36
ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Embed Size (px)

Citation preview

Page 1: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Page 2: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

General Overview

Basic equations Towards model equations: vertical integration Model equations and approximations Air-sea and air-ice-ocean fluxes Lower trophic level dynamics Numerical schemes Grid- and slab information Model flow, main program Literature Additional features New set-up Irina

Page 3: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Basic equations

Reynolds equations, hydrostatic approximation, conservation equation: mass (volume), salt mass, heat and tracer mass (nutrients, biomass etc…)

Vertical integration and boundary conditions results in model equations

Page 4: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Basic equations:

Page 5: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Approximations

Page 6: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Transport model equations : subroutines motmit, druxav, konv

Page 7: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Transport model equations: boundary conditions

Page 8: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Model equations for T and S(and other tracers) subroutine strom3

Page 9: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

More model equations

subroutine konti

subroutine sor, sorcof

subroutine estate

Page 10: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Turbulence closure

Stationarity

local production and local dissipation of turbulent kinetic energy balance,

advection and diffusion of turbulent kinetic energy can be neglected

Page 11: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Vertical integration for one model layer k from zk-zk-1:Horizontal transport

Page 12: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Turbulence closure

Page 13: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Turbulence closure

Page 14: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Turbulence closure

subroutine druxav

Page 15: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Dynamic sea ice model: subroutine icemod, icevel

• 3 state variables:

-Ice compactness Ai,

-level ice thickness hi

- ridging ice thickness hr

• continuum approach, conservation equations for open water area, level ice thickness, ridging ice thickness

• Hibler type ice dynamics: viscous-plastic, elliptical yield curve, normal flow rule

Page 16: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Ice transports

Page 17: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Conservation equation for ice stages: compactness (open water and thin ice), level ice, ridged ice

Page 18: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Mechanic deformation functions

1. Ai<1 and convergent or divergent flow field, or divergent flow field ice transport change only ice concentration

2. Ai=1, ice thickness below critical value (0.1m), convergent flow field ice transport results in rafting: level ice thickness change

3. Ai=1, ice thickness above critical value, convergent flow field

ice transport results in ridging: level ice thickness change

3 cases:

Page 19: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Fluxes

Page 20: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Air sea fluxes : subroutine fluxes

Based on Monin-Obukhov similarity theory:

- MONIN and OBUKHOV, 1954

- LAUNIAINEN and VIHMA, 1990

•2m Tair, spec. humidity are up-scaled to 10m-ref heights

•Upscaling, cd exchange coefficients and fluxes depend on

atmospheric stability

Page 21: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Ice thermo-dynamics: subroutine trmice

Page 22: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Ice thermodynamics

Page 23: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Lower trophic level dynamics: coupling vs. transport equations subroutine strom3 calls subroutine bio

Page 24: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

12 biological and chemical variables:

Phytoplankton: Pd - diatoms; Pf - flagellates;

Zooplankton: Zs, Z l – micro and macro-zooplankton;

Nitrogen: NH4 - ammonium; NO2 - nitrite; NO3 - nitrate;

Phosphorus: PO4 - phosphate;

Silica: SiO2 - silicate; SiO2•2H2O - biogenic opal;

O2 – Oxygen, D - detritus

NO3

Pf Z s

Z l Pd

NH4

D

O2

SiO2 PO4

NO2

N2

SiO2•2H2O

Nitrification Denitrification

Lower trophic level dynamics: subroutine bio

Page 25: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Biological state variables

parameter (nbio=14) dimension Tc(ndrei,nbio)

ibio=1,nbio

ibio = 1,2 reserved for T,S

ibio = 3,nbio: 3 4Phytoplankton: Ps – flagellates; Pl - diatoms;

5 6Zooplankton: Zs, Z l – micro and macro-zooplankton;

7 D - detritus;

8 9 10Nitrogen: NH4 - ammonium; NO2 - nitrite; NO3 - nitrate;

11 Phosphorus: PO4 - phosphate;

12 14Silica: SiO2 - silicate; SiO2•2H2O - biogenic opal;

13 O2 – Oxygen.

Page 26: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Biological reactionssPlssssPsPs PmZPGZPGPФR

ss )()( 21

lPllsllPlPl PmZPG)Z(PGPΦσRll

)(21

ssZsslssslsZs ZmZμ)Z(ZG(D)ZGZ)(PG)(PGγR 2111 ][

lZllllsls ZmZ(D)ZGZ)(ZG)(PG)(PGγRl

2222 ][Zl

DZmZmPmPm

(D)ZGZ)(ZG)(PG)(PG

(D)ZGZ)(PG)(PGR

lZsZlPsP

llsls

sslsD

lsls

2222

111

1

1

])[(

][)(

44

4

1(z)NHΩZμZμεD

β

βPΦPΦ

REDFR allss

N

NHlPlsPs

NCNH ls

:

2324 NOzNOzNOzNHzR drna )()()()(2NO

323

3

1(z)NOΩ(z)NOΩ

β

βPΦPΦ

REDFR rn

N

NO

lPlsPsNC

NO ls

:

llsslPlsPsPC

PO ZμZμεDPΦPΦREDF

Rls

:

14

Page 27: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Biological reactions in the model : term RC is Dxbi(ndrei,nbio)

*------------------BIOLOGICAL SOURCES------------------------------------ *Ps DXbi(ll,3)= ( BioC(2)*Ps_prod-BioC(10) )*Tc(ll,3) !1 prod & - ZsonPs*Tc(ll,5) ! & - ZlonPs*Tc(ll,6) ! *Pl DXbi(ll,4)= ( BioC(1)*Pl_prod-BioC(9 ) )*Tc(ll,4) !2 prod, c & - ZsonPl*Tc(ll,5) ! & - ZlonPl*Tc(ll,6) ! *Zs DXbi(ll,5)= ( BioC(20)*(ZsonPs+ZsonPl) !3,4,5 & + BioC(21)*ZsonD & - BioC(16) !c & - BioC(18)) *Tc(ll,5) !c & - ZlonZs*Tc(ll,6) ! *Zl DXbi(ll,6)= ( BioC(19)*(ZlonPs+ZlonPl+ZlonZs) !6,7,8,9 & + BioC(21)*ZlonD & - BioC(15) !c & - BioC(17) ) *Tc(ll,6) !c *D DXbi(ll,7)= ( (1.-BioC(20))*(ZsonPs+ZsonPl) !3,4,5 & + (1.-BioC(21))*ZsonD & + BioC(16) )*Tc(ll,5) !c & +( (1.-BioC(19))*(ZlonPs+ZlonPl+ZlonZs) !6,7,8,9 & + (1.-BioC(21))*ZlonD & + BioC(15) )*Tc(ll,6) !c & + BioC(10)*Tc(ll,3) !c & + BioC(9)*Tc(ll,4) !c & - ZsonD*Tc(ll,5) !5 & - ZlonD*Tc(ll,6) !9 & - BioC(22)*Tc(ll,7) !reminiralization !10 *NH4 DXbi(ll,8)= - UP_NH4/UP_N*Prod !11 & + BioC(18)*Tc(ll,5)+BioC(17)*Tc(ll,6) !c,c & + BioC(22)*Tc(ll,7) !reminiralization !c & - BioOM1*Tc(ll,8) !oxydation !13 BioOM1 *NO2 DXbi(ll,9)= BioOM1*Tc(ll,8)-(BioOM2+BioOM4)* !14, 16 BioOM2,BioOM4 & Tc(ll,9)+BioOM3*Tc(ll,10) !15 BioOM3 *NO3 DXbi(ll,10)=- UP_NO3/UP_N*Prod !NO3 !12 & + BioOM2*Tc(ll,9)-BioOM3*Tc(ll,10) !14,15 *PO4 DXbi(ll,11)=(-Prod !1+2 & + BioC(18)*Tc(ll,5)+BioC(17)*Tc(ll,6) & + BioC(22)*Tc(ll,7) ) !reminiralization !10 *SiO2 DXbi(ll,12)=- BioC(1)*Pl_prod *Tc(ll,4) & + BioC(27)*Tc(ll,14) !regeneration SiO2 !17 *O2 DXbi(ll,13)= ((6.625*UP_NH4+8.125*UP_NO3)/UP_N*Prod !O2 !18 O2 from production & - 6.625*(BioC(18)*Tc(ll,5)+BioC(17)*Tc(ll,6)) !zoo exctrition ! & - 6.625*BioC(22)*Tc(ll,7) !detritus mineralization ! & - BioOM1*Tc(ll, 8) !NH4-NO2 ! & -0.5*BioOM2*Tc(ll, 9) !NO2-NO3 ! & +0.5*BioOM3*Tc(ll,10) !NO3-NO2 ! & + BioOM4*Tc(ll, 9))*REDF(11) !NO2-N2 !29 DXbi(ll,14)= + BioC(9 )*Tc(ll,4) & + ZsonPl*Tc(ll,5) & + ZlonPl*Tc(ll,6) & - BioC(27)*Tc(ll,14) !regeneration SiO2

do ibio=3,nbio Tc(ll,ibio) = Tc(ll,ibio)+DXbi(ll,ibio)*dt end do

Subroutine bio (Tc,dd,dz,sh_wave,sh_depth)

