species that inhabit open areas, while the lowest ones to those species that live in dark places like forests and caves.

The upper part of Figure 4 shows, to the right, most of the meadows, pastures and crops, as well as places next to them, while to the left some gorse forests, a heathland, an Eucalyptus forest and adjacent lands. In all of them we found species typical of open areas like Poecilus (Macropoecilus) kugelanni, found in pastures (Zaballos, 1986c), Poecilus (Poecilus) versicolor, Amara (Amara) aenea, abundant in places with low vegetation cover (Zaballos, 1986b), Calathus (Neocalathus) asturiensis, located in the highest coordinates for the second axis (Fig. 3), Calathus (Neocalathus) melanocephalus, mainly found in pastures and typical of open areas (Jeanne, 1968b; Kürka, 1972; Thiele, 1977; Herrera & Arricibita, 1990; Vigna Taglianti et al., 1998; Taboada et al., 2004; Taboada et al., 2008), Pseudoophonus (Pseudoopho-nus) rufipes, typical of cultivated fields (Ericson, 1977; Thiele, 1977; Pietraszko & de Clercq, 1981; Casale & Brandmayr, 1985), that also survives in cities (Šustek, 1999) or Brachinus (Brachynidius) sclopeta, found in open areas with not much damp (Iablokoff-Khnzorian, 1973). In this part of the graph there also appeared some generalist species that inhabit areas with low vegetation cover; this is the case of Carabus (Megodontus) violaceus, Carabus (Tachypus) cancellatus, caught in fields, rocky soils with some damp, stream banks and edges of forests by Salgado (1978), Nebria (Nebria) brevicollis, common in clearings (Pollard, 1968) and cultivated apple trees (Miñarro & Dapena, 2003), Poecilus (Poecilus) cupreus, found in cultivated fields by Thiele (1977), Ericson (1977), Herrera & Arricibita (1990) and Casale et al. (1993), Calathus (Calathus) fuscipes, that lives mainly in open areas (Kürka, 1972; Battoni & Vereschagina, 1984; Vigna Taglianti et al.,1998) or Brachinus (Brachy-nidius) explodens, eurytopic species (Casale et al., 1993), found in ash woods and dry pastures in summer by Novoa (1977).

In the two mixed forests located in the lower part of Figure 4 we collected species that have in common a prefe-rence for dark places and were gathered mainly in forests and in the entrance and inside caves. This is the case of Pterostichus (Pterostichus) cristatus, a forest species of noc-turnal habits (Thiele, 1977), found in oak woods, chestnut woods and beech woods by Novoa (1979) and in beech woods by Casale & Brandmayr (1985) and that presents the lowest coordinates for the second axis (Fig. 3), Carabus (Chrysocarabus) lineatus, found inside caves by Salgado & Vázquez (1993) and catalogued as a forest species (Taboada

Page 7: ECOLOGICAL ANALYSIS OF THE CARABID COMMUNITY …sea-entomologia.org/PDF/Boletin53/243252BSEA53C... · gies to collect the beetles: (1) indirect method by pitfall trap-ping and (2)

249

et al., 2004), Trechus (Trechus) fulvus, riverside and light intolerant species, found inside caves (Español, 1965; Jeanne, 1976a; Salgado, 1985; Ortuño, 1989; Salgado & Vázquez, 1993); Bembidion (Peryphanes) deletum, riverside (Novoa, 1979) and forest species (Jeanne, 1968a; Zaballos & Jeanne, 1994), living as trogloxenes in caves (Salgado & Vázquez, 1993) and Ocys (Ocys) harpaloides, found near the entrance of caves (Jeanne, 1968a) and inside them (Salgado & Vázquez, 1993).

Acknowledgements

We thank M. Reyes Tárrega (Department of Biodiversity and Envi-ronmental Management, University of León) for her collaboration in the achievement of the detrended correspondence analysis, Ángela Taboada for useful comments, Violeta Alonso and Juan Pablo Alonso for english correction.

References

ALDERWEIRELDT, M. 1989. Faunistics and ecology of the carabid beetle fauna (Coleoptera: Carabidae) of a woodland relict in “de Vlaamse Ardennen” (Eastern Flanders, Belgium). Bull. Annls. Soc. r. belge Ent., 125: 319-326.

ALONSO, M., F. NOVOA & E. EIROA 1988. Los Carabidae (Coleoptera) de Sierra Segundera y Peña Trevinca (Noroeste de España). II: Estudio de las taxocenosis de carábidos de los distintos tipos de vegetación. Bol. R. Soc. Esp. Hist. Nat. (Biol.), 84 (1-2): 5-13.

