12
www.Uandistar.blogspot.com Page No. 1 - 1 - ELECTRONIC DEVICES AND CIRCUITS BRIEF NOTES SEE WWW.UANDISTAR.BLOGSPOT.COM FOR MORE JNTU MATERIALS UNIT I :: ELECTRON DYNAMICS: CRO  kg , ‘F’ force on electron in uniform electric field ‘E’  19 31 1.602 10 , 9.1 10 e C m = × = ×  F=eE; acceleration eE a m =   If electron with velocity ' ' v  moves in field ' '  E  making an angle ' ' θ  can be resolved to , cos sin v v θ θ .  Effect of Magnetic Field ‘B’ on Electron.  When B & Q are perpendicular path is circular 2 ; ' mv m eri od t  ' r P  π  Be Be = =   When slant with ' ' θ  path is # Helical.   EQUATIONS OF CRT  ELECTROSTATIC DEFLECTION SENSITIVITY 2 lL dV =  e a S  MAGNETIC DEFLECTION SENSITIVITY 2 e  m a S lL mV = 2eV v m =   Velocity due to voltage V,  When E and B are perpendicular and initial velocity of electron is zero, the path is Cycloidal in plane perpendicular to B & E. Diameter of Cycloid=2Q, where u Q ω = ,  E u  B = ,  Be m ω  = . UNIT – II :: SEMICONDUCTOR JUNCTION  , i e S G  have 4 electrons in covalent bands. Valency of 4. Doping with trivalent elements makes ' '  p , Pentavalent elements makes ' ' n  semiconductor.  Conductivity  p  p ( ) n e n σ μ =  μ +  where , n p  are concentrations of Dopants. & n p μ μ  are mobility’s of electron and hole respectively. Diode equation 1 d T V nV d s  I I e =  ; T V q =  kT  K= Boltzman Constant

EDC Chapterwise Formulas

Embed Size (px)

DESCRIPTION

basics

Citation preview

Page 1: EDC Chapterwise Formulas

7/16/2019 EDC Chapterwise Formulas

http://slidepdf.com/reader/full/edc-chapterwise-formulas 1/12

www.Uandistar.blogspot.com Page No. 1

- 1 -

ELECTRONIC DEVICES AND CIRCUITS

BRIEF NOTES

SEE WWW.UANDISTAR.BLOGSPOT.COM FOR MORE JNTU

MATERIALS UNIT – I :: ELECTRON DYNAMICS: CRO

¾  kg−

, ‘F’ force on electron in uniform electric field ‘E’  19 311.602 10 , 9.1 10e C m

−= × = ×

¾  F=eE; accelerationeE 

am

=  

¾  If electron with velocity ' 'v moves in field ' ' E  making an angle ' 'θ  can be

resolved to , cossinv vθ θ  . 

¾  Effect of Magnetic Field ‘B’ on Electron. 

¾  When B & Q are perpendicular path is circular2

; 'mv m

eriod t 'r Pπ 

 Be Be= =  

¾  When slant with ' 'θ  path is # Helical. ¾  EQUATIONS OF CRT

¾  ELECTROSTATIC DEFLECTION SENSITIVITY2

lL

dV =  e

a

¾  MAGNETIC DEFLECTION SENSITIVITY2

m

a

S lLmV 

=

2eV v

m=  ¾  Velocity due to voltage V,

¾  When E and B are perpendicular and initial velocity of electron is zero, the path is

Cycloidal in plane perpendicular to B & E. Diameter of Cycloid=2Q, whereu

Qω 

= ,

 E u

 B= ,

 Be

mω = .

UNIT – II :: SEMICONDUCTOR JUNCTION

¾  ,i eS G have 4 electrons in covalent bands. Valency of 4. Doping with trivalent

elements makes ' ' p , Pentavalent elements makes ' 'n semiconductor.

¾  Conductivity  p p( )ne nσ μ = μ + where ,n p are concentrations of Dopants.