Page 28: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Numerics: basic information

Semi-implicit:

-implicit: barotropic pressure gradients, turbulent vertical exchange

-explicit: convective terms, baroclinic pressure gradients, horizontal

turbulent diffusion

Convective or nonlinear terms: energy and enstrophy conserving

scheme Arakawa J7

Rotation of corriolis term (C-grid)

Upstream advection scheme (2d) for T,S and bio-parameter

Free surface and bottom depth resolving coordinates application of

kinematic boundary conditions necessary

Page 29: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Model grid: Arakawa C-grid horizontal

•TC(i,j) •TC(i,j+1)

•TC(i+1,j) •TC(i+1,j+1)

X U(i,j)

+V(i,j)

X U(i,j+1)

X U(i+1,j+1)X U(i+1,j)

+V(i+1,j+1)

+V(i,j+1)

+V(i+1,j)

NW=(1,1) Columns n (j)

Rows

m (i)

Page 30: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Model grid: vertical grid

•TC(k)

•TC(k+1)

+w (k+1) Av(k+1)

Surface layer: 1

ilo (k)

+w (k) Av(k)

•Av and w are not defined at the lower boundary of the bottom layer

•Av(1)=0, i.e. at the sea surface

•w(1) is the first guess for solving the equation system for the sea surface elevation

Page 31: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Organisation of slabs: Counting wet grid points

c----------------------------------------------------------------------- c set grid index arrays c----------------------------------------------------------------------- lwe = 0 nwet=0 do k=1,n lwa = lwe+1 lwe = indend(k) do lw=lwa,lwe i = iwet(lw) lump = lazc(lw) jjc(i,k) = 1 iindex(i,k) = nwet id3sur(lw) = nwet+1 do jj=1,lump nwet = nwet+1 enddo izet(i,k) = lw enddo enddo

•Start with NW grid point, at the sea surface

•2-d arrays: outer loop columns, inner loop rows

•3-d arrays: outer loop, columns, than rows, inner loop depth layers

Page 32: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Relevant arrays and dimensions

•compressed 3-d arrays of dimension ndrei UC(ndrei)

•compressed 2-d arrays of dimension khor zac(khor)

•iindex(i,j) help array to address wet grid from i,j,k arrays i,j,k

known respective uc=uc(iindex(i,j)+k)

•jjc(i,k) mask array, =1 if wet, =0 if land point

•lazc(khor): number of layers for compressed 2-d arrays

•iwet (khor): i-index(row) for compressed 2-d arrays

•indend(k): end index of compressed arrays for

Page 33: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Literature model description

Backhaus J. O. (1983) A semi-implicit scheme for the shallow water equations for application to shelf sea modelling. Continental Shelf Research, 3,243-254.

Backhaus J. O. (1985) A three-dimensional model for the simulation of shelf sea dynamics. Deutsche Hydrographische Zeitschrifi, 38, 165-187.

Schrum, C. (1997): Thermohaline stratification and instabilities at tidal mixing fronts. Results of an eddy resolving model for the German Bight. Cont. Shelf. Res., 17(6), 689-716.

Schrum, C, Backhaus, J. O. (1999): Sensitivity of atmosphere-ocean heat exchange and heat content in North Sea and Baltic Sea. A comparitive assessment. Tellus 51A. 526-549.

Schrum, C, Alekseeva, I, St. John, M (2006): Development of a coupled physical–biological ecosystem model ECOSMO Part I: Model description and validation for the North Sea, Journal of Marine Systems, doi:10.1016/j.jmarsys.2006.01.005.

Page 34: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Access to model code and literature

ftp://ftp.uib.no/

path: /var/ftp/pub/gfi/corinna/ECOSMO

Page 35: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Additional features (not in basic version)

3-d wetting and drying, mass conserving

Groundwater runoff module

Particle tracking module (online)

IBM parameterized for larvae fish growing (temperature based

and food consumption)

Page 36: ECOSMO an ECOSystem Model coupled physics-lower trophic level dynamics

Setting up a new configuration

Attention required:

•ngro array size to be set in C_model.f, it needs to be

ngro=max((m*(ilo*20+10),(kasor*8)), for current configuration set to

m*(ilo*20+10)

•consider exclusion of boundary points for iteration in kotief!

currently weak programming

•3 frame lines are necessary in the west and north, only 2 frame lines

in the south and east

•consider 3 equal boundary lines at the open boundaries