ALONSO, J.L., F.J. PULGAR, J.C. GARCÍA-RAMOS & P. BARBA 1996. Tertiary Basins and Alpine Tectonics in the Cantabrian Moun-tains. Pp. 214-227, in Friend, P.F. & C.J. Dabrio (eds.), Tertiary basins of Spain: The stratigraphic record of crustal kinematics. Cambridge University Press, Cambridge, 400 pp.

AMIET, J.L. 1959. Les Carabiques des prairies pseudoalpines du Mon-trond (AIN). Estrait du Bull. mens. Soc. linn. Lyon, 28 (4): 103-118.

ARGIBAY, M. & J.M. SALGADO 1991. Análisis ecológico de los Carabus y Cychrus (Col. Carabidae) en la provincia fitogeográfica Orocan-tábrica (España), Bull. Annls Soc. r. belge Ent., 127: 363-378.

AUBRY, J., C. JEANNE & G. TEMPERE 1981. Le groupe de Trechus distigma (Col. Carabiques). L’Entomologiste, 37 (6): 255-259.

BALAZUC, J. & PH. ROUX 1980. Catalogue des Carabidae connus du Parc national de Cévennes (Deuxième partie). L’Entomologiste, 36(4-5): 161-175.

BATTONI, F. & T. VERESCHAGINA 1984. Materiali per una revisione dei Calathus Bonelli del gruppo fuscipes (Coleoptera, Carabidae). G. it. Ent., 2: 129-162.

BENEST, G. & J.P. CANCELA DA FONSECA 1980. Étude d’un peuplement de Carabiques forestiers (Hêtraie de La Tillaie,forêt de Fon-tainebleau). Pedobiología, 20: 343-359.

BRIEL, J. 1964. Les Ophonus de France. Thiébault et Cie, Chateau-Salins, 41 pp.

CASALE, A. & P. BRANDMAYR 1985. Ricerche faunistico-ecologiche sui Coleotteri Carabidi della faggeta di Rezzo (Alpi Liguri Occidentali). Boll. Mus. Reg. Sci. Nat. Torino, 3(2): 355-368.

CASALE, A., P.M. GIACHINO, G. ALLEGRO, G. DELLA BEFFA & F. PICCO 1993. Comunità di Carabidae (Coleoptera) in pioppeti del Piemonte meridionale. Riv. Piem. St. Nat., 14: 149-170.

CONTARINI, E. & P. GARAGNANI 1980. I Carabidi del comprensorio pinetale e vallivo di S. Vitale di Ravenna. Estratto dal Bollettino della Società Entomologica Italiana, 112(1-3): 26-35.

DAJOZ, R. 1979. Tratado de Ecología. Ediciones Mundi-Prensa, Madrid, 608 pp.

DRACH, A. & A. FAILLE 1981. Eléments pour une methodologie d’etude des relations entre les peuplements de Carabiques forestiers et la végétation herbacée et arbustive (Col. Carabidae). Rev. Ecol. Biol. Sol., 18(4): 551-566.

DUFRÊNE, M. & P. LEGENDRE 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67: 345-366.

ERICSON, D. 1977. Estimating population parameters of Pterostichus cupreus and P. melanarius (Carabidae) in arable fields by means of capture-recapture. Oikos, 29: 407-417.

ESPAÑOL F. 1965. Resultados de una campaña biospeleológica en los confines de las provincias de Valencia y Castellón (Coleópteros). Misc. Zool., 2(1): 95-101.

FARIAS, P. & J. MARQUÍNEZ 1995. El relieve. Pp 163-172, en Aramburu, C. & F. Bastida (eds.), Geología de Asturias. Ediciones Trea, Gijón, 314 pp.

FOCARILE, A. 1964. Gli Asaphidion del gruppo flavipes (L.) con particolare riguardo alla fauna italiana. Mem. Soc. ent. ital., 43: 97-120.

FOCARILE, A. 1983. La Coleotterofauna geobia del Monte Generoso (Ticino, Svizzera) nei suoi aspetti ecologici, cenotici e zoogeo-grafici. Estratto dal Bollettino della Societa Ticinense di Scienze Naturali, 70: 15-62.

FOREL, J. & J. LEPLAT 1998. Faune des Carabus de la Péninsule Ibérique. Collection Systématique, 2. Magellanes, Andrésy, 168 pp.

GREENSLADE, P.J.M. 1965. On the Ecology of some British Carabid Beetles with special reference to Life Histories. Transactions of the Society for British Entomology, 16 (6): 149-179.

GUTIÉRREZ, D., R. MENÉNDEZ & M. MÉNDEZ 2004. Habitat-based conservation priorities for carabid beetles within the Picos de Eu-ropa National Park, northern Spain. Biological Conservation, 115: 379-393.

