80
EE152 Green Electronics Power Circuits Photovoltaics 9/30/15 Prof. William Dally Computer Systems Laboratory Stanford University

EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Circuits_093015.pdf · EE152 Green Electronics Power Circuits Photovoltaics ... SPICE

Embed Size (px)

Citation preview

EE152 Green Electronics

Power Circuits Photovoltaics

9/30/15

Prof. William Dally Computer Systems Laboratory

Stanford University

Course Logistics •  HW2 out Today due Monday 10/5 •  Lab1 signed off this week •  Lab2 out

EE155/255 Lecture 3 - Power Devices

Course to Date •  We need sustainable energy systems •  At the core they are voltage converters •  Periodic steady-state analysis, buck and boost •  Intelligent control + power path •  Intelligent control done with event-driven embedded

software •  Real devices have switching and conduction loss

EE155/255 Lecture 3 - Power Devices

Snubbers

EE155/255 Lecture 3 - Power Devices

LD

G 50V

+-

40A

RS

CS

D

Cj

M

Dampen Ringing Nodes

LD and Cj resonate when M is on Parallel RS dampens tank Series CS limits dissipation

EE155/255 Lecture 3 - Power Devices

Inductance on Drain

8uJ turn-on

42uJ turn-off

EE155/255 Lecture 3 - Power Devices

With Snubber (1nF, 5Ω)

8uJ turn-on

2uJ in snubber

42uJ turn-off

EE155/255 Lecture 3 - Power Devices

LD

G 50V

+-

40A

RS

CS

D

Cj

M

Design Procedure

Pick RS ~ 1/ωCj Pick CS so

τ >= π/ωOr

Es = CSV2/2

EE155/255 Lecture 3 - Power Devices

G 50V+-

40A

RS

CS

D

M

DS

Move Turn-Off Dissipation to Passive Device

CS slows rise time of drain

CSV2/2RS dissipated in RS when CS discharges

Rarely used today

Other forms slow fall time and rising/falling current EE155/255 Lecture 3 - Power Devices

Lab Half-Bridge Module

EE155/255 Lecture 3 - Power Devices

The Half-Bridge Module

1

2

Hin

IRS21834

ComVss

LO

S

HO

COM

Out

VDVB

M1

M2

R14.7

R24.7

U1

����

VCC

3

DT

GND

4

Hin

����

V12

C14.7 F

2.2 F200V

D356V5W

D1

R3 1

C21 F

VBCSupply

VDCFilter

D215V

C3

7

6

5

13

12

11

EE155/255 Lecture 3 - Power Devices

Bootstrap Supply

EE155/255 Lecture 3 - Power Devices

Drain Voltage Filter

1

2

Hin

IRS21834

ComVss

LO

S

HO

COM

Out

VDVB

M1

M2

R14.7

R24.7

U1

����

VCC

3

DT

GND

4

Hin

����

V12

C14.7 F

2.2 F200V

D356V5W

D1

R3 1

C21 F

VBCSupply

VDCFilter

D215V

C3

7

6

5

13

12

11

EE155/255 Lecture 3 - Power Devices

Drain Voltage Filter 300nH Input Inductance

EE155/255 Lecture 3 - Power Devices

SPICE

EE155/255 Lecture 3 - Power Devices

SPICE Example – A Voltage Doubler

EE155/255 Lecture 3 - Power Devices

A Voltage Doubler * Simple voltage "doubler".include "gel.lib".param td=100n tr=100n tf=100n tw=2.5u tcy=5u ncy=2.param l1=22uH c1=10uF r1=10

* call half-bridge subcircuitxhb vd mid g g 0 v12 gel_hb

* circuitl1 vin mid {l1}c1 vd 0 {c1}r1 vd 0 {r1}

* suppliesv12 v12 0 12vin vin 0 24

* stimulusVG g 0 PULSE(0 5 {td} {tr} {tf} {tw} {tcy} {ncy})

.ic i(l1)=9.2

.ic v(vd)=42.8

.tran {ncy*tcy}

EE155/255 Lecture 3 - Power Devices

Turn-On Transient

EE155/255 Lecture 3 - Power Devices

Steady State

EE155/255 Lecture 3 - Power Devices

Close up of Drain Current

EE155/255 Lecture 3 - Power Devices

With PID Control

EE155/255 Lecture 3 - Power Devices

A Warning •  SPICE (or any simulator) is a Verification tool, not a Design tool

•  Design your circuit first –  Use Excel, Matlab, a calculator etc… to calculate component

values •  Then simulate your circuit to check operation and fine-

tune parameters •  Don’t try to design your circuit using SPICE

•  Simulation is not a substitute for thinking

EE155/255 Lecture 3 - Power Devices

Summary of Power Circuits •  Real switches have limitations

–  Conduction losses (RON for FETs, VCE for IGBTs, Diode drop) –  Switching losses (finite ton, toff, trr)

•  With current source load, current ramps, then voltage falls •  And voltage rises before current falls •  May be dominated by reverse recovery time •  Complicated by inductance

•  Power MOSFETs –  Switch quickly, have linear I-V, integral diode

•  IGBTs –  Diode-like I-V, slower switching

•  Diodes –  Have reverse recovery time

•  Switches operate in pairs –  For one-way converters, one switch may be a diode –  Synchronous rectification – make both switches FETs to reduce loss –  Need “dead time” to avoid “shoot through” current

•  Gate-drive circuits control rise and fall times •  Bootstrap supply needed for high-side driver •  Snubbers dampen voltage and current transients •  Use SPICE as a verification tool, not a design tool

EE155/255 Lecture 3 - Power Devices

Photovoltaics

EE155/255 Lecture 3 - Power Devices

Energy Conversion

Photovoltaic System

Solar Panel

Solar Panel

Solar Panel

Solar Panel

Solar Panel

Solar Panel

Photovoltaic Array

PV Controller and Inverter

Batteries

400V DC 240V AC60 Hz

48V DC

To Grid

27

28

M

215 Installation and Operation

C

opyright � 2012 Enphase Energy

141-00012 Rev 04

29

Sam

ple Wiring D

iagram – M

215, 240 VA

C

Electrons absorb energy from photons

Equivalent Circuit

RSHISC

RS

D1 VC

+

_

D2

IV-Curve

Typical Module CS6P 60 cells in series ~0.5V per cell 3 strings of 20 with bypass diode on each string

Typical Module

… … …

IV Curve from SPICE Model

Peak-Power Tracking •  Find point on IV curve where power is maximized.

Start at any point (v(0),i(0)) “Dither” v, v(i+1) = v(i) + Δv Check result: if(p(i+1) < p(i)) v(i+1) = v(i) Try both directions: Δv = -Δv

MPP Tracking – The Movie

Start at (35 V, 5.5A) P=192.5

Dither by DV = 0.5V to V = 35.5V (35.5V, 4.7A) P=166.9 < 192.5

(35.5V, 4.7A) P=166.9 < 192.5 Bad Move – Go Back to (35, 5.5)

Dither by -0.5V to 34.5V (34.5, 6.2) P=213.9 > 192.5

(34.5, 6.2) P=213.9 > 192.5 Keep move and keep going

Move to 34.0 (34.0, 6.7) P=227.8 > 213.9

(34.0, 6.7) P=227.8 > 213.9 Keep move and keep going

(33.5, 7.0) P=234.5> 227.8 Keep move and keep going

(33.0, 7.3) P=240.9 > 234.5 Keep move and keep going

(32.5, 7.5) P=243.75 > 240.9 Keep move and keep going

(32.0, 7.6) P=243.2 < 243.75 Abandon Move and Go Back!

Operate at (32.5, 7.5) P=243.8 With occasional forays to 32.0 and 33.0

“Hillclimbing” On the Power Curve

Compound Power Curve

Compound Power Curve (2 Panels)

Not convex How do you find maximum power point?

Three Panels

Typical String of 10 PV Panels

Search Strategies for Non-Convex MPPT •  Exhaustion

–  Try every operating point •  Random

–  Randomly pick new points – keep if better •  Hierarchical

–  Try every point – with coarse spacing –  Try every point near best point with finer spacing –  Repeat

•  Acquire and Track –  One of the above to acquire MPPT (e.g., hierarchical) –  Then gradient search to track –  Periodically revisit (devote some fraction of string time to this)

•  Optimal method depends on –  Shape of curve –  How fast the curve changes –  How the curve changes

Good Optimization Depends on Understanding The Problem

•  Collect lots of data –  Time series of IV curves from typical strings

•  Understand the data •  What causes “dips”

–  Bad panels •  Static offset in current

–  Fixed shading – trees, buildings, etc… •  Periodic offset – same time each day

–  Variable shading – clouds, etc… •  Unpredictable shading – but shifts across panels in one direction

•  Develop algorithms •  Test on data

An Example of Optimization •  Trade-off parameters against one another to maximize

a figure of merit.

•  In this case, parameters are panel voltage and current.

•  Figure of merit is power.

•  Optimization is done real-time because temperature and irradiance change. –  Sometimes optimization is done at design time, or calibration

time.

MPPT Power Path (Boost Converter with Energy Meter)

Ci

VPV

PV Panel

RS

M1G

CO

L1

Load

M2G

VL

IPV

MPPT Power Path (Boost Converter with Energy Meter)

Ci

VPV

PV Panel

RS

M1G

CO

L1

Load

M2G

VL

IPV

MPPT is a boost converter that regulates its INPUT voltage

Cycle Waveforms

350 355 360 365 370 375 3802

4

6

8il(

A)

350 355 360 365 370 375 38034.5

35

35.5

v in (V

)

350 355 360 365 370 375 38043

43.5

44

44.5

v out (V

)

t (µs)

Size input cap Ci for acceptable ripple

Size output cap Co for acceptable ripple

Size inductor L to set ripple

SPICE

Longer Simulation

0 2 4 6 8 10 12 14 1610

20

30

40

v in(V

)

0 2 4 6 8 10 12 14 160

5

10i pv

(A)

0 2 4 6 8 10 12 14 1620

40

60

v out(V

)

0 2 4 6 8 10 12 14 160

0.2

0.4

D

0 2 4 6 8 10 12 14 1650

100150200250

P (W

)

t (ms)

PV Systems

Microinverter

Panel Inverter AC Line 240 Vrms ~1Arms

30-40V 0-10A

Store Energy During AC Null

Approach 1 – DC Link

Boost

30-40V 0-10A

340-600V 0-1A

Buck Unfold

Rectified AC 240V, 1A rms

Approach 2 – Single Stage

30-40V 0-10A

Convert Unfold

Rectified AC 240V, 1A rms

Buck

Boost

400VDC Unfold

400-600V 120Hz Buck

240V 120Hz rectified sine 240V AC 60Hz

2/3 of power through main path Lower path levels input current

Two-Path

3-Phase

String of Panels

Inverter

AC Line 480 V 20 A 3 phase

600-1000V 10A

No need for energy storage

48V34AH

RCSF1

C1

A

A

B

B

C

C

A B C

3-Φ Inverter Power Path

Transformerless

Typical Utility-Scale PV System

Typical Utility-Scale PV System •  8,000 Modules – 400 strings of 20 modules each

–  325W/module – 2.6MW DC total

•  Central 2MW inverter •  Central 2MW step-up transformer to 34.5kv •  Single axis tracking •  This 2MW “block” is repeated for larger systems

PV Economics 1 •  Utility scale costs

–  PV Module $0.60/W –  Inverter $0.10/W –  Mounting $0.15/W –  Balance $0.65/W –  TOTAL $1.50/W

•  Return –  Hours/year 2,200 –  Wholesale $0.05/kWh –  TOTAL $0.11/Wyear –  7.3% ROI

•  Residential costs –  PV Module $0.60 –  Microinverter $0.50 –  Mounting $0.20 –  Balance $1.70 –  TOTAL $3.00

•  Return –  Hours/year 2,200 –  Retail $0.15-$0.35/kWh –  TOTAL $0.33-0.77/Wyear –  11% - 26% ROI

PV Economics 2 •  Module is only 40% of cost (20% for residential) •  Real issue is balance-of-system (installation labor)

VOC Limiting •  Typical module (Trina TSM-310-PD14)

–  Vmp = 36V, Voc = 46V (worst-case cold temperature)

•  Inverter input limited to 1kV –  Limits strings to 21 modules –  At Vmp could have 27 modules – 29% increase –  Reduces string cost by ~30%.

Module (and Cell) Mismatch •  String current limited to current from weakest cell •  Module current mismatch σ = 5%

•  Worse for residential installations (partial shading)

•  Two questions: –  What is the typical mismatch profile of a 10-module string? –  What power reduction does a X % current mismatch result

in?

Faults and Failures •  Cell open/short •  Diode open/short •  Arc fault

Summary of PV •  PV cells/strings are voltage-dependent current

sources (Diode in parallel with current source) •  PV controllers regulate their input voltage/current to

maximize power –  Maximum power-point tracking

•  Can apply almost any converter topology –  Boost used for illustration –  Regulate input rather than output

•  Gradient search for convex optimization •  More sophisticated search needed for multi cell/panel

string

In Upcoming Lectures

EE155/255 Lecture 3 - Power Devices

No   Date   Topic   HW  out   HW  in   Lab  out   Lab  ck   Lab   HW  1   9/21/15  Intro  (basic  converters)   1   1   Intro  to  ST32F3   Periodic  Steady  State  2   9/23/15  Embedded  Programming  3   9/28/15  Power  Electronics  -­‐  1  (switches)   2   1   2   1   AC  Energy  Meter   Power  Devices  4   9/30/15  Power  Electronics  -­‐  2  (circuits)  5   10/7/15  Photovoltaics   3   2   3   2   PV  MPPT   PV  6   10/9/15  Feedback  Control  7   10/12/15  Electric  Motors   4   3   4   3   Motor  control  Matlab   Feedback  8   10/14/15  Solar  Day  9   10/19/15  Isolated  Converters   5   4   5   4   Motor  control  -­‐  Lab   Motors  10   10/21/15  MagneTcs  11   10/28/15  SoU  Switching   6/PP   5   6   5   PS  Part  1/Proposal   MagneTcs  and  bridge  converter  12   10/30/15  Inverters  and  Power  Factor  13   11/2/15  BaWeries   6/PP   7   6   PS  Part  2  14   11/4/15  Thermal  Design  15   11/9/15  EMI,  Grounding,  and  Debugging   P   7   Project  16   11/11/15  Quiz  Review    17   11/16/15  

11/16/15  Quiz  -­‐  in  the  evening  18   11/18/15   C1  

11/23/15  Thanksgiving  Break  11/25/15  Thanksgiving  Break  

19   11/30/15   C2  20   12/2/15  Wrapup  21   12/4/15  Project  presentaTons   P  

12/9/15  Project  webpage  due