EE 4314 Homework2 Solutions

Embed Size (px)

Citation preview

  • 8/4/2019 EE 4314 Homework2 Solutions

    1/18

    EE 4314 Homework2 Solutions

    3.32

    a). y + 2n

    y +n

    2y = 0 , y 0

    ( )= y

    0, y 0

    ( )= 0 (1)

    Take the laplace transform of equation (1), we get:

    s2Y s( ) s y0 + 2n sY s( )+n

    2Y s( ) = H s( )

    then

    G s( ) =sy

    0

    s2+ 2n s+n

    2

    =

    k1

    s s1

    +

    k1

    *

    s s1

    *

    where

    s1= n + jn 1

    2

    s2= n jn 1

    2

    k1=

    nej cos

    1( )

    2n 12e

    j / 2

    then

    y t( ) =ent

    2 12e

    j n 12

    t+

    2cos1

    + e j n 1

    2t+

    2cos1

    y t( ) = y0e

    t

    12sin dt cos

    1( )

    b).dy t( )

    dt= 0 t=

    n

    d

  • 8/4/2019 EE 4314 Homework2 Solutions

    2/18

    tMax

    =

    2

    d

    n

    y t( )tMax

    yn = y0e nd

    1

    2sin cos

    1( )

    yn =y

    01

    2

    12

    end (2)

    For = lny

    0

    yn=d

    From (2): y1= y

    0e

    d lny0

    yn

    = d

    For lny

    1

    y1

    lnyi

    yi

    We have yn= y

    n1 y

    n,

    yn = y0end y

    0e n1( ) d

    = y0end 1 e

    d( ) ,

    yn

    yn=

    y0end

    y0end 1 e

    d

    ( )

    yn

    yn=

    yi

    yifor all i, n.

    3.43

    (a) s4 + 8s3 + 32s2 + 80s+100 = 0

    The Routh array is,

    s4 : 1 32 100

    s3 : 8 80

    s2 : 22 100

    s1 : 80-800/22=43.6

    s0 : 100

  • 8/4/2019 EE 4314 Homework2 Solutions

    3/18

    No roots not in the LHP.

    (b) s5 +10s4 + 30s3 + 80s2 + 344s+ 480 = 0

    The Routh array is,

    s5 : 1 30 344

    s4 : 10 80 480

    s3 : 22 296

    s2 : -545 480

    s1 : 490

    s0 : 480

    2 roots not in the LHP.

    (c) s4 + 2s3 + 7s2 2s+ 8 = 0

    The Routh array is,

    s4 : 1 7 8

    s3 : 2 -2

    s2 : 8 8

    s1 : -4

    s0 : 8

    2 roots not in the LHP.

    (d) s3 + s2 + 20s+ 78 = 0

    The Routh array is,

    s3 : 1 20

    s2 : 1 78

    s1

    : -58s0 : 78

    2 roots not in the LHP.

    (e) s4 + 6s2 + 25 = 0

  • 8/4/2019 EE 4314 Homework2 Solutions

    4/18

    The Routh array is,

    s4 : 1 6 25

    s3 : 4 12

    s2 : 3 25

    s1 : 12-100/3=-21.3

    s0 : 25

    2 roots not in the LHP.

    3.44

    s5+ 5s

    4+10s

    3+10s

    2+ 5s+K= 0

    The Routh array is,

    s5 : 1 10 5

    s4 : 5 10 K

    s3 : a

    1 a

    2

    s2 : b

    1 K

    s1 : c

    1

    s0 : K

    where

    a1=

    5 10( ) 1 10( )5

    = 8

    a2=

    5 5( )1 K( )5

    =

    25K

    5

    b1=

    a1( ) 10( ) 5( ) a2( )

    a1

    =

    55 +K

    8

    c1=

    b1( ) a2( ) a1( )K

    b1

    =

    K2+ 350K1375( )5 55+K( )

    For stability: all elements in the first column must be positive. The following

    conditions must be satisfied.

  • 8/4/2019 EE 4314 Homework2 Solutions

    5/18

    1. b1=

    55+K

    8> 0 K> 55

    2. c1=

    K2+ 350K1375( )5 55+K

    ( )

    > 055 < K< 3.88

    3. K> 0

    By intersecting all 3 conditions, we have

    0

  • 8/4/2019 EE 4314 Homework2 Solutions

    6/18

    3.46

    The transfer function for the above system is

    LetK

    1

    =

    1

    K

    Y s( )R s( )

    =

    K1

    s+ z( )s+ p( )

    K0

    s2 a

    2( )

    1+K

    1s+ z( )

    s+ p( )K

    0

    s2 a

    2( )

    =

    K1K

    0s+ z( )

    s3+ ps

    2+ K

    1K

    0 a

    2( )s+ K1K0z pa2

  • 8/4/2019 EE 4314 Homework2 Solutions

    7/18

    Assume K0=1, we can construct Routh array as follow

    s3

    : 1K

    1 a

    2

    s2 : p K

    1z pa

    2

    s1 :

    K1z + pa

    2+K

    1p pa

    2

    p=

    K1z +K

    1p

    p

    s0 : K

    1z pa

    2

    For stability: all elements in the first column must be positive. The following

    conditions must be satisfied.

    p > 0,

    K1pK

    1z > 0 if K

    1> 0 p > z

    K1z pa

    2> 0 ifK

    1> 0 z >

    pa2

    K1

    =Kpa2

    3.47

    (a)Y s( )R s( )

    =

    AesT

    s s+1( )

    1+Ae

    sT

    s s+1( )

    =

    AesT

    s2+ s+ Ae

    sT

    The characteristic equation is: s2 + s+ AesT

    (b) Using eTs 1Ts, the characteristic equation is

    s2+ 1TA( )s+ A = 0

    The Routh array is,

    s2 : 1 A

    s1 : 1-TA 0s0 : A

  • 8/4/2019 EE 4314 Homework2 Solutions

    8/18

    For stability: all elements in the first column must be positive. The following

    conditions must be satisfied.

    A > 0,

    TA

  • 8/4/2019 EE 4314 Homework2 Solutions

    9/18

    scatter(real(r), imag(r), 'x')

    end

    hold offgrid on

    3.22

    Using block-diagram algebra.

    Define dummy variables r1, r

    2and r

    inas shown in the figure below.

    We have

    r1= G

    2rin (r

    1+ r

    2)H

    2( )G4 (1)

    r2= G

    3rin r

    1+ r

    2( )H2( )G5 (2)

    Letr

    0

    = r1

    + r2

    (1)+ (2);r0=G

    2G

    4rinG

    4H

    2r0+G

    3G

    5rinG

    5H

    2r0

    1+G4H

    2+G

    5H

    2( )r0 = G2G4 +G3G5( )rin

  • 8/4/2019 EE 4314 Homework2 Solutions

    10/18

    r0

    rin

    =

    G2G

    4+G

    3G

    5

    1+G4H

    2+G

    5H

    2( )

    Define G7 =(G2G4 +G3G5)G1G6

    1+G4H2 +G5H2( ) (3)

    Define dummy variable e3

    as shown in the figure below.

    We now have,

    e3= R s( ) G7H4e3 G7H3e3

    e3=

    R s( )1+ G

    7H

    4+ G

    7H

    3( )

    Since

    Y s( ) = e3G7

    We now have,

    Y s( )R s( )

    =

    G7

    1+ G7H

    4+ G

    7H

    3( )(4)

    Substitute (3) into (4), we get

  • 8/4/2019 EE 4314 Homework2 Solutions

    11/18

    Y s( )R s( )

    =

    G1G

    6G

    2G

    4+ G

    3G

    5( )1+ G

    2H

    4+ G

    2H

    5( )

    1+G

    1G

    6H

    4G

    2G

    4+ G

    3G

    5( )1+ G

    2

    H4

    + G2

    H5( )

    +

    G1G

    6H

    3G

    2G

    4+ G

    3G

    5( )1+ G

    2

    H4

    + G2

    H5( )

    =

    G1G

    6G

    2G

    4+G

    3G

    5( )1+G

    2H

    4+G

    2H

    5( )+G1G6H4 G2G4 +G3G5( )+G1G6H3 G2G4 +G3G5( )

    Using Masons rule,

    G =Your

    Yin

    =

    Gk

    k

    k=1

    N

    Gk=1

    =G1G

    6G

    2G

    4

    Gk=2

    =G1G

    6G

    3G

    5

    k=1

    =1

    k= 2

    =1

    =1 Li + LiLj LiLjLk ++ 1( )m+

    Li=1

    =G4H

    2

    Li= 2

    =G5H

    2

    Li=1Lj=1 =G1G2G4G6H4

    Li=2Lj=2 =G1G3G5G6H4

    Li= 3Lj= 3 =G1G2G4G6H3

    Li=4Lj=4 =G1G3G5G6H3

    therefore

    =1G4H

    2G

    5H

    2+G

    1G

    2G

    4G

    6H

    4+G

    1G

    3G

    5G

    6H

    4+G

    1G

    2G

    4G

    6H

    3+G

    1G

    3G

    5G

    6H

    3

  • 8/4/2019 EE 4314 Homework2 Solutions

    12/18

    Y s( )R s( )

    =

    G1G

    2G

    4G

    6

    +

    G1G

    3G

    5G

    6

    =

    G1G

    2G

    4G

    6+G

    1G

    3G

    5G

    6

    1G4H

    2G

    5H

    2+G

    1G

    2G

    4G

    6H

    4+G

    1G

    3G

    5G

    6H

    4+G

    1G

    2G

    4G

    6H

    3+G

    1G

    3G

    5G

    6H

    3

    4.2

    (a) ForK=10 and y = 10r , we have:

    Case a:

    Y

    R

    = 1K

    3

    1= 0.01

    Case b:

    Y

    R=

    K

    1+ 2K

    3

    2= 0.364

    Case c:

    Y

    R=

    K3

    1+ 3K

    3 3 = 0.099

    (b) Sensivity SK

    G , G =Y

    R

    Case a:

    dG

    dK= 3

    1K

    2

    SK

    G=

    K

    G

    dG

    dK=

    K

    1K

    33

    1K

    2( ) = 3

    Case b:

    SK

    G= 0.646

  • 8/4/2019 EE 4314 Homework2 Solutions

    13/18

    Case c:

    SK

    G= 0.03

    Case c is the least sensitive.

    (c)

    Case b:

    SK

    G= 2.354

    Case c:

    SK

    G= 0.99

    The closed-loop system is much more sensitive to errors in the

    feedback path than in the forward path.

    4.4 G s( ) =A

    s s+ a( )

    (a) T s( ) =G s( )

    1+ G s( )=

    A

    s s+ a( )

    1+A

    s s+ a( )

    =

    A

    s2+ as+ A

    dT

    dA=

    s2+ as+ A( ) A

    s2+ as+ A( )

    2

    SAT =

    A

    T

    dT

    dA=

    s s+ a

    ( )s s+ a( )+ A

    (b)

    dT

    da=

    sA

    s2+ as+ A( )

    2

  • 8/4/2019 EE 4314 Homework2 Solutions

    14/18

    a

    T

    dT

    da=

    a s2+ as+ A( )

    A

    sA

    s2+ as+ A( )

    2

    Sa

    T=

    as

    s s+ a( )+ A

    (c)

    T s( ) =G s( )

    1+ G s( )

    dT

    d=

    G s( )2

    1+ G s( )( )2

    T

    dT

    d=

    1+ G( )G

    G2

    1+ G( )2=

    G

    1+ G

    ST=

    A

    s s+ A( )

    1+A

    s s+ a( )

    =

    A

    s s+ a( )+ A

    - If a = A =1, the transfer function is most sensitive to variations in a andA near=1 rad/sec

    - The steady-state response is not affected by variations in A and a.- The steady-state response is heavily dependent on since ST 0( ) =1.0

    4.9

    (a)For a unity feedback system to be Type 1 the open loop transferfunction must have a pole at s = 0. Thus in this case, since G has nosuch pole, it is necessary for D to have a pole at s = 0.

  • 8/4/2019 EE 4314 Homework2 Solutions

    15/18

    (b)Y s( ) =

    1

    s2+ D s( )+ K

    W s( )

    lims0

    s1

    s2+ D s( )+ K

    1

    s= 0

    if and only if

    lims0

    s1

    D s( ) =

    if and only if =1 since D(s) has a pole at the origin. Therefore

    the system will reject step disturbances with zero error.

    4.19

    (a) System (a):E= R Y =

    R s( )1+ G s( )

    E s( ) =s 4s+1( )

    4s2+ s+ K

    0K

    1

    R s( )

    Using final value theorem:

    ess,ramp =1

    K1

    =

    1

    Kv K

    1=Kv =1

    System (b):

    E= R Y=1+G K

    2G

    1+GR

    E s( ) =4s+1+ K

    3K

    01K

    2( )4s+1+ K

    3K

    0

    R s( )

  • 8/4/2019 EE 4314 Homework2 Solutions

    16/18

    Using final value theorem:

    ess,ramp =1+K3K0 1K2( )

    1+K3

    K0

    = 0

    forK0=11+K

    31K

    2( ) = 0

    ess,ramp =4

    1+K3

    =

    1

    Kv

    forKv=1 K

    3= 3

    K2=

    4

    3 ,K

    3=

    3

    (b)

    Let K0=K

    0+ K

    0, system (a):

    ess,ramp = lims0

    ss 4s+1( )

    4s2+ s+K

    0+ K

    0( )1

    s= 0

    System (b):

    ess,ramp =1+K3 K0 + K0( ) 1K2( )

    1+ K3 K0 + K0( ) K0=1=

    K0

    1+ 3 1+ K0( ) 0

    System type of system (b) is not robust. The system (a) is preferred over

    system (b) because it is more robust to parameter changes.

  • 8/4/2019 EE 4314 Homework2 Solutions

    17/18

    4.20

    (a)

    T s( ) =Y s( )R s( )

    =

    10 kp

    s+ kI

    ( )s s+1( ) s+10( )

    1+ 10 kp s+ kI( )

    s s+1( ) s+10( )

    E s( ) = 1T s( )( )R s( )

    =

    s s+1( ) s+10( )+10 kp s+ kI( )10 kp s+ kI( )s s+1( ) s+10( ) +10 kp s+ kI( )

    1

    s2

    For=1,

    ess = lims0

    ss s+1( ) s+10( )

    s s+1( ) s+10( ) +10 kp s+ kI( )

    1

    s2

    =

    10

    10kI

    =

    1

    kI

    for characteristic equation: s3 +11s2 +10s+10 kps+ kI( ) = 0

    The Rouths array is,

    s3 : 1 10 1+ kp( )

    s2 : 11 10k

    I

    s1 :

    110 1+ kp( )10kI11

    s0

    :10k

    I

    For stability: all elements in the first column must be positive. The

    following conditions must be satisfied;

    kI> 0 and 111+ kp( ) kI > 0 .

  • 8/4/2019 EE 4314 Homework2 Solutions

    18/18

    (b) = 0.9

    E s( ) =s s+1( ) s+10( )+ 9 kp s+ kI( )10 kp s+ kI( )

    s s+1( ) s+10( )+ 9 kp s+ kI( )

    R s( )

    =

    s s+1( ) s+10( ) kp kIs s+1( ) s+10( )+ 9 kp s+ kI( )

    R s( )

    Using final value theorem, for R s( ) =1

    s2

    ess

    (c) for R s( ) =1

    s

    lims0

    sE s( ) = lims0

    s s+1( ) s+10( ) kp s kIs s+1( ) s+10( ) + 9 kp s+ kI( )

    = k

    I

    9kI

    = 1

    9

    The system is type 0. Kp is defined such that ess =1

    1+Kp . Kp = 8.

    Without the magnitude an equivalent result is that Kp = 10 .