HERRERA, L. & F.J. ARRICIBITA 1990. Los Carábidos de Navarra, España. (Coleoptera, Carabidae). Entomonograph, 12. E.J. Brill / Scandinavian Science Press, Leiden, 241 pp.

HILL, M.O. 1979. DECORANA: a FORTRAN program for detrended correspondence analysis and reciprocal averaging. Section of Ecology and Systematics, Cornell University, Ithaca, New York, 52pp.

HILL, M.O. & H.G. GAUCH 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio, 42: 47-58.

IABLOKOFF-KHNZORIAN, S.M. 1973. Les Brachinidae du Caucase (Col. Carabidae). Ann. Soc. ent. Fr. (N. S.), 9 (3): 679-692.

JASKUŁA, R. & A. SOSZYŃSKA-MAJ 2011. What do we know about winter active ground beetles (Coleoptera, Carabidae) in Central and Northern Europe? ZooKeys, 100: 517-532.

JEANNE, C. 1965. Carabiques de la Péninsule Ibérique (2e note). Actes Soc. linn. Bordeaux, 102(10), série A: 1-34.

JEANNE, C. 1966. Carabiques de la Péninsule Ibérique (3e note). Actes Soc. linn. Bordeaux, 103(7), série A: 1-18.

JEANNE, C. 1967. Carabiques de la Péninsule Ibérique (5e note). Actes Soc. linn. Bordeaux, 104(10), série A: 1-22.

JEANNE, C. 1968a. Carabiques de la Péninsule Ibérique (7e note). Actes Soc. linn. Bordeaux, 105(1), série A: 1-25.

JEANNE, C. 1968b. Carabiques de la Péninsule Ibérique (8e note). Actes Soc. linn. Bordeaux, 105(6), série A: 1-40.

JEANNE, C. 1971. Carabiques de la Péninsule Ibérique (10e note). Bull. Soc. linn. Bordeaux, 1(2): 5-18.

JEANNE, C. 1972. Carabiques de la Péninsule Ibérique (14e note). Bull. Soc. linn. Bordeaux, 2(5): 99-116.

JEANNE, C. 1976a. Carabiques de la Péninsule Ibérique (2e supplément). Bull. Soc. linn. Bordeaux, 4(7-10): 25-43.

JEANNE, C. 1976b. Carabiques nouveaux (6e note) (Col. Caraboidea). Bull. Soc. ent. France, 81: 28-40.

JEANNEL, R. 1927. Monographie des Trechinae. Morphologie comparée et distribution géographique d’un group de Coléoptères (deuxième livraison). L’Abeille, 33, Paris, 592 pp.

JEANNEL, R. 1941. Faune de France, Coleopteres Carabiques (Première partie). P. Lechevallier, Paris, 39: 1-571.

JEANNEL, R. 1942. Faune de France, Coleopteres Carabiques (Deu-xième partie). P. Lechevallier, Paris, 40: 572-1173.

JONGMAN, R.H.G., C.J.F. TER BRAAK & O.F.R. VAN TONGEREN 1995. Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge, 324 pp.

KOTZE, D.J., P. BRANDMAYR, A. CASALE, E. DAUFFY-RICHARD, W. DEKONINCK, M.J. KOIVULA, G.L. LÖVEI, D. MOSSAKOWSKI, J. NOORDIJK, W. PAARMANN, R. PIZZOLOTTO, P. SASKA, A. SCHWERK, J. SERRANO, J. SZYSZKO, A. TABOADA, H. TURIN, S.

Page 8: ECOLOGICAL ANALYSIS OF THE CARABID COMMUNITY …sea-entomologia.org/PDF/Boletin53/243252BSEA53C... · gies to collect the beetles: (1) indirect method by pitfall trap-ping and (2)

250

VENN, R. VERMEULEN & T. ZETTO 2011. Forty years of carabid beetle research in Europe - from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and con-servation. ZooKeys, 100: 55-148.

KÜRKA, A. 1972. Bionomy of the checoslovack species of the genus Calathus Bon., with noter on their reaning (Col. Carabidae). Vest. Cs. Spol. Zool., 36(2): 101-114.

KWIATKOWSKI, A. 2011. Assemblages of carabid beetles (Coleoptera, Carabidae) in humid forest habitats of different stages of succes-sion in the Puszcza Knyszyńska Forest (northeastern Poland). ZooKeys, 100: 447-459.

LEGENDRE, L. & P. LEGENDRE 1984. Écologie numérique. 2. La struc-ture des données écologiques. Collection d’écologie. Masson, Paris, 335 pp.

LEMOS, A.B. 1983. Revisão da Família de Insecta, Coleoptera, Carabi-dae da Colecção Corrêa de Barros. IV. Géneros Leistus Frölich, Eurynebria Gglb., Nebria Latr., Notiophilus Dum., Omophron Latr., Scarites Fabr., Dyschirius Bon. e Clivina Latr. Publ. Inst. Zool. “Dr. A. Nobre”, 177: 1-26.

LOREAU, M. 1978. Étude de la distribution des Carabidae dans la Vallée du Viroin (Belgique). 1. Annls. Soc. r. Zool. Belg., 107(3-4): 129-146.

MATEU, J. & G. COLAS 1954. Coleópteros de la Sierra Nevada. Cara-boidea. Arch. Inst. Aclim. Almería, 2: 35-72.

MCGEOCH, M.A. 1998. The selection, testing and application of terres-trial insects as bioindicators. Biological Reviews, 73: 181-201.

MESKENS, CHR., X. DUCARME, PH. LEBRUN & TH. HANCE 2002. Evaluation biologique d’une ancienne sablière par utilisation de bioindicateurs (carabides). Bull. Inst. roy. Sc. nat. Belg. Biol., 72: 137-139.

MICHELS, G.J.JR., V.A. CARNEY, E.N. JONES & D.A. POLLOCK 2010. Species Diversity and Qualitative Assessment of Ground Beetles (Coleoptera: Carabidae) in Three Riparian Habitats. Environ. En-tomol., 39(3): 738-752.

MIÑARRO, M. & E. DAPENA 2003. Effects of groundcover management on ground beetles (Coleoptera: Carabidae) in an apple orchard. Applied Soil Ecology, 23: 111-117.

MORAN J., M. GORMALLY & M.S. SKEFFINGTON 2012. Turlough ground beetle communities: the influence of hydrology and grazing in a complex ecological matrix. J. Insect. Conserv. 16(1): 51-69.

MORENO, C. E. 2001. Métodos para medir la biodiversidad. Manuales y Tesis SEA, 1, Zaragoza, 84 pp.

NOVOA, F. 1975. Los Carabidae de la Sierra de Guadarrama I: Inventario de especies y biogeografía. Bol. R. Soc. Esp. Hist. Nat. (Biol.), 73: 99-147.

NOVOA, F. 1977. Los Carabidae de la Sierra de Guadarrama II: Las comunidades en relación con los tipos de vegetación. Trab. Dep. Zool. Univ. Compl. Madrid, 14: 1-53.

NOVOA, F. 1979. Los Carabidae (O. Coleoptera) de la Sierra Caurel (Lugo). Bol. R. Soc. Esp. Hist. Nat. (Biol.), 77: 429-449.

NOVOA, F., A. BASELGA & A. CAMPOS 1999. Inventario de coleópteros del Parque Nacional de las Islas Cíes (Galicia, Noroeste de la Península Ibérica). Bol. Asoc. esp. Entom., 23(1-2): 293-314.

ORTIZ, A.S., J. GALIAN, A. ANDÚJAR & J. SERRANO 1989. Estudio comparativo de la fauna de Carábidos de algunas lagunas de la región manchego-levantina (España) (Coleoptera, Adephaga). Anales de Biología (Biología animal), 15(4): 49-57.

ORTUÑO, V.M. 1989. Nuevos datos sobre Caraboidea de la Península Ibérica (1ª nota). Bol. Gr. Ent. Madrid, 4: 91-99.

ORTUÑO, V.M. & J.M. MARCOS 2003. Los Caraboidea (Insecta, Coleoptera) de la Comunidad Autónoma del País Vasco (I). Servicio Central de Publicaciones del Gobierno Vasco, Vitoria, 573 pp.

ORTUÑO, V.M. & M. TORIBIO 1996. Los Coleópteros Carábidos. Morfología, biología y sistemática. Fauna de la Comunidad de Madrid. Organismo Autónomo Parques Nacionales. Ministerio de Medio Ambiente, Madrid, 269 pp.

ORTUÑO, V.M. & M. TORIBIO 2005. Carabidae de la Península Ibérica y Baleares, I: Trechinae, Bembidiini. Argania editio, Barcelona, 455 pp.

PAOLETTI, M.G., A. D’INCÀ, E. TONIN, S. TONON, C. MIGLIORINI, G. PETRUZZELLI, B. PEZZAROSSA, T. GOMIERO & D. SOMMAGGIO

2010. Optimizing sampling of soil invertebrates as bio-indicators in a natural area converted from agricultural use: the case study of Vallevecchia-Lugugnana in North-Eastern Italy. J. Sustain. Agr., 34(1): 38-56.

PEARCE, J.L. & L.A. VERNIER 2006. The use of ground beetles (Coleop-tera: Carabidae) and spiders (Araneae) as bioindicators of sustain-able forest management: A review. Ecological Indicators, 6: 780-793.