&n pμ μ  are mobility’s of electron and hole respectively.

Diode equation

1d 

V nV 

d s I I e⎛ ⎞

= −⎜ ⎟⎝ ⎠

 

;T V q

=kT 

 K= Boltzman Constant

Page 2: EDC Chapterwise Formulas

7/16/2019 EDC Chapterwise Formulas

http://slidepdf.com/reader/full/edc-chapterwise-formulas 2/12

www.Uandistar.blogspot.com Page No. 2

- 2 -

¾ 2

; lnd  T Ad o

d i

V  V N kT r V 

 I I q

P N ⎛ ⎞Δ= = = ⎜ ⎟

Δ ⎝ ⎠n 

¾  9C 

−×  0 10 273; 1.602 10T C q= + =

 

¾  Diode drop changes0@ 2 2 /mv C , Leakage current. s I  doubles on

010 C  

¾  Diffusion capacitance isd 

dqc

dv= of forward biased diode it is  I ∝  

¾  Transition capacitanceT 

C  is capacitance of reverse biased dioden

V −∝   1 1

2 3to  n =

 

¾  RECTIFIERS

¾  COMPARISION

HW FW CT FW BR

 DC V    mV 

π  

2 mV π 

 2 mV 

π  

rmsV   2

mV 

 2

mV  

2mV 

 

γ   Ripple factor

1.21 0.482 0.482 

Page 3: EDC Chapterwise Formulas

7/16/2019 EDC Chapterwise Formulas

http://slidepdf.com/reader/full/edc-chapterwise-formulas 3/12

www.Uandistar.blogspot.com Page No. 3

- 3 -

η  

Rectification efficiency40.6% 81% 81% 

PIV   Peak Inverse Voltage m m mV  2V    V   

UNIT – III :: FILTERS

¾  Harmonic Components in FW Output, 0

2 4 1 1cos 2 cos 4

3 15mV 

t wπ π 

.....v w t ⎧ ⎫

+= − +⎨ ⎬  ⎩ ⎭

 

Capacitance Input Filter,1

4 3 L

 f CRγ  =  

¾  ZENER DIODE 

Inductor Input Filter,3 2

 L R

 Lγ 

ω =

C  L

ve+ ve−

 

Critical inductance is that value at which

diode conducts continuously, in or

half cycle. 

LC FILTER,

22

12 LC γ 

ω = or 1.2 , 50 , , . for Hz L in H C in F 

 LC μ   

π  FILTER, 1 22

. .3

C C 

 L L

 X X 

 R X γ  =  

RC FILTER, 1 22. .C C 

 L

 X X 

 R Rγ  =  

FWD Bias Normalis

 

Diode 0.7 V Drop

Reverse Bias

 z z Zener drop V forV V = >  

1 2

1 2

2. . .....

3n

n

cc c

 L L L

 X  X X 

 X X X γ  =  LC LADDER,

Page 4: EDC Chapterwise Formulas

7/16/2019 EDC Chapterwise Formulas

http://slidepdf.com/reader/full/edc-chapterwise-formulas 4/12

www.Uandistar.blogspot.com Page No. 4

- 4 -

¾  ZENER REGULATOR 

¾  ;i zs i z

s

V V  I V V 

 R

−= >>  

¾   z z

 z

V r 

 I Δ

 

¾  TUNNEL DIODE 

¾  Conducts in , f  r b b

, Quantum mechanical tunneling in region a-0-b-c. 

¾  -ve resistance b-c, normal diode c-d.

 p I  = peak current, v I  = valley current; =peak voltage≈

65 mV, =valley voltage0.35 V. Heavy Doping, Narrow Junction , Used for switching & HF oscillators.

 pv vv

 

¾  VARACTOR DIODE 

Used in reverse bias & as tuning variable capacitance.

¾ ( )

T R

C V V 

=+

n

K ; n=0.3 for diffusion, n=0.5 for alloy junction,

1

oT  n

 R

C C 

V V 

=⎛ ⎞+⎜ ⎟⎝ ⎠

 

¾ 25

 BC 

C is figure of merit, Self resonance

1

2o

S T 

 f  L C π 

=  

¾  PHOTO DIODES 

Page 5: EDC Chapterwise Formulas

7/16/2019 EDC Chapterwise Formulas

http://slidepdf.com/reader/full/edc-chapterwise-formulas 5/12

www.Uandistar.blogspot.com Page No. 5

- 5 -

¾  Diode used in reverse bias for light detection. 

¾  Different materials have individual peak response to a range of wave lengths.

UNIT - IV

¾  BJT, Bipolar Junction Transistor has 2 Junctions: BE, BC 

¾  Components of current are ,nE pE   I I  at  EB junction where nE nE  

nE pE E  

 I I 

 I I I γ  = =

¾  γ  = Emitter efficiency,* nc

nE 

 I 

 I  β  = transportation factor. 

¾  / B / ; E f b B= =C r b  

¾  Leakage currents : , ,CBO CEO EBO I I I   

¾  ( )1CEO CBO I I  β = +  

e b c I I I = +  

;c c

e b

 I I 

 I I α β = =  

Doping Emitter Highest

Base Lowest 

e c b I I I > >  

Page 6: EDC Chapterwise Formulas

7/16/2019 EDC Chapterwise Formulas

http://slidepdf.com/reader/full/edc-chapterwise-formulas 6/12

www.Uandistar.blogspot.com Page No. 6

- 6 -

¾  3 Configurations are used on BJT, CE, CB & CC 

¾ ¾  Common Emitter, VI characteristics

¾  0; ce BE i ie e ce

 B c

V V  R h r r r 

 I I  β 

ΔΔ= = = = =

Δ Δ 

AC Equivalent Circuit

¾  COMMON BASE VI CHARACTERISTICS

¾  ;1

 E 

 I 

 I 

 β α α 

 β = =

CE 

C V 

 B

 I 

 I  β  =  

Input Characteristics Circuit Output Characteristics

AC Equivalent Circuit

Page 7: EDC Chapterwise Formulas

7/16/2019 EDC Chapterwise Formulas

http://slidepdf.com/reader/full/edc-chapterwise-formulas 7/12

www.Uandistar.blogspot.com Page No. 7

- 7 -

¾  ; ;V CB

C cb EBib e fb cb

 E e c

 I V V h r h r  

Δ

 I I I 

Δ= = =

Δ Δ=  

UNIT - V 

¾  h- parameters originate from equations of amplifier

2 2 0 2,i i i r f i

v h i h v i h i h v= + = +  

&iv ii

2

, ,ib

are input voltage and current

2&v i are output voltage and current

¾ ih → input impedance

ie ich h h   ( )1 er +, ,e er r  β β ⎡ ⎤⎣ ⎦  

¾  f h → current gain , , fe fb fc

 h h h ( )1, , β α β +⎡ ⎤⎣ ⎦  

¾  r h → reverse voltage transfer , ,re rb rc  h h h

¾ oh → output admittance , ,ob och h  

oe h

 

¾  FIELD EFFECT TRANSISTOR, FET is Unipolar Device 

Construction n-Channel p-Channel

¾  S=Source, G=Gate, D=Drain 

¾  GS Junction in Reverse Bias Always ¾ 

gsV  Controls Gate Width 

COMPARISON

BE BC

SATURATION f/b f/b

ACTIVE f/b r/b

CUT OFF r/b r/b

AMPLIFIER COMPARISON

CB CE CF

i R   LOW MED HIGH

 I I  A A 1   β     β  +  

V  A   High High <1

o R   High High low

Page 8: EDC Chapterwise Formulas

7/16/2019 EDC Chapterwise Formulas

http://slidepdf.com/reader/full/edc-chapterwise-formulas 8/12

www.Uandistar.blogspot.com Page No. 8

- 8 -

¾  VI CHARACTERSTICS 

Tr  ansfer Characteristics Circuit Forward Characteristics

¾  Shockley Equation 

¾ 2

1 gs

d dss

 p

V  I I 

V ⎛ ⎞= −⎜ ⎟⎜ ⎟⎝ ⎠

, 0 1 gs

m m

 p

V g g

V ⎛ ⎞= −⎜ ⎟⎜ ⎟⎝ ⎠

 

