46
EE 434 Lecture 9 IC Fabrication Technology

EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

EE 434Lecture 9

IC Fabrication Technology

Page 2: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Quiz 7 The layout of a film resistor with electrodes A and B is shown. If the sheet resistance of the film is 40 �/�, determine the resistance between nodes A and B.

Page 3: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

And the number is ….

631

24578

9

Page 4: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Quiz 7 Solution

NS =9+9+3+2(.55)=22.1

RAB=R�NS=40x22.1=884�

Page 5: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

• Silicon Wafers made by pulling silicon crystals from molten silicon• Mask costs are high for state of the art processes (over $1M)

and mask quality is critical• Reticles rather than masks are regularly used although distinction

in terminology between mask and reticle is usually not made • Etching used to selectively remove materials during processing

– Wet etches– Dry etches

• Photolithographic process is used repeatedly in existing IC fabrication flows

• Thin films characterized by sheet resistance form resistors thatmay be desired or unwanted

Review from Last Time

Page 6: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

IC Fabrication Technology• Crystal Preparation• Masking• Photolithographic Process• Deposition• Etching• Diffusion• Oxidation• Epitaxy• Polysilicon• Contacts, Interconnect and

Metalization• Planarization

Page 7: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Diffusion• Controlled Migration of Impurities

– Time and Temperature Dependent– Both vertical and lateral diffusion occurs– Crystal orientation affects diffusion rates in lateral and vertical

dimensions– Materials Dependent– Subsequent Movement– Electrical Properties Highly Dependent upon Number and

Distribution of Impurities– Diffusion at 800oC to 1200oC

• Source of Impurities– Deposition– Ion Implantation

• Only a few Ao deep• More accurate control of doping levels• Fractures silicon crystaline structure during implant• Annealing occurs during diffusion

Page 8: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

DiffusionSource of Impurities Deposited on Silicon Surface

Before Diffusion

After Diffusion

p- Silicon

p- Silicon

Page 9: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

DiffusionSource of Impurities Implanted in Silicon Surface

Before Diffusion

After Diffusion

p- Silicon

p- Silicon

Page 10: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Diffusion

Implant

Before Diffusion

After Diffusion

Lateral Diffusion

p- Silicon

p- Silicon

p- Silicon

p- Silicon

Page 11: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

IC Fabrication Technology• Crystal Preparation• Masking• Photolithographic Process• Deposition• Etching• Diffusion• Oxidation• Epitaxy• Polysilicon• Contacts, Interconnect and Metalization• Planarization

Page 12: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Oxidation

• SiO2 is widely used as an insulator– Excellent insulator properties

• Used for gate dielectric– Gate oxide layers very thin

• Used to separate devices by raising threshold voltage– termed field oxide– field oxide layers very thick

• Methods of Oxidation– Thermal Growth (LOCOS)

• Consumes host silicon• x units of SiO2 consumes .47x units of Si• Undercutting of photoresist• Compromises planar surface for thick layers• Excellent quality

– Chemical Vapor Deposition• Needed to put SiO2 on materials other than Si

Page 13: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Oxidation

SiO2

Thermally Grown SiO 2 - desired growth

Photoresist

Patterned Edges

X

0.47 X

p- Silicon

Page 14: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Oxidation

SiO2

Thermally Grown SiO 2 - actual growth

Photoresist

Patterned Edges

Bird’s Beaking

p- Silicon

Page 15: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Oxidation

Thermally Grown SiO 2 - actual growth

Patterned Edges

NonplanarSurface

p- Silicon

Page 16: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Oxidation

Shallow Trench Isolation (STI)

p- Silicon

Photoresist Pad Oxide

Silicon Nitride

Page 17: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Oxidation

Shallow Trench Isolation (STI)

p- Silicon

Pad OxideSilicon Nitride

Etched Shallow Trench

Page 18: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Oxidation

Shallow Trench Isolation (STI)

p- Silicon

Pad OxideSilicon Nitride

CVD SiO2

Page 19: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Oxidation

Shallow Trench Isolation (STI)

p- Silicon

Planarity Improved Planarization Target

Page 20: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Oxidation

Shallow Trench Isolation (STI)

p- Silicon

After Planarization

CVD SiO2

Page 21: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

IC Fabrication Technology• Crystal Preparation• Masking• Photolithographic Process• Deposition• Etching• Diffusion• Oxidation• Epitaxy• Polysilicon• Contacts, Interconnect and Metalization• Planarization

Page 22: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Epitaxy

• Single Crystaline Extension of Substrate Crystal– Commonly used in bipolar processes

– CVD techniques– Impurities often added during growth

– Grows slowly to allow alignmnt with substrate

Page 23: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Epitaxy

p- Silicon

Original Silicon Surface

Epitaxial Layer

epi can be uniformly doped or graded

Question: Why can’t a diffusion be used to create the same effect as an epi layer ?

Page 24: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

IC Fabrication Technology• Crystal Preparation• Masking• Photolithographic Process• Deposition• Etching• Diffusion• Oxidation• Epitaxy• Polysilicon• Contacts, Interconnect and Metalization• Planarization

Page 25: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Polysilicon

• Elemental contents identical to that of single crystaline silicon– Electrical properties much different– If doped heavily makes good conductor– If doped moderately makes good resistor– Widely used for gates of MOS devices– Widely used to form resistors– Grows fast over non-crystaline surface– Silicide often used in regions where resistance must

be small• Refractory metal used to form silicide• Designer must indicate where silicide is applied (or blocked)

Page 26: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Polysilicon

Single-Crystaline Silicon

Polysilicon

Page 27: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

IC Fabrication Technology

• Crystal Preparation• Masking• Photolithographic Process• Deposition• Etching• Diffusion• Oxidation• Epitaxy• Polysilicon• Contacts, Interconnect and Metalization• Planarization

Page 28: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Contacts, Interconnect and Metalization

• Contacts usually of a fixed size– All etches reach bottom at about the same time

– Multiple contacts widely used– Contacts not allowed to Poly on thin oxide in

most processes– Dog-bone often needed for minimum-length

devices

Page 29: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Contacts

Vulnerable to pin holes

A A’

Unacceptable Contact

B

B’

Acceptable Contact

Page 30: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Contacts

Acceptable Contact

B

B’

Page 31: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Contacts

2�1.5�

2�

1.5�

Design Rule Violation

2�

“Dog Bone” Contact

Page 32: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Contacts

CommonCircuit Connection

Standard Interconnection Buried Contact

Can save area but not allowed in many processes

Page 33: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Metalization

• Aluminum widely used for interconnect

• Copper finding some applications• Must not exceed maximum current density

– around 1ma/u

• Ohmic Drop must be managed

• Parasitic Capacitances must be managed• Interconnects from high to low level metals

require connections to each level of metal

• Stacked vias permissible in some processes

Page 34: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Multiple Level Interconnects

3-rd level metal connection to n-active without st acked vias

Page 35: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Multiple Level Interconnects

3-rd level metal connection to n-active with stack ed vias

Page 36: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Interconnects

• Metal is preferred interconnect– Because conductivity is high

• Parasitic capacitances and resistances of concern in all interconnects

• Polysilicon used for short interconnects– Silicided to reduce resistance– Unsilicided when used as resistors

• Diffusion used for short interconnects– Parasitic capacitances are high

Page 37: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Resistance in Interconnects

L

W

H

A

B

BA

R

Page 38: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Resistance in Interconnects

L

W

HA

B

BD

R

D

�AL

R =

A=HW

� independent of geometry and characteristic of the process

Page 39: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Resistance in Interconnects

L

W

HA

B

D

��

���

�==H�

WL

�AL

RH << W and H << L in most processesInterconnect behaves as a “thin” filmSheet resistance often used instead of conductivity to characterize film

R�=�/H R=R�[L / W]

Page 40: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Resistance in Interconnects

R=R�[L / W]

L

W

The “Number of Squares” approach to resistance determination in thin films

1 2 3 21NS = 21

L / W=21

R=R�NS

Page 41: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Resistance in Interconnects

R=R�13.25

Corners Contribute about .55 Squares

Fractional Squares Can Be RepresentedBy Their Fraction

In this example:

NS=12+.55+.7=13.25

The “squares” approach is not exact but is good enough for calculating resistance in almost all applications

Page 42: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Capacitance in Interconnects

Metal 1

Metal 2

Substrate

A1

A4

A2

A3

A5

Equivalent Circuit

C12=CD12 A5

C1S=CD1S (A1+A2+A5)

C2S=CD2S (A3+A4)

Page 43: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Capacitance in Interconnects

C=CDACD is the capacitance density and A is the area of the overlap

Page 44: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Capacitance and Resistance in Interconnects

• See MOSIS WEB site for process parameters that characterize parasitic resistances and capacitances

www.mosis.org

Page 45: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

IC Fabrication Technology

• Crystal Preparation• Masking• Photolithographic Process• Deposition• Etching• Diffusion• Oxidation• Epitaxy• Polysilicon• Contacts, Interconnect and Metalization• Planarization

Page 46: EE 434 Lecture 9 - Iowa State Universityclass.ece.iastate.edu/ee434/05lectures/EE434_Lect09_Fall2005.pdf · IC Fabrication Technology • Crystal Preparation • Masking • Photolithographic

Planarization

• Planarization used to keep surface planar during subsequent processing steps– Important for creating good quility layers in

subsequent processing steps

– Mechanically planarized