PELÁEZ, M.C. & J.M. SALGADO 2002. Los Bembidiini de la Cordillera del Sueve (Asturias) (Coleoptera: Carabidae: Bembidiini). Bol. Asoc. esp. Entom., 26(1-2): 125-144.

PELÁEZ, M.C. & J.M. SALGADO 2006a. Los Carabidae (Coleoptera) del Macizo del Sueve (Asturias, España): Estudio faunístico y biogeográfíco. Boln. S.E.A., 38: 121-139.

PELÁEZ, M.C. & J.M. SALGADO 2006b. Los Carabidae (Coleoptera) del Macizo del Sueve (Asturias): Análisis ecológico y biogeográfíco en relación con la vegetación. Bol. Asoc. esp. Ent., 30(3-4): 131-183.

PELÁEZ, M.C. & J.M. SALGADO 2007a. Ecología y biología de algunas especies de Carabidae (Coleoptera) del Macizo del Sueve (Astu-rias): estudios fenológico y de fluctuación anual. Boln. S.E.A., 40: 333-350.

PELÁEZ, M.C. & J.M. SALGADO 2007b. Los Carabidae (Coleoptera) del Macizo del Sueve (Asturias): Análisis ecológico y biogeográfíco en relación con la litología. Bol. Asoc. esp. Ent., 31(3-4): 215-258.

PIETRASZKO, R. & R. DE CLERCQ 1981. Carabidae of arable land in Belgium. Parasitica, 37(2): 45-58.

POLLARD, E. 1968. Hedges, IV. A comparison between the Carabidae of a hedge and field site and those of a woodland glade. J. Appl. Ecol., 5: 649-657.

PUEL, L. 1937. Sur quelques Bembidium. Misc. entom., 38(6): 90-92. QUINN, G.P. & M.J. KEOUGH 2002. Experimental Design and Data

Analysis for Biologists. Cambridge University Press, Cambridge, 537 pp.

RAINIO, J. & J. NIEMELÄ 2003. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiversity and Conservation, 12: 487-506.

SALGADO, J.M. 1978. Los Carabus de la provincia de León (Col. Cara-bidae). Boletín de la Estación Central de Ecología, 7 (13): 73-86.

SALGADO, J.M. 1985. Nuevas o interesantes localizaciones de Carábidos y Catópidos cavernícolas de la cornisa cantábrica. Bol. Cien. Nat. I.D.E.A., 36: 93-108.

SALGADO, J.M. & M.C. PELÁEZ 2004. Un nuevo tréquido cavernícola del carst asturiano: Apoduvalius (Apoduvalius) anseriformis n. sp. (Coleoptera: Carabidae). Fragmenta entomologica, 36(1): 33-41.

SALGADO, J.M., J.F. GALLARDO, I. SANTA REGINA & M.E. RODRÍGUEZ 1997. Ecosociological Relations of Groundbeetle Communities in several Oak Forest of Western Spain (Coleoptera: Carabidae). En-tomol Gener, Stuttgart, 22(1): 29-43.

SALGADO, J.M., M.E. RODRÍGUEZ & J.F. GALLARDO 1998. Effect of soil characteristics on the composition of ground beetle communi-ties in some deciduous oak coppices in western Spain (Coleop-tera: Carabidae), G. it. Ent., 9: 143-153.

SALGADO, J.M. & M.G. VÁZQUEZ 1993. Estudio de los Carábidos y Colévidos (Coleoptera) de Cueva Rosa (Asturias, España). Bol. Asoc. esp. Entom., 17(1): 131-142.

SERRANO, A.R.M. 1988. Contribução para o conhecimento dos coleóp-teros da Reserva Natural do Sapal de Castro Marim-Vila Real de Santo António. II. Os Carabídeos (Coleoptera, Carabidae). Colec. Nat. Pais., 5: 1-84.

SERRANO, A.R.M. & P.A.V. BORGES 1988. Contribução para o conheci-mento dos Carabideos (Coleoptera, Carabidae) do Sudense Algar-viq-Portugal. Act. III Congreso Ibérico de Entomología, Granada: 271-286.

SERRANO, J. 1983. Estudio faunístico de los Caraboidea del Alto Tajo (Col. Adephaga). Graellsia, 39: 3-30.

SERRANO, J., A.S. ORTIZ & J. GALIÁN 1990. Los Carabidae de lagunas y ríos de la Submeseta Sur, España (Coleoptera, Adephaga). Bol. Asoc. esp. Entom., 14: 199-210.

SHIBUYA, S., K. KUBOTA, M. OHSAWA & Z. KIKVIDZE 2011. Assembly rules for ground beetle communities: What determines community structure, environmental factors or competition? Eur. J. Entomol., 108(3): 453-459.

Page 9: ECOLOGICAL ANALYSIS OF THE CARABID COMMUNITY …sea-entomologia.org/PDF/Boletin53/243252BSEA53C... · gies to collect the beetles: (1) indirect method by pitfall trap-ping and (2)

251

ŠUSTEK, Z. 1999. Light attraction of carabid beetles and their survival in the city centre. Biologia, Bratislava, 54(5): 539-551.

TABOADA, A., D.J. KOTZE & J.M. SALGADO 2004. Carabid beetle occurrence at the edges of oak and beech forests in NW Spain. Eur. J. Entomol., 101: 555-563.

TABOADA, A., D.J. KOTZE, J.M. SALGADO & R. TÁRREGA 2006a. The influence of habitat type on the distribution of carabid beetles in traditionally managed “dehesa” ecosystems in NW Spain. Entomol. Fennica, 17: 284-295.

TABOADA, A., D.J. KOTZE, J.M. SALGADO & R. TÁRREGA 2011. The value of semi-natural grasslands for the conservation of carabid beetles in long-term managed forested landscapes. J. Insect Conserv., 15(4), 573-590.

TABOADA, A., D.J. KOTZE, R. TÁRREGA & J.M. SALGADO 2006b. Traditional forest management: Do carabid beetles respond to human-created vegetation structures in an oak mosaic landscape? Forest Ecol. Manag., 237: 436-449.

TABOADA, A., D.J. KOTZE, R. TÁRREGA & J.M. SALGADO 2008. Carabids of differently aged reforested pinewoods and a natural pine forest in a historically modified landscape. Basic Appl. Ecol., 9: 161-171.

TABOADA, A., J.M. SALGADO & R. TÁRREGA 2003. Influencia de las características de la vegetación en la distribución de Carábidos (Coleoptera: Carabidae) en hayedos y robledales. VII Congreso Nacional de la Asociación española de Ecología terrestre: 74-88.

TÁRREGA, R., L. CALVO, E. MARCOS & A. TABOADA 2006. Forest structure and understory diversity in Quercus pyrenaica commu-

nities with different human uses and disturbances. Forest Ecol. Manag., 227: 50-58.

THIELE, H.U. 1977. Carabid Beetles in their environments. Springer. Verlag. Berlin, 369 pp.

VÁZQUEZ, M.G. & J.M. SALGADO 1986. Nuevos o interesantes datos sobre la carabidofauna de la provincia de León. I. Act. VIII Jornadas Asociación española de Entomología, Sevilla: 671-685.

VIGNA TAGLIANTI, A., P.A. AUDISIO & S. DE FELICI 1998. I Coleotteri Carabidi del Parco Nazionale della Val Grande (Verbania, Piemonte). Riv. Piem. St. Nat., 19: 193-245.

VIVES, J. & E. VIVES 1982. Notas sobre Sphodrini españoles nuevos o poco conocidos, Nouv. Rev. Ent., 12(1): 29-36.

ZABALLOS, J.P. 1986a. Los Carabidae (Coleoptera) del oeste del Sistema Central (1ª parte). Bol. Asoc. esp. Entom., 10: 71-81.

ZABALLOS, J.P. 1986b. Notas fenológicas sobre los Carabidae (Co-leoptera) de la Península Ibérica. Anales de Biología (Biología Animal), 7 (2): 11-15.

ZABALLOS, J.P. 1986c. Los Carabidae (Coleoptera) del oeste del Sistema Central (III). Anales de Biología (Biología Animal), 7(2): 17-23.

ZABALLOS, J.P. 1987. Los Carabidae (Coleoptera) del oeste del Sistema Central (IV). Anales de Biología (Biología Animal), 11(3): 61-65.

ZABALLOS, J.P. & C. JEANNE 1994. Nuevo catálogo de los carábidos (Coleoptera) de la Península Ibérica. Monografías S.E.A., 1, Za-ragoza, 159 pp.

APPENDIX A Constancy of the carabid species caught by indirect sampling. Species code, used in Figure 3, is a

combination of 2 (genus name) by 2 (species name) letters. ANEXO A

Constancia de las especies recogidas por muestreo indirecto. El código de las especies se utiliza en la Figura 3 y resulta de la combinación de dos letras del nombre genérico y dos del nombre específico.

Code Carabid species Constancy omli Omophron (Omophron) limbatum (Fabricius, 1776) 3.95 cane Carabus (Archicarabus) nemoralis Müller, 1764 34.21 cali Carabus (Chrysocarabus) lineatus Dejean, 1826 48.68 cade Carabus (Eucarabus) deyrollei Gory, 1839 9.21 cavi Carabus (Megodontus) violaceus Linnaeus, 1758 60.53 cama Carabus (Mesocarabus) macrocephalus Dejean, 1826 48.68 caam Carabus (Oreocarabus) amplipennis Lapouge, 1925 27.63 came Carabus (Rhabdotocarabus) melancholicus Fabricius, 1798 3.95 caca Carabus (Tachypus) cancellatus Illiger, 1798 13.16 cysp Cychrus spinicollis Dufour, 1857 15.79 euco Eurynebria complanata (Linnaeus, 1767) 1.32 leba Leistus (Leistus) barnevillei Chaudoir, 1867 34.21 lefu Leistus (Leistus) fulvibarbis Dejean, 1826 1.32 lesp Leistus (Pogonophorus) spinibarbis (Fabricius, 1775) 2.63 nebr Nebria (Nebria) brevicollis (Fabricius, 1792) 35.53 nesa Nebria (Nebria) salina Fairmaire & Laboulbène, 1856 9.21 nobi Notiophilus biguttatus(Fabricius, 1779) 36.84 noqu Notiophilus quadripunctatus Dejean, 1826 3.95 nosu Notiophilus substriatus Waterhouse, 1833 1.32 lopi Loricera pilicornis (Fabricius, 1775) 5.26 clco Clivina (Clivina) collaris (Herbst, 1784) 3.95 clfo Clivina (Clivina) fossor (Linnaeus, 1758) 5.26 trba Trechus (Trechus) barnevillei Pandellé, 1867 31.58 trfu Trechus (Trechus) fulvus Dejean, 1831 5.26 trob Trechus (Trechus) obtusus Erichson, 1837 34.21 trqu Trechus (Trechus) quadristriatus (Schrank, 1781) 1.32 trsa Trechus (Trechus) saxicola Putzeys, 1870 5.26 trsu Trechus (Trechus) suturalis Putzeys, 1870 13.16 elpa Elaphropus (Tachyura) parvulus (Dejean, 1831) 1.32 tabi Tachys (Paratachys) bistriatus (Duftschmid, 1812) 2.63 ascu Asaphidion curtum (Heyden, 1870) 5.26 asro Asaphidion rossii (Schaum, 1857) 1.32 bequ Bembidion (Bembidion) quadrimaculatum (Linnaeus, 1761) 1.32 beco Bembidion (Bembidionetolitzkya) coeruleum Audinet-Serville, 1821 1.32 bela Bembidion (Metallina) lampros (Herbst, 1784) 15.79 bede Bembidion (Peryphanes) deletum Audinet-Serville, 1821 6.58 best Bembidion (Peryphanes) stephensi Crotch, 1869 2.63

Page 10: ECOLOGICAL ANALYSIS OF THE CARABID COMMUNITY …sea-entomologia.org/PDF/Boletin53/243252BSEA53C... · gies to collect the beetles: (1) indirect method by pitfall trap-ping and (2)

252

Code Carabid species Constancy becr Bembidion (Peryphus) cruciatum Dejean, 1831 7.89 begu Bembidion (Philochtus) guttula (Fabricius, 1792) 5.26 beob Bembidion (Phyla) obtusum Audinet-Serville, 1821 1.32 beel Bembidion (Sinechostictus) elongatum Dejean, 1831 3.95 ocha Ocys (Ocys) harpaloides (Audinet-Serville, 1821) 19.74 peru Penetretus rufipennis(Dejean, 1828) 9.21 abpa Abax (Abax) parallelepipedus (Piller & Mitterpacher, 1783) 21.05 crca Cryobius cantabricus (Schaufuss, 1862) 6.58 poku Poecilus (Macropoecilus) kugelanni (Panzer, 1797) 7.89 pocu Poecilus (Poecilus) cupreus (Linnaeus, 1758) 22.37 pove Poecilus (Poecilus) versicolor (Sturm, 1824) 11.84 ptve Pterostichus (Argutor) vernalis (Panzer, 1796) 13.16 ptqu Pterostichus (Bothriopterus) quadrifoveolatus Letzner, 1852 3.95 ptat Pterostichus (Melanius) aterrimus (Herbst, 1784) 1.32 ptca Pterostichus (Oreophilus) cantaber (Chaudoir, 1868) 27.63 ptst Pterostichus (Phonias) strenuus (Panzer, 1796) 15.79 ptng Pterostichus (Platysma) niger (Schaller, 1783) 2.63 ptni Pterostichus (Pseudomaseus) nigrita (Paykull, 1790) 7.89 ptcr Pterostichus (Pterostichus) cristatus (Dufour, 1820) 15.79 ptdu Pterostichus (Pterostichus) dux Schaufuss, 1862 1.32 stga Steropus (Steropidius) gallega (Fairmaire, 1859) 92.11 amae Amara (Amara) aenea (De Geer, 1774) 17.11 amco Amara (Amara) convexior Stephens, 1828 1.32 amfa Amara (Amara) familiaris (Duftschmid, 1812) 1.32 amni Amara (Amara) nigricornis C.G. Thomson, 1857 1.32 amov Amara (Amara) ovata (Fabricius, 1792) 1.32 amfu Amara (Bradytus) fulva (Müller, 1776) 1.32 amku Amara (Zezea) kulti Fassati, 1947 1.32 agmu Agonum (Agonum) muelleri (Herbst, 1784) 25.00 agni Agonum (Agonum) nigrum Dejean, 1828 2.63 ando Anchomenus (Anchomenus) dorsalis (Pontoppidan, 1763) 19.74 olro Olisthopus rotundatus (Paykull, 1790) 5.26 paal Paranchus albipes (Fabricius, 1792) 19.74 plas Platynus (Platynus) assimilis (Paykull, 1790) 2.63 plqu Platyderus (Platyderus) quadricollis Chaudoir, 1866 9.21 cafu Calathus (Calathus) fuscipes (Goeze, 1777) 14.47 caas Calathus (Neocalathus) asturiensis Vuillefroy, 1866 5.26 caer Calathus (Neocalathus) erratus (Sahlberg, 1827) 2.63 caml Calathus (Neocalathus) melanocephalus (Linnaeus, 1758) 5.26 camo Calathus (Neocalathus) mollis (Marsham, 1802) 1.32 caro Calathus (Neocalathus) rotundicollis Dejean, 1828 3.95 anas Anchomenidius astur (Sharp, 1873) 1.32 lape Laemostenus (Antisphodrus) peleus (Schaufuss, 1861) 2.63 late Laemostenus (Pristonychus) terricola (Herbst, 1783) 14.47 syvy Synuchus vivalis (Illiger, 1798) 28.95 amng Amblystomus niger (Heer, 1841) 1.32 anbi Anisodactylus (Anisodactylus) binotatus (Fabricius, 1787) 14.47 haaf Harpalus (Harpalus) affinis (Schrank, 1781) 1.32 hadi Harpalus (Harpalus) dimidiatus (Rossi, 1790) 5.26 hala Harpalus (Harpalus) latus (Linnaeus,1758) 5.26 haru Harpalus (Harpalus) rubripes (Duftschmid, 1812) 2.63 hata Harpalus (Harpalus) tardus (Panzer, 1797) 2.63 opaz Ophonus (Hesperophonus) azureus (Fabricius, 1775) 1.32 opar Ophonus (Ophonus) ardosiacus Lutshnik, 1922 1.32 pama Parophonus (Parophonus) maculicornis (Duftschmid, 1812) 2.63 psgr Pseudoophonus (Pseudoophonus) griseus (Panzer, 1796) 1.32 psru Pseudoophonus (Pseudoophonus) rufipes (De Geer, 1774) 9.21 acdu Acupalpus (Acupalpus) dubius Schilsky, 1888 1.32 acfl Acupalpus (Acupalpus) flavicollis (Sturm, 1825) 1.32 acma Acupalpus (Acupalpus) maculatus (Schaum, 1860) 1.32 acme Acupalpus (Acupalpus) meridianus (Linnaeus, 1767) 5.26 brha Bradycellus (Bradycellus) harpalinus (Audinet-Serville, 1821) 1.32 brsh Bradycellus (Bradycellus) sharpi Joy, 1912 1.32 stsk Stenolophus skrimshiranus Stephens, 1828 1.32 stte Stenolophus teutonus (Schrank, 1781) 1.32 liae Licinus (Licinus) aequatus Audinet-Serville, 1821 6.58 chni Chlaenius (Chlaeniellus) nigricornis (Fabricius, 1787) 1.32 chve Chlaenius (Chlaeniellus) vestitus (Paykull, 1790) 6.58 chfe Chlaenius (Chlaenius) festivus (Panzer, 1796) 2.63 mise Microlestes seladon Holdhaus, 1912 1.32 syfo Syntomus foveatus (Geoffroy, 1785) 3.95 syob Syntomus obscuroguttatus (Duftschmid, 1812) 1.32 drde Drypta (Drypta) dentata (Rossi, 1790) 1.32 brcr Brachinus (Brachinus) crepitans (Linnaeus, 1758) 1.32 brel Brachinus (Brachinus) elegans Chaudoir, 1842 3.95 brex Brachinus (Brachynidius) explodens Duftschmid, 1812 3.95 brsc Brachinus (Brachynidius) sclopeta (Fabricius, 1792) 6.58