EE302 Lab Manual Fall 2015

Embed Size (px)

DESCRIPTION

University of Texas at Austin ECE Lab Manual for Fall 2015

Citation preview

  • TheUniversityofTexasatAustinDepartmentofElectrical&ComputerEngineering

    EE302LabManual

    Fall

    2015LabManualfortheIntroductiontoElectricalEngineering

    UTEID:Name:

  • 2

    TableofContents

    1.0Introduction.........................................................................................................................................32.0EE302LabSchedule..............................................................................................................................43.0Grading.................................................................................................................................................54.0EngineeringNotebookGuidelines........................................................................................................5Lab1:IntroductiontoLabView1&myDAQ..........................................................................................7Assignment:BuildVItoCalculateAreaofaTriangle.......................................................................10

    Lab2:IntroductiontoLabView2.........................................................................................................13Assignment:BuildaVItoconverttemperature..............................................................................13

    Lab3:DigitalMultimeterandVoltageGenerator...............................................................................16Assignment:BuildaDigitalMultimeter...........................................................................................16Assignment:Buildingavoltagegenerator.......................................................................................20

    Lab4:MultisimSimulationofCircuits.................................................................................................24Assignment1:GettingorientedtoMultiSim...................................................................................28Assignment2:Simulatingthesecondcircuit...................................................................................31Assignment3:SimulatingtheThirdcircuit......................................................................................32

    Lab5:AudioEqualizer..........................................................................................................................40Assignment1:Designtheaudioequalizer.......................................................................................40

    Lab6:BreadboardandMeasurements...............................................................................................44Assignment1:Buildthecircuit........................................................................................................49Assignment2:Measurementsonthesecondcircuit.......................................................................50

    Lab7:SolderingandKitAssembly.......................................................................................................60Assignment1:Practicesoldering.....................................................................................................60Assignement2:Soldercomponentstotheboard...........................................................................60

    Lab8:SolarPowerDataLogging.......................................................................................................63Assignment1:ExperimentalProcedures.........................................................................................66

    Lab9:IntroductionofFinalProject(RobotCar)..................................................................................70Introduction.....................................................................................................................................70GradeBreakdown............................................................................................................................70SubSystemOverview......................................................................................................................71TrainingModule...............................................................................................................................71ObstacleCourse...............................................................................................................................72

  • 3

    TrainingModule1:Rock,Paper,Scissors.............................................................................................73Assignment1:BuildingtheCircuit...................................................................................................70

    Subsystem:LineFollower.....................................................................................................................77Lab10:ProficiencyExam......................................................................................................................80Lab11:TheveninEquivalentCircuits...................................................................................................85Assignment1:Constructthefirstcircuit..........................................................................................86Assignment2:Constructthesecondcircuit....................................................................................87

    Lab12:FinalProject(MotorControl,CollisionDetection)..................................................................96Subsystem:MotorControl...................................................................................................................96Subsystem:CollisionDetection............................................................................................................97Lab13:FinalProject...........................................................................................................................101Assignment1:BuildingtheCircuit.................................................................................................101

    Subsystem:PathLogic........................................................................................................................1045.0Appendices.......................................................................................................................................108AppendixA:MultimeterBasics..........................................................................................................108AppendixB:KeepinganEngineeringNotebook................................................................................112AppendixC:ContributionChartforFinalProject..............................................................................112

  • 4

    1.0IntroductionThismanualisdesignedtoaccompanytheEE302,IntroductiontoElectricalandComputerEngineering,

    labsection.YouwillfindcompletedescriptionsofthelabsforEE302andagreatdealofinformationaboutyourprojects.Youareencouragedtoreadthismanualanduseitasaresourcetoenhanceyourlabexperienceinthiscourse.

    2.0EE302LabScheduleThefollowingsectionsdescribeeachofthecircuitlaboratorysessionsforthesemester.

    LABACTIVITYDAYYOURLABMEETS

    Mon.

    Tues.

    Wed.

    Thurs. Fri.

