30
EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc

EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter [email protected]

Embed Size (px)

Citation preview

Page 1: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

EE 5340Semiconductor Device TheoryLecture 05 – Spring 2011

Professor Ronald L. [email protected]

http://www.uta.edu/ronc

Page 2: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

2

Review the Following• R. L. Carter’s web page:

– www.uta.edu/ronc/• EE 5340 web page and syllabus. (Refresh

all EE 5340 pages when downloading to assure the latest version.) All links at:– www.uta.edu/ronc/5340/syllabus.htm

• University and College Ethics Policies– www.uta.edu/studentaffairs/conduct/

• Makeup lecture at noon Friday (1/28) in 108 Nedderman Hall. This will be available on the web.

Page 3: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

3

First Assignment

• Send e-mail to [email protected]– On the subject line, put “5340 e-mail”– In the body of message include

• email address: ______________________• Your Name*: _______________________• Last four digits of your Student ID: _____

* Your name as it appears in the UTA Record - no more, no less

Page 4: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

4

Second Assignment

• Submit a signed copy of the document posted at

www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf

Page 5: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

5

Schedule Changes Due to University Weather Closings• Make-up class will be held Friday, February 11 at 12 noon in 108 Nedderman Hall.

• Additional changes will be announced as necessary.

• Syllabus and lecture dates postings will be updated in the next 24 hours.

• Project Assignment will be posted in the next 36 hours.

Page 6: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

6

Intrinsic carrierconc. (MB limit)

• ni2 = no po = Nc Nv e-Eg/kT

• Nc = 2{2pm*nkT/h2}3/2

• Nv = 2{2pm*pkT/h2}3/2

• Eg = 1.17 eV - aT2/(T+b) a = 4.73E-4 eV/K b = 636K

Page 7: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

7

Classes ofsemiconductors• Intrinsic: no = po = ni, since Na&Nd

<< ni, ni2 = NcNve-Eg/kT, ~1E-13

dopant level !• n-type: no > po, since Nd > Na

• p-type: no < po, since Nd < Na

• Compensated: no=po=ni, w/ Na- =

Nd+ > 0

• Note: n-type and p-type are usually partially compensated since there are usually some opposite-type dopants

Page 8: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

Equilibriumconcentrations• Charge neutrality requires

q(po + Nd+) + (-q)(no +

Na-) = 0

• Assuming complete ionization, so Nd

+ = Nd and Na- = Na

• Gives two equations to be solved simultaneously

1. Mass action, no po = ni2, and

2. Neutrality po + Nd = no + Na

8

Page 9: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

9

Equilibriumconc (cont.)• For Nd > Na (taking the + root)

no = (Nd-Na)/2 + {[(Nd-Na)/2]2+ni

2}1/2

• For Nd >> Na and Nd >> ni, can use the binomial expansion, giving

no = Nd/2 + Nd/2[1 + 2ni

2/Nd2 + … ]

• So no = Nd, and po = ni2/Nd in the

limit of Nd >> Na and Nd >> ni

Page 10: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

10

n-type equilibriumconcentrations• N ≡ Nd - Na , n type N > 0• For all N,

no = N/2 + {[N/2]2+ni2}1/2

• In most cases, N >> ni, sono = N, and

po = ni2/no = ni

2/N, (Law of Mass Action is al-

ways true in equilibrium)

Page 11: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

11

Position of theFermi Level• Efi is the Fermi

level when no = po

• Ef shown is a Fermi level for no > po

• Ef < Efi when no < po

• Efi < (Ec + Ev)/2, which is the mid-band

Page 12: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

12

p-type equilibriumconcentrations• N ≡ Nd - Na , p type N < 0 • For all N,

po = |N|/2 + {[|N|/2]2+ni2}1/2

• In most cases, |N| >> ni, sopo = |N|, and

no = ni2/po = ni

2/|N|, (Law of Mass Action is al-

ways true in equilibrium)

Page 13: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

13

Position of theFermi Level• Efi is the Fermi

level when no = po

• Ef shown is a Fermi level for no > po

• Ef < Efi when no < po

• Efi < (Ec + Ev)/2, which is the mid-band

Page 14: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

14

EF relative to Ec and Ev• Inverting no = Nc exp[-(Ec-EF)/kT]

gives Ec - EF = kT ln(Nc/no) For n-type material:

Ec - EF

=kTln(Nc/Nd)=kTln[(Ncpo)/ni2]

• Inverting po = Nv exp[-(EF-Ev)/kT] gives EF - Ev = kT ln(Nv/po)

For p-type material: EF - Ev = kT

ln(Nv/Na)

Page 15: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

15

EF relative to Efi

• Letting ni = no gives Ef = Efi

ni = Nc exp[-(Ec-Efi)/kT], soEc - Efi = kT ln(Nc/ni).

Thus EF - Efi = kT ln(no/ni) and for n-type EF - Efi = kT ln(Nd/ni)

• Likewise Efi - EF = kT ln(po/ni) and

for p-type Efi - EF = kT ln(Na/ni)

Page 16: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

16

Locating Efi in the bandgap • Since

Ec - Efi = kT ln(Nc/ni), andEfi - Ev = kT ln(Nv/ni)

• The 1st equation minus the 2nd gives Efi = (Ec + Ev)/2 - (kT/2) ln(Nc/Nv)

• Since Nc = 2.8E19cm-3 > 1.04E19cm-3 = Nv, the intrinsic Fermi level lies below the middle of the band gap

Page 17: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

17

Examplecalculations• For Nd = 3.2E16/cm3, ni =

1.4E10/cm3

no = Nd = 3.2E16/cm3

po = ni2/Nd , (po is always ni

2/no)

= (1.4E10/cm3)2/3.2E16/cm3

= 6.125E3/cm3 (comp to ~1E23 Si)

• For po = Na = 4E17/cm3,

no = ni2/Na =

(1.4E10/cm3)2/4E17/cm3 = 490/cm3

Page 18: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

18

Samplecalculations• Efi = (Ec + Ev)/2 - (kT/2) ln(Nc/Nv), so

at 300K, kT = 25.86 meV and Nc/Nv = 2.8/1.04, Efi is 12.8 meV or 1.1% below mid-band

• For Nd = 3E17cm-3, given thatEc - EF = kT ln(Nc/Nd), we

have Ec - EF = 25.86 meV ln(280/3), Ec - EF = 0.117 eV =117meV ~3x(Ec - ED) what Nd

gives Ec-EF =Ec/3

Page 19: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

19

Equilibrium electronconc. and energies

o

v2i

vof

i

ofif

fif

i

o

c

ocf

cf

c

o

pN

lnkTn

NnlnkTEvE and

;nn

lnkTEE or ,kT

EEexp

nn

;Nn

lnkTEE or ,kT

EEexp

Nn

Page 20: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

20

Equilibrium hole conc. and energies

o

c2i

cofc

i

offi

ffi

i

o

v

ofv

fv

v

o

nN

lnkTn

NplnkTEE and

;np

lnkTEE or ,kT

EEexp

np

;Np

lnkTEE or ,kT

EEexp

Np

Page 21: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

21

Carrier Mobility

• In an electric field, Ex, the velocity (since ax = Fx/m* = qEx/m*) is

vx = axt = (qEx/m*)t, and the displ

x = (qEx/m*)t2/2

• If every tcoll, a collision occurs which “resets” the velocity to <vx(tcoll)> = 0, then <vx> = qExtcoll/m* = mEx

Page 22: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

22

Carrier mobility (cont.)• The response function m is the

mobility.• The mean time between collisions,

tcoll, may has several important causal events: Thermal vibrations, donor- or acceptor-like traps and lattice imperfections to name a few.

• Hence mthermal = qtthermal/m*, etc.

Page 23: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

23

Carrier mobility (cont.)• If the rate of a single contribution

to the scattering is 1/ti, then the total scattering rate, 1/tcoll is

all

collisions itotal

all

collisions icoll

11

by given is mobility total

the and , 11

Page 24: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

Figure 1.16 (p. 31 M&K) Electron and hole mobilities in silicon at 300 K as functions of the total dopant concentration. The values plotted are the results of curve fitting measurements from several sources. The mobility curves can be generated using Equation 1.2.10 with the following values of the parameters [3] (see table on next slide).

©rlc L05-08Feb2011

24

Page 25: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

Figure 1.16 (cont. M&K)

Parameter Arsenic Phosphorus Boronμmin 52.2 68.5 44.9

μmax 1417 1414 470.5

Nref 9.68 X 1016 9.20 X 1016 2.23 X 1017

α 0.680 0.711 0.719

©rlc L05-08Feb2011

25

refi NN

1minmax

min

Page 26: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

26

Drift Current

• The drift current density (amp/cm2) is given by the point form of Ohm Law

J = (nqmn+pqmp)(Exi+ Eyj+ Ezk), so

J = (sn + sp)E = sE, where

s = nqmn+pqmp defines the conductivity

• The net current is SdJI

Page 27: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

27

Drift currentresistance• Given: a semiconductor resistor

with length, l, and cross-section, A. What is the resistance?

• As stated previously, the conductivity,

s = nqmn + pqmp

• So the resistivity, r = 1/s = 1/(nqmn +

pqmp)

Page 28: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

28

Drift currentresistance (cont.)• Consequently, since

R = rl/AR = (nqmn + pqmp)-1(l/A)

• For n >> p, (an n-type extrinsic s/c)

R = l/(nqmnA)• For p >> n, (a p-type extrinsic s/c)

R = l/(pqmpA)

Page 29: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

29

References

M&K and 1Device Electronics for Integrated Circuits, 2 ed., by Muller and Kamins, Wiley, New York, 1986.– See Semiconductor Device

Fundamen-tals, by Pierret, Addison-Wesley, 1996, for another treatment of the m model.

2Physics of Semiconductor Devices, by S. M. Sze, Wiley, New York, 1981.

Page 30: EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu

©rlc L05-08Feb2011

30

References

*Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, 1989.

**Semiconductor Physics & Devices, by Donald A. Neamen, 2nd ed., Irwin, Chicago.

M&K = Device Electronics for Integrated Circuits, 3rd ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, 2003.