¾  MOSFET: Metal Oxide Semiconductor FET, IGFET 

De  pletion Type Mosfet Symbols Enhancement Mosfet

¾  Depletion Type MOSFET can work width 0gsV  > and 0gsV  <  

MOSFET JPET

High1010i R = 810−  

Transfer Forward

Characteristics Characteristics

¾  Enhancement MOSFET operates with,gs t V V > ,

t V Threshold Voltage=  

0 50 R k = Ω 1m≥ Ω  

DepletionEnhancement Mode

DepletionMode

Delicate Rugged

Page 9: EDC Chapterwise Formulas

7/16/2019 EDC Chapterwise Formulas

http://slidepdf.com/reader/full/edc-chapterwise-formulas 9/12

www.Uandistar.blogspot.com Page No. 9

- 9 -

Forward Characteristics Transfer Characteristics

( ) , DS GS V sat V V  = − T  ( )2

( )ds GS T  

 I ON K V V = −  

 D JFET I Table

 

UNIT – VI :: BIASING in BJT & JFET

¾  Fixing Operating Point Q is biasing 

Fixed Bias Emitter Stabilized Feedback Bias

CC B B BE  V I R V  = + Fixed Bias ( )1CC C B B B BE  V R I I R β = + + +V   

( )1 ReCC B B BE  

V I R V   β = + + +  

gsV    D I   

0  DSS  I   

0.3PV   

2 DSS  I 

 

0.5PV   

4 DSS  I 

 

PV    0

COMPARISIONS

BJT FET

Current controlled Voltage controlled

High gain Med gain

Bipolar Unipolar

Temp sensitive Little effect of T

High GBWP Low GBWP

Page 10: EDC Chapterwise Formulas

7/16/2019 EDC Chapterwise Formulas

http://slidepdf.com/reader/full/edc-chapterwise-formulas 10/12

www.Uandistar.blogspot.com Page No. 10

- 10 -

; E  E B BE C 

 E V V V V I    R= − ≈

2

1 2

CC  B

V RV 

 R R=

+,

( )( )1 Re

.

Vcc Rc Ib

 Ib Rb Vbe

 β = + +

+ + 

VOLTAGE DIVIDER BIAS EMITTER STABILIZEDFIXED BIAS

STABILITY EQUATIONS

¾ 1 0 2 3c c BE   I S I S V S  β 

Δ = Δ + Δ + Δ  

( )¾  1 2 3; ;C C C 

CO BE  

 I I I S S S 

 I V  β 

Δ Δ= =

Δ Δ

Δ=

Δ, STABILITY FACTOR

1

1 B

dI 

dI 

 β 

 β 

+=

−S   

¾  S must be as small as possible, Most ideal value =1

¾  How to do determine stability factor for bias arrangement? Derive  B

dI 

dI and

substitute in S

¾  Amplifier formulae: l I V 

i

 Z  A A

 Z 

= ,i Z  measured with output shorted

¾  0Z measured with input shorted

¾  feh or CE amplifier  IA β ≅ ;

¾  ;i Z re β =   T e

V r  ;

 I =   ; L

 R 

ve

 Ar 

= −

CB amplifier  1A ; Lv i

e

 R A Z 

r α = =

CC a ( )