    Lab1:IntrotoLabVIEW1andmyDAQ 8/31

    9/1 9/2 9/3 9/4Lab2:IntrotoLabVIEW2

    9/149/8 9/9 9/10 9/11

    Lab3:DigitalMultimeterandVoltageGenerator

    9/21

    9/15 9/16 9/17 9/18Lab4:MultisimSimulationofCircuits

    9/289/22 9/23 9/24 9/25

    Lab5:AudioEqualizer 10/5

    9/29 9/30 10/1 10/2Lab6:BreadboardandMeasurements

    10/1210/6 10/7 10/8 10/9

    Lab7:SolderingandKitAssembly 10/19

    10/13 10/14 10/15 10/16Lab8:SolarPowerDataLogging

    10/2610/20 10/21 10/22 10/23

    Lab9:FinalProjectRobotCarI 11/2

    10/27 10/28 10/29 10/30Lab10:ProficiencyExam

    11/9

    11/3 11/4 11/5 11/6Lab11:TheveninEquivalentCircuits

    11/1611/10 11/11 11/12 11/13

    Lab12:FinalProjectRobotCarII 11/23

    11/17 11/18 11/19 11/20Lab13:FinalProjectRobotCarIII* 11/30 12/1 12/2 12/3 12/4

    *Mondaylabsectionswillhavetheirfinallabprojectsdueattheendofthelastweekofclass(12/4).Allothersectionswillhavetheirfinallabprojectsdueatthelastscheduledlabmeeting.

  • 5

    3.0GradingThelaboratoryforEE302countsas20%ofyourfinalclassgrade.Yourgradeforthelaboratorywillbe

    determinedasfollows:

    Category %ofLabGradeAttendance 20%Participation 5%Prelabs 10%LabReport 20%LabNotes 10%ProficiencyExam 15%FinalProject(Demonstration+Finalreport) 20%(15%+5%)Total 100%

    4.0EngineeringNotebookGuidelinesFortheconvenience,labmanualincludeslabnotesession;therefore,youDONOTNEEDtobringa

    separatenotebook;however,thefollowingguidelinehowtousethenotebookwouldbestillveryhelpful.Inourlab,TAsmainlychecktheimportantdata,findings,andthoughtsinthenotesessionduringthelab.

    GuidelineforEngineeringNotebookLearningtokeepanengineeringnotebookisanessentialskillthatyouwillusethroughoutyour

    educationalexperienceatUT.Fortheteamproject,eachstudentisencouragedtokeepanengineeringnotebook,whichchronicleshisorherworkinthelabs.Allinformation,whichmaybepertinenttotheprojectorlabs,shouldbewrittenhere.YouwilluseyournotebooktorecordyourmeasurementsandotherdatafortheEElabs.HerearesomeguidelinestakenlargelyfromworkdonebyClifKussmaulwhenhewasanassistantprofessoratMoravianCollege.HeiscurrentlyanassistantProfessorofComputerScienceatMuhlenbergCollege.

    Engineeringnotebooksareusedinindustrytorecordwhatworkwasdone(incasetheauthorleaves

    theprojectorcompany)andwhenworkwasdone(forpatentandcopyrightmatters).Ultimately,yourengineeringnotebookshouldallowanotherknowledgeablestudenttobeabletoexactlyrepeattheworkyouhaveperformed.Herearesomebasicguidelinesyouneedtofollow:

    Thenotebookmustbepermanentlybound(gluedorsewn).Thebookstorehasseveralstyles

    fromwhichtochoose.Spiralboundorlooseleafnotebooksarenotacceptable. Thenotebookmustbeclearlylabeledwithyournameandthesemester. Everythingmustbewritteninpermanentink(itmaybeusefultohaveseveralcolorpens). Everypagemustbenumberedconsecutively,inparttoprovethatyouhavenotaddedor

    removedpagesafterthefact.

  • 6

    Leaveseveralpagesatthebeginningforatableofcontentssoyoucanlocatekeyinformationquickly.

    Startanewpageeachdayyouworkonthiscourse,andatthetopofthepageclearlyindicatethedateandhoursyouworked.

    Whenyoufinishworkfortheday,drawalinethroughanyspaceleftonthepage. Donotleaveanyblankpages. Describeallworkyoudoforthecourse,includingreadings,research,design,coding,

    documentation,test,teammeetings,classmeetings,etc.Includesketches,memos,relevantcodelistings,etc.Youshouldgluethemintothenotebook.

    Thenotebookismeanttobeapermanentrecordofwhatyouhavedone.Itmustbeneatenoughforyouorsomeoneelsetounderstandwhatyouhavedoneayearormorelater.Donotworkonotherpaperandthentranscribeitintoyournotebook!

    YournotebookshouldbekeptuptodateatalltimesandbroughttoEVERYlabsession.Anexampleofwhatwouldgointoanengineeringnotebookbaseduponthislabisasshownbelow:

    Laboratorydatasuchasmeasuredcurrents,voltages,resistancesandtheproceduresyoumayhaveusedtomeasurethesequantities.

    Studentsshouldensurethattheygothroughtheappropriatelabnoteanddothenecessaryprelabs

    beforecomingforthelabs.Alsoinfillinginthelabnotes,makesuregraphsandtablesarewellinterpretedintheThoughtsor

    Datasectionofthenotes.Andthemainconceptsshouldbewellhighlighted.

  • 7

    Lab1:IntroductiontoLabView1&myDAQ

    BackgroundKnowledge:InstallingNILabViewSoftwareandDrivers

    Step3

    Step4

    LabGoals:

    LearnthebasicsofLabViewprogrammingandtodesignasimpleVI(VirtualInstrument).

    o Computetheareaofatriangle,HowtouseMathScript LearntheLabViewEnvironmentandGraphicalProgramming

    RequiredLabMaterial:

    NImyDAQkit

    DueattheendofLab:

    AcopyofthesimpleVIyoudesigned

  • 8

    Step5 Step6

    Step7

    Step8

    Step9

    Step10

  • 9

    Step11

    Step12

    Step13 Step14

    AfterinstallingtheSWanddrivers,gototheUTEngineeringwebpageandfromtheInformation

    TechnologyGroup(ITG)therearedirectionsonhowtoobtainastudentlicensetoLabview2010andMultisim.http://www.engr.utexas.edu/itg/products/435labview

    Youdonotneedtodownloadthesoftwarefromthewebsiteagain.Justobtainthelicenseandgo

    toNILicenseManagerunderNationalInstrumentsinAllprograms.ClickactiveonthetoplefthandcornerandapplythelicenseinformationyouobtainedfromITG

    UTSchoolofEngineeringWebpage NILicenseManager

  • 10

    BackgroundKnowledge:NImyDAQRefertohttp://decibel.ni.com/content/groups/mydaqtogainmoreideasonhowtoutilizetheNI

    myDAQoutsideofthelab.Reference:

    LabVIEWIntroduction3HourCourseware https://lumen.ni.com/nicif/us/academiclv3hr/content.xhtml http://www.ni.com/mydaq/ http://decibel.ni.com/content/groups/mydaq

    Assignment:BuildVItoCalculateAreaofaTriangle

    Ifyouareusingaschool/labcomputerskiptostep3.

    1. Google"utexasLabVIEW"andinstallLabVIEWinyoursystem.OrusethislinktodownloadLabVIEWhttp://www.engr.utexas.edu/itg/products/435labview.

    **Note:youneedtoinstallLabVIEWonawindowssystem,asNIMyDAQworksonlywithWindowssystem.

    2. Inthesamepageyou'llfind"StudentLicenseInstructionsforWindows",usethattoget

    LabVIEWlicenseonyoursystem.Ifyoudon'tdothisyourLabVIEWlicensewillexpirein30days.

    3. Openthislink:www.ni.com/lv101.4. GotoLabVIEWBasicConcepts.5. Gothrough:1.LabVIEWEnvironment,2.GraphicalProgramming.Gothroughdetailed

    explanationandModelQuizforbothsections.6. DevelopyourownVIfor"areaoftriangle"program.Thefrontpanelshouldlooklike

    Figure1(YoucanadddecorationsandcolorsnotherthingstoyourVI).BesuretoputyournameandUTEID.

  • 11

    7. SavetheVI.Ex:your_name_lab1.vi.8. CallyourTAovertoverifythefunctionalityofyourVI.

    Figure1:Areaoftriangle,Frontpanel

    Figure2:Areaoftriangle,Blockdiagram

    (Left:UsingArithmeticfunctions,Right:UsingMathScript)

    TASignature:______________________________________________________________________________________

  • 12

    LabNote Date . . 2015

    Important concepts / Key ideas

    Procedure / DATA

    Try and error / Thoughts

  • 13

    Lab2:IntroductiontoLabView2

    Assignment:BuildaVItoconverttemperature

    1. Gotohttp://www.ni.com/lv101andreadthesectionsonProgrammingTools,DebuggingandHandlingErrors,DataTypesandStructures,adExecutionStructures.

    2. Dotheendofthemodulequizforeachoftheabovesections.3. DesignaVIthatutilizesanEnum,CaseStructure,andWhileLooptodothefollowing

    conversions:

    CelsiustoFahrenheit FahrenheittoCelsius CelsiustoKelvin Fahrenheittokelvin

    **Note:Lookuptheappropriatetemperatureconversions(viaGoogle,Bing,etc.)**

    4. SavetheVI.Ex:your_name_lab2.vi5. CallyourTAovertoverifythefunctionalityofyourVI

    LabGoals:

    LearnaboutLabViewProgrammingTools,DebuggingandHandlingErrors,DataTypesandStructures,andExecutionStructures.

    DesignaTemperatureConvertorusingtheCaseStructure,Enum,andWhileLoopdatastructures.

    DueattheendofLab:

    AcopyofthesimpleVIyoudesigned

  • 14

    Figure1:TemperatureConverter,Frontpanel

    Figure2:TemperatureConverter,Blockdiagram

    TASignature:___________________________________________________________________

  • 15

    LabNote Date . . 2015

    Important concepts / Key ideas

    Procedure / DATA

    Try and error / Thoughts

  • 16

    Lab3:DigitalMultimeterandVoltageGenerator

    Assignment:BuildaDigitalMultimeter

    Createavoltmeter

    1. Onblockdiagram,UseQuickDrop(CtrlSpace)tofindMultimeterSelectNIELVISmxDigitalMultimeter.ItscalledanExpressVIbecauseithasitsownconfigurationscreenwhichcomesupautomatically.

    2. ConfigureforDCVoltagemeasurement,Autoscale3. ExpandtheExpressVIdowntoseealltheinput/outputterminals

    4. RightclickonDeviceNameinputandCreateControl(thisplacescontrolonfrontpanel)5. Onfrontpanel,useQuickDroptofindWaveformChartandNumericIndicator6. Onblockdiagram,wiretogetherasshown.

    LabGoals:

    LearnhowtouseyourmyDAQasaDigitalMultimeter(DMM) LearnhowtooutputasignaltoaspecifiedoutputportonthemyDAQ

    andverifyitsfunctionality. DesignaDigitalMultimeterandVoltageGeneratortobeusedonlater

    labs.RequiredLabMaterial:

    NImyDAQkit

    DueattheendofLab:

    AcopyofthesimpleVIyoudesigned

  • 17

    7. Onblockdiagram,useQuickDroptofindWhileLoop.Draglooparoundyourcode8. RightclickonConditionalterminalandCreateControl(thisplacesstopbuttononfront

    panel)

    Figure3.1:Multimeter,FrontPanel

    Figure3.2:Multimeter,BlockDiagram

    9. Testbymeasuringabattery,or5V/DGNDpinsonmyDAQusingDMMprobes.10. SaveyourVIasyour_name_myDMM.vi

    AddCurrentandResistancemeasurementstoyourDMM11. Onblockdiagram,dragaCaseStructurearoundtheDAQAssistant.12. Onfrontpanel,useQuickDroptocreateanEnum(anenumeratedlist).Labelas

    MeasurementType(Figure3.3,3.4)13. Onfrontpanel,rightclickonEnumandselectEditItems(Figure3.5)

  • 18

    14. AddVoltage,Current,andResistanceasthethreeitemsonthelist15. Onblockdiagram,wiretheEnumtotheCaseSelector(denotedby)16. .RightclickonborderofCaseandselectAddCaseforEveryValue(Thiswillcreateall

    threecasesyouneed,neatlylabeledtomatchtheMeasurementTypelist.)

    Figure3.3:FrontPanel

    Figure3.4:BlockDiagram

  • 19

    Figure3.5:EnumPropertiesMenu

    17. AddNIELVISmxDigitalMultimeter.vitotheCurrentcase(Figure3.6),andsetupthemeasurementasshown.TheNImyDAQhasaninternalshuntresistortomeasurecurrentthroughtheanalogtodigitalconverter.

    Figure3.6:MultimeterVIPropertiesMenu

    18. AddNIELVISmxDigitalMultimeter.vitotheResistancecase(Figure3.7),andsetupthe

    measurementasshown.NotethatinordertomeasureResistanceusinganAnalogto

  • 20

    Digitalconverter,yousupplyanexcitationcurrent(Iex)throughaShuntResistor.myDAQhasanInternalcurrentsource,allowingthemeasurementofResistance.

    Figure3.7:MultimeterVIPropertiesMenu

    19. BesuretowiretheDataoutputofeachDAQAssistanttothewhitetunnelontheCaseStructure.WhenallCasesareproperlywired,thetunnelwillturnsolidandyourVIshouldrun.

    20. NowyouarereadytotestyourDMMforallthreemeasurements:Voltage,Current,andResistance.

    21. Congratulations!YouhavejustcreatedyourownDigitalMultimeterusingLabVIEWandmyDAQ!

    22. RemembertoswitchtheDMMprobestothecorrectwhenyouwanttomeasurecurrent.23. TestResistancebytouchi8ngprobestogether.Resistanceshouldgotozero.Orgeta

    resistorandtouchtheprobestoeithersideoftheresistor.24. SaveyourVI.

    Assignment:Buildingavoltagegenerator

    WecaneithercreateanewVItogeneratevoltagefrommyDAQ,oraddthisfunctiontoyourDMM.vi.ThestepsbelowshowhowtoaddtheVoltageGeneratortoyourDMM.vi

    1. UseQuickDrop(CtrlSpace)tofindthenewfunctions:DAQAssistant,andSelect.2. SettheDAQAssistanttoGenerateSignalAnalogVoltageonAO0(analogoutputchannel

    0).AlsosetTimingSettingsto1Sample(OnDemand).ThistellsmyDAQtogenerateanewoutputvoltageeachtimetheloopexecutes.

  • 21

    3. SelectOKtoacceptallDAQAssistantsettings

    4. RightclickontheappropriateterminalsoftheSelectfunctionandCreateControlfortheDialandEnableOutput(Booleanswitch)

    5. RightclickontheFalseinputofBooleanswitchtotheSelectandCreateConstanttoenter0(setstheVoltageGeneratoroutputtozero)

    6. RightclickontheoutputoftheSelectfunctionandCreateIndicatorfortheMeter(DisplaysthevoltageoutputfrommyDAQ)

    Figure3.8:BlockDiagramforVoltageGenerator

    **TheSelectfunctionallowsyoutoshutofftheVoltagegeneratorwhiletheVIisstillrunning.

    Figure3.9:FinalFrontPanel

  • 22

    Figure3.10:FinalBlockDiagram

    7. TestyourVIbygeneratingavoltageonAO0(AnalogOutputchannel0),andtestingitwith

    theDMM.8. CallyourTAovertocheckyouoffforcompletionofthelab.TASignature:__________________________________________________________________________________________

    Acknowledgement:ASpecialthankstoEricDean(AcademicFieldEngineerofNI)fortheexampleDMMandvoltagegenerator.

  • 23

    LabNote Date . . 2015

    Important concepts / Key ideas

    Procedure / DATA

    Try and error / Thoughts

  • 24

    Lab4:MultisimSimulationofCircuits

    BackgroundKnowledge:BriefintroductiontoMultiSimMultisim,aproductofNationalInstruments,(formoreinformation,visittheMultiSimWWWpageat

    http://www.ni.com/academic/multisim.htm)isadraganddropschematiccaptureandsimulationprogramthatallowsyoutoquicklycreatecompletecircuitsandanalyzethem.WithMultisim,circuitscontainingindependentanddependentsources,resistors,andothercircuitelementscanbeinstantlysimulatedattheclickofasinglebutton.

    ThesimulationengineofMultisimisBSPICE/XSPICEcompliantwhichisthedefactostandardincircuit

    simulation.OtherimportantfeaturesofMultisiminclude:1. TheabilitytointeractwithcircuitsusingVirtualInstrumentsthatlookandfunctionliketheir

    realworldcounterparts.Someoftheinstrumentsincludedare: AmmeterForfast,simplereadoutsofcurrent. FunctionGeneratorProducessquare,triangular,orsinusoidalvoltages. MultimeterMeasureACandDCcurrentandvoltage,resistanceanddecibelloss(auto

    ranging). VoltmeterForfast,simpleindicationsofvoltage.

    Duebeginningoflab: Completedprelabquestions.Onecopyistobeturnedinandonecopy

    shouldbeplacedinyourlabmanual.LabGoals:

    LearnhowtobuildresistivecircuitsinMultisim,acircuitsimulationprogram.

    LearnhowtouseMultisimtoobtaincurrentsandvoltagesfromelementsincircuits

    Observehowthevaluesobtainedwithsimulationdifferfromthosemeasuredfromrealcomponents.

    GainanintuitiveunderstandingofhowthetoleranceofaresistoraffectsthecharacteristicsofaDCcircuit.

    UnderstandhowtoobtainandgraphtheIVplotforacircuitelement.DueattheendofLab:

    AcopyofthesimpleVIyoudesigned

  • 25

    2. Multiplewaystoanalyzecircuitssothatyoucanexploreandunderstandthemindepth.Someof

    theanalysismethodsinclude: DCSensitivityDisplayssensitivitytoaparticularparameterandpredictshowvariancesin

    manufacturingcanaffectcircuitperformance. DCSweepComputestheDCoperatingpointofnodesinthecircuitforvariousvaluesof

    voltageorcurrentsources. WorstCaseDeterminesthemostextremevaluestobeexpectedinyourcircuit,giventhe

    specifiedtoleranceforeachcomponent.3. Multisimcontainsapartsdatabasethatincludes16,000differentcomponentsincludingallthe

    standardcomponentsplusseveralcategoriesofuniquepartsthatenhanceeachdesign.ItisnotthegoalofthislabtointroduceyoutoallaspectsofMultisim.Insteadwewillfocusonsome

    basicanalysistechniques.YouarefreetocontinuetoexplorethefeaturesofMultisimonyourownsinceitisavailableonallLearningResourceCentercomputers.WewillalsouseMultiSimintheprelabsfortheremainingcircuitslabs.

    BackgroundKnowledge:BriefdiscussionofdiodesandZenerDiodesDuringthislab,youwilllearnhowasemiconductordevicecalledazenerdiodecanbeusedasa

    reasonablealternativetoavoltagesource.Asabriefintroductiontothesedevices,letsstartbydiscussingasilicondiode.Adiodeisasemiconductordevicethatconductscurrentinonlyonedirection.ThesymbolforadiodeisshownatthetopofFigure1.Ifweplaceavoltageofslightlymorethan0.7Vacrossthediodewiththereferenceshowninthefigure,significantcurrentwillflow.Thisiscalledtheforwardbiasregionandcurrentflowsinthedirectionshown.Thetwoterminalsofthediodearecalledtheanodeandthecathode.Ifweapplyanegativevoltageacrossthediode,nocurrentflowsandweenterthereversebiasregion.ThediodecharacteristicofconductingcurrentinonlyonedirectionmakesitusefulinmanydevicesincludingconvertingACvoltagestoDC.

  • 26

    Figure1:DiodeSymbolandCharacteristic

    Letsnowexaminewhathappensifwecontinuetoincreasethenegativevoltageacrossthediode.As

    showninFigure2,thediodeeventuallyenterstheavalanchebreakdownorZenerRegion.Notethatthis

    drawingisnottoscale.Thisregionischaracterizedbyanearconstantvoltageregardlessofthecurrentflow.Whilealldiodesexhibitthischaracteristic,somediodesarepreciselydesignedtoexploitthisbehavior.Thesedevicesarecalledzenerdiodesandaredesignedtodeliverawidearrayofprecisevoltagereferences,muchlikeavoltagesource.

    Voltage V in Volts(Silicon Diode)

    Forward BiasRegion

    Reverse BiasRegion

    Current+ -

    Diode Symbol

    Curre

    nt in A

    mpere

    s

    Anode Cathode

    ~0.7 V

  • 27

    Figure2:ZenerDiodeSymbolandCharacteristic

    Voltage V in Volts(Silicon Diode)~0.7 V

    Forward BiasRegion

    Reverse BiasRegion

    Current+ -

    Zener Diode Symbol

    Curre

    nt in A

    mpere

    s

    Anode Cathode

    Zener BreakdownRegion

  • 28

    Assignment1:GettingorientedtoMultiSim

    1. StartMultisimbygoingtoPrograms>Multisim.2. PressControlW.

    ThiswillopenupthePartsmenu.Wewillneedthefollowingcomponentsforthislab:resistors,voltagesources,andameansofmeasuringcurrent(multimeterorammeter)andvoltage(voltmeter).Wecangettoeachoftheseasfollows:

    Thevoltagesourceshouldbeonthecurrentscreen.ItiscalledDC_POWER. UnderGroups,selectBasic.Underthebasicgroupwearegoingtouseresistors.These

    resistorscanbesettoanyvaluewewantwithanytolerancewewant.Theydonotdirectlyrelatetoresistorsthatyouwoulduseinahandsonlab.

    UnderGroups,selectindicatorstogettothevoltmeterandammeter. InstrumentsareunderthemenuSimulate>Instruments.Wecanalsogettothesebyselectingtheappropriateimagesatthebottomofthemenubarortherightmostsideoftheworkspace.Youcanmovethecursorovertheseimagesandthetextexplainingwhichgrouptheybelongtowillbeshown.Fromthispointon,youarelefttoyourselftomakethecircuitsandtakethemeasurements.Someimagesareshownforthefirstcircuit.Keepthefollowingthingsinmindwhenbuildingcircuitsandtakingmeasurements: Whenanitemisselected,itcanberotatedwithControlR Whenthecursorisabovethewireofacomponent,itwillturnintoacircle.Leftclickingon

    themousewillstartthewiringprocess.Movethecursortowhereyouwantthewiretogoandleftclickthemouseagaintoendthewiring.Tocompleteaspecificpathforthewire,youcanleftclickthewireateachpointwhereyouwantastraightpathtogo.

    Fornodesthatcontainmorethantwocomponents,youneedtocreateajunctionbygoingtoPlace>Junction.

    Allcircuitsneedagroundwiredtothembeforesimulationcanbegin. FunctionkeyF5beginsandendsasimulation

    Theschematicforthefirstcircuitisshownbelow.Inthissimulation,wewillbemeasuringcurrenteitherusingammetersoramultimetersettothecurrentsetting.Youmaychooseeithermethodyouwish.

    Figure3:ExampleCircuitforSimulation

  • 29

    3. PlacetheappropriatecomponentsfromFigure3,includingaground,ontotheworkspaceinMultisim.YoucanuseControlWtoopenthePartsWindoworgotoappropriateiconsaroundtheworkspace.Whenyouusevirtualresistors,allofthemwilldefaulttoavalueof1k.

    4. Doubleclickonaresistor.Thisopensawindowwhichallowsyoutochangesomepropertiesoftheresistor.Weare

    interestedinchangingthevalueofeachresistortotheonesshowninFigure3.ThisisdoneundertheValuetaboftheopenwindow.

    5. Doubleclickoneachresistorandchangetheirvaluestotheonesneededforthecircuit

    shown.6. Rotate(usingControlR)the10kresistorandoneofthe20kresistorssothattheyare

    vertical.7. Doubleclickonthevoltagesourceandchangeitsvalueto3.2volts8. Figure4showswhatyourscreenmightlooklikeatthispoint.

    Figure4:TypicaldisplayinMultiSimforExampleCircuitWenowneedtodecidewhetherwewanttouseammetersormultimeterstomeasurethe

    current.Unlikethemeasurementsyoudidpreviously,youcanplacemultipleammetersormultimeterssothatallcurrentscanbemeasuredatonce.

    9. Placetheappropriatenumberofammetersormultimetersontheworkspace.Again,

    ammeterscanbefoundbyhittingControlWandthenselectingindicatorsundergroups.MultimeterscanbefoundundertheSimulatemenu(selecttheInstrumentssubmenu).

    10. Wirethecircuitupsothattheammeters/multimetersareinserieswiththepathforwhichyouwanttomeasurethecurrent.Wheneachcomponentisconnectedtoawire,thewirewillturntoredandanumbermayappear.

    11. Figure5andFigure6showwhatthecircuitmaylooklikeusingeitherammetersor

    multimeters.

  • 30

    Figure5:SimulationofExampleCircuitusingammeters

    Figure6:SimulationofExampleCircuitusingmultimeters

    Ifyouchosetousemultimeters,youneedtodothefollowingstepstosetituptomeasurecurrent.Ifyouchosetouseammeters,gotoStep15.

  • 31

    12. Doubleclickoneachmultimeter.Thiswillopenupanewwindow.13. SelectAtosetthistomeasurecurrent.Leavethesewindowsopensothatyoucanobserve

    thecurrentvalue.Onceweareatthispoint,wearereadytosimulatethecircuittoobtaintheappropriatecurrentmeasurements.

    14. SelectUseTolerancesfromtheSimulateMenu.15. Thisopensupawindowwherewecancontrolthevariationincertainparameters.Sincewe

    haveabatteryandresistorsinourcircuit,wecanchangethetolerancesoftheseelements16. Setthetoleranceforbatteriesto0%andtheoneforallresistorsto0%.

    Togettheresultsofthesimulation,dothefollowingsteps.

    17. PressFunctionKeyF5tostartthesimulation18. PressFunctionKeyF5tostopthesimulationafterthevaluesfortheammetersor

    multimeterschange.Notethevaluesthateachammeter/multimeterhasisretainedafterthesimulationiscompleted.

    19. WritedownthecurrentvaluesobtainedforeachresistorintheappropriatecolumnofTable1andinyourlabnotesection.

    20. Changeoneofthe20kresistorstoa40kresistor.Youcandothisbydoubleclickingontheresistorandchangethevalueunderthevaluetab.

    21. Runthesimulationagain(FunctionKeyF5)andwritedownthesimulationvaluesintheappropriatecolumnsofTable1andinyourlabnotesection.

    22. ShowyourTAtheresultsofyoursimulationandgethisorhersignaturebeforecontinuing.Assignment2:Simulatingthesecondcircuit

    Wewillnowcreateadifferentcircuitwhichisshownbelow.

    Figure7:SecondCircuittoSimulate

    23. BuildandwirethecircuitshowninFigure7usingvirtualresistors.24. Useeitherammetersorvoltmeterstomeasurethefollowingquantitiesinthecircuit:

    currentflowingthroughthetop10kresistor,thevoltageacrossthe1kresistor,andthecurrentflowingthroughthe5kresistor.Forclarity,assumethatthepositivereferencesforvoltagesareontheleftandpositivecurrentsflowlefttorightthroughtheresistors

    25. Changetheresistorstolerancesto0%bydoubleclickingonthecomponentandfindingthetoleranceoptionunderthevaluetab.

  • 32

    26. RunthesimulationfivetimesandwritedownvaluesforeachquantityintheappropriateplaceofTables2a,2b,or2c.

    27. RepeatStep2526withresistorstolerancesof1%and5%.28. ShowyourTAtheresultsofyoursimulationandgethisorhersignaturebeforecontinuing.

    Note:Changethetolerancesofalltheresistorsinthecircuitforobservableeffects.

    Assignment3:SimulatingtheThirdcircuitThelastcircuityouwillsimulateisshownbelowinFigure8.Asdiscussedintheintroduction,wewillbrieflyintroduceazenerdiodewhichcanactsimilartoavoltagesourceundertherightconditions.Thezenerdiodeisanonlineardevicewhichmeansitscurrentvoltagecharacteristiccurvecannotbemodeledasastraightlineasdemonstratedin.TheZenerdiodewhichwewilluseinthissimulationproducesapproximately4.3Vundertherightconditions.

    Figure8:ThirdSimulationCircuit

    Figure9:ThirdCircuitUsingaZenerDiode

    29. BuildandwirethecircuitshowninFigure9.Includeavoltmetertomeasurethevoltage

    acrossthe4.3Vsourcewiththereferenceshownandanammetertomeasurethecurrent

    510

    1 k

    2 k 20016V

    4.3V

    Current - Voltage +

    510

    1 k

    2 k 200Vsupply

    1N749ACurrent

    - Voltage +

  • 33

    flowingrighttoleftