35
EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

Embed Size (px)

Citation preview

Page 1: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Section 6: Ion Implantation

Jaeger Chapter 5

Page 2: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Ion Implantation - Overview• Wafer is Target in High Energy Accelerator• Impurities “Shot” into Wafer• Preferred Method of Adding Impurities to Wafers

– Wide Range of Impurity Species (Almost Anything)

– Tight Dose Control (A few % vs. 20-30% for high temperature pre-deposition processes)

– Low Temperature Process

• Expensive Systems• Vacuum System

Page 3: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Equipment

dttImqA

Q

qr

mV

T

0

2

1 Dose Implanted

2 Field Magnetic

x q particle chargedon Force

B

BvF

Page 4: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Ion Implantation

x

Blocking maskSi

+ C(x) as-implant depth profile

Depth xEqual-Concentrationcontours

Reminder: During implantation, temperature is ambient. However, post-implant annealing step (>900oC) is required to anneal out defects.

Reminder: During implantation, temperature is ambient. However, post-implant annealing step (>900oC) is required to anneal out defects.

y

Page 5: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Advantages of Ion Implantation• Precise control of dose and depth profile• Low-temp. process (can use photoresist as mask)• Wide selection of masking materials

e.g. photoresist, oxide, poly-Si, metal

• Less sensitive to surface cleaning procedures• Excellent lateral uniformity (< 1% variation across 12” wafer)

n+n+

Application example: self-aligned MOSFET source/drain regions

SiO2

p-Si

As+As+ As+

Poly Si Gate

Page 6: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Ion Implantation Energy Loss Mechanisms

Si+

+

Si

Si

e e

+ +Electronicstopping

Nuclearstopping

Crystalline Si substrate damaged by collision

Electronic excitation creates heat

Page 7: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Light ions/at higher energy more electronic stopping

Heavier ions/at lower energy more nuclear stopping

EXAMPLES Implanting into Si:

Ion Energy Loss Characteristics

H+

B+

As+

Electronic stoppingdominates

Electronic stoppingdominates

Nuclear stoppingdominates

Page 8: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Stopping Mechanisms

E1(keV) E2(keV)B into Si 3 17P into Si 17 140As into Si 73 800

Page 9: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Substrate

Less damageSe > Sn

More damage at end of range Sn > Se

Surface

x ~ Rp

A+

Eo = incidentkineticenergy

Se

E ~ 0

Sn

E=Eo

Se

Sn

Depth xSn dE/dx|nSe dE/dx|e

Electronic / Nuclear Stopping: Damage

Page 10: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Simulation of 50keV Boron implanted into Si

Page 11: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Model for blanket implantation

pp

p

p

pp

RNdxxNQ

R

R

RxNxN

0

p

2

2

2= Dose

StraggleR

Range Projected

2exp

ProfileGaussian

Page 12: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Rp and Rp values are given in tables or charts e.g. see pp. 113 of Jaeger

Note: this means 0.02 m.

Projected Range and Straggle

Page 13: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Selective Implantation

solution ldimensiona-one is xN

straggle transverse

222

1

,

R

R

ayerfc

R

ayerfcyF

yFxNyxN

Page 14: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Transverse (or Lateral) Straggle (Rt or R)

Rt

RtRp

>1

Rt

Rp

Page 15: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

y

Mask

C(y) at x=Rp

x = Rp

Implanted specieshas lateral distribution,larger than mask opening

Implanted specieshas lateral distribution,larger than mask opening

x

y

Higher concentrationLowerconcentration

Feature Enlargement due to lateral straggle

Page 16: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

(2) Projected Range:

(3) Longitudinal Straggle:

(1) Dose C x dx0

(4) Skewness:

(5) Kurtosis:

dxxCxRp

0

1

dxxCRxR pp

0

22 1

( ) ( ) 00,

30

3

<>-

orMdxxCRpxM

0

4 dxxCRx p

Rpx

C(x)

Kurtosis characterizes thecontributions of the “tail” regions

-describes asymmetry between left side and right side

Definitions of Profile Parameters

Page 17: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Selective Implantation – Mask thickness

• Desire Implanted Impurity Level to be Much Less Than Wafer Doping

N(X0) << NB

or

N(X0) < NB/10

Page 18: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

What fraction of dose gets into Si substrate?

x=0 x=d

C(x)Mask material (e.g. photoresist)

Si substrate

C(x) Mask material with d=

x=0 x=d

-

Transmission Factor of Implantation Mask

Page 19: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

T C x dx C x dx

erfcd R

R

erfc x e dy

C x d

C x R

d

p

p

yx

p

00

0

4

1

2 2

12

10

2

Rule of thumb Good masking thickness:

d R Rp p 4 3. ~

are values of for ions intothe masking material

RpRp ,

Transmitted Fraction

Page 20: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Junction Depth

B

pppj

Bp

pjp

Bj

N

NRRx

NR

RxN

NxN

ln2

2exp

2

2

The junction depth is calculated from the point at which the implant profile concentration = bulk concentration:

Page 21: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Sheet Resistance RS of Implanted Layers

x

C(x) log scale

xj

CB

n

Total doping conc

p

p-sub (CB)

n

jx

0 B

S

dxCxCxq

1R

Example:n-type dopants implantedinto p-type substrate

x =0

x =xj

x

Page 22: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Approximate Value for RS

R

q C x dx q

Rq

R ohm

s x

s

s

j

1 1

10

If C(x) >>CB for most depth x of interest and use approximation: (x) ~ constant

use the for the highestdoping region which carriesmost of the current

This expression assumes ALLimplanted dopants are 100%electrically activated

or ohm/square

Page 23: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

200 keV Phosphorus is implanted into a p-Si ( CB= 1016/cm3) with a dose of 1013/cm2 .

From graphs or tables , Rp =0.254 m , Rp=0.0775m

(a) Find peak concentration

Cp = (0.4 x 1013)/(0.0775 x10-4) = 5.2 x1017/cm3

(b) Find junction depths

(c) Find sheet resistance

(b) Cp exp[ -( xj-0.254)2/ 2 Rp2]= NB with xj in m

( xj - 0.254)2 = 2 (0.0775)2 ln [ 5.2 1017/1016]

or xj = 0.254 ± 0.22 m ; xj1 = 0.032 m and xj2 = 0.474 m

From the mobility curve for electrons (using peak conc as impurity conc), n= 350 cm2 /V-sec

Rs = 1

qn =

11.610-19 350 1013 1780 /square.

PhosphorusImplant

p-substrate (1E16 /cm3)

x

x

j1

j2

R p

CB

Example Calculations

Page 24: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Channeling

Page 25: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Use of tilt to reduce channeling

To minimize channeling, we tilt wafer by 7o with respect to ion beam.To minimize channeling, we tilt wafer by 7o with respect to ion beam.

Random component

channeled component

C(x)

x

Axial ChannelingPlanar ChannelingRandom

Lucky ions fall into channel despite tilt

Page 26: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Si+

1 E15/cm2

Si crystal

Disadvantage : Needs an additional high-dose implantation stepDisadvantage : Needs an additional high-dose implantation step

B+

Si crystal

Amorphous Si

Step 1High dose Si+implantation to covertsurface layer intoamorphous Si

Step 2Implantation ofdesired dopantinto amorphous surface layer

Prevention of Channeling by Pre-amorphization

Page 27: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

With Accelerating Voltage = x kV

B+

P+

As+

Kinetic Energy = x · keV

B+++

B++ Kinetic Energy = 2x · keV

Kinetic Energy = 3x · keV

Singlycharged

Doublycharged

Triplycharged

Note: Kinetic energy is expressed in eV . An electronic charge q experiencing a voltage drop of 1 Volt will gain a kinetic energy of 1 eV

Kinetic Energy of Multiply Charged Ions

Page 28: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

BF2+

Kinetic Energy = x keV

BFF

B has 11 amuF has 19 amu

accelerating voltage= x kV+ -

%20191911

11

BFof.E.K

Bof.E.K

vm2

1Fof.E.K

vm2

1Bof.E.K

vvvVelocity

2

2BF

2BB

FFB

Molecular ion will dissociate immediatelyinto atomic components after entering a solid.All atomic componentswill have same velocityafter dissociation.

SolidSurface

Molecular Ion Implantation

Page 29: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Implantation Damage

Page 30: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Amount and type of Crystalline Damage

Page 31: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

(1) Restore Si crystallinity.

(2) Place dopants into Si substitutional sites for electrical activation

After implantation, we need an annealing step.A typical anneal will:

Post-Implantation Annealing Summary

Page 32: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Deviation from Gaussian Theory

• Curves deviate from Gaussian for deeper implants (> 200 keV)• Curves Pearson Type-IV Distribution Functions (~sum of 4 Gaussians)

Page 33: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Shallow Implantation

Page 34: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Rapid Thermal Annealing

•Rapid Heating•950-1050o C•>50o C/sec•Very Low Dt

(b)

Page 35: EE143 – Ali Javey Section 6: Ion Implantation Jaeger Chapter 5

EE143 – Ali Javey

Dose-Energy Application Space