; er =  ¾ 

IA 1 ; 1V i

 A ;ieh R

 β = + = −   ( )1i fe E ie

 R h R h= + +  ¾  mplifier  

¾  H Parameter Model CE

¾  ; fe

h z+ 

1 I 

oe l

h A = L

V fe

ie

 Z  A h

h=  

¾  CB amplifier ; ; . Li ib I fb V fb

ib

 R R h A h A h

h= = =  

¾  FET

¾  CS amplifier 0 d ( )|| ;V m d d   A g R r = − Z R=  

¾  Common Gate Amplifier ,

1

s R

g R

 V m d i

m s

 A g R Z = =

+

Page 11: EDC Chapterwise Formulas

7/16/2019 EDC Chapterwise Formulas

http://slidepdf.com/reader/full/edc-chapterwise-formulas 11/12

www.Uandistar.blogspot.com Page No. 11

- 11 -

¾  Common Drain1

;1

m sV o

m s m

g R A Z 

g R g= =

¾  RC Coupled Amplifiers

¾ If cut off frequency 1

1

2 f   RC π = ,

1 1

1

1

tan ; 1

 f 

 A f  f  j

 f φ 

− ⎛ ⎞

= =⎜ ⎟⎝ ⎠ ⎛ ⎞+ ⎜ ⎟⎝ ⎠

 

¾  ,6 / ,20 /Slope dB octave dB decade= f Octave= 22

or f   

¾   f  β is beta cut off frequency where 0.707  

 feh falls by→

¾   f α is α cut off frequency where 0.707α  =  

¾ t 

 f  is 1 fe

h = gain bandwidth product.

UNIT – VII :: FEED BACK AMPLIFIERS

¾  Amplifier gain stands for any of Voltage amplifier, Current amplifier, Trans resistanceTrans admittance amplifier

0

0

; ;1

 X 

 

¾  +

Ve feed back amplifier depends on |1 1 e f | 1 ,b b A ve f v β + > − <

)

+  

¾  Feed back reduces noise distortion, gain variation due to parameters, increases BW.

(1 A β + is called de-sensitivity factor.

¾  Feed back amplifiers

Voltage series, voltage shunt; Current series, current shunt

UNIT – VIII :: OSCILLATORS

¾  Barkausen Criterion for oscillation loop gain =1, θ =00, 3600.

 f 

 f 

i

 X  A A A

 A X X  β 

 β = = =

+

 f 

 

i s X X X = −  

for voltage, current series

( )1 f i i z z A β = +  

1 f 

 A A

 A β =

+, for all

1 f 

i

i

 z z

 A β =

+, for voltage or current shunt 

( )1 f o o z z A β = + , for current series, shunt

0

1 f o

 z z

 A β =

+

 

, for voltage series and shunt. 

Page 12: EDC Chapterwise Formulas

7/16/2019 EDC Chapterwise Formulas

http://slidepdf.com/reader/full/edc-chapterwise-formulas 12/12

www.Uandistar.blogspot.com Page No. 12

- 12 -

¾  HARTLEY OSCILLATOR

2

1

 L

 L β  =

1

2 T 

 f  L C π 

= 1 2T  L L L M = + ± , ;, ,

COLLPITS OSILLATOR,

1 2, L L replaced by C  ,1 2,C 

1

2 T 

 f  LC π 

=C replaced by L; 

¾  CRYSTAL OSCILLATORS

¾  Tuned ckt replaced with Crystal

1s

 LC ω  = ,

1 p

T  LC ω  =  

¾  Phase shift oscillator

FET MODEL

12 6

 f  RC π 

= 29 A =, ,

Minimum RC sections 3 

BJT MODEL1

42 6 C 

 f  R

 RC  R

π 

=⎛ ⎞

+ ⎜ ⎟⎝ ⎠

, 29 A = ,

Minimum RC sections 3 

¾  Wein Bridge Oscillator

1 2 1 2

1

2 f 

 R R C C π = ,

if R1=R2=R, C1=C2=C ,1

2 f 

 RC π = ;

13 A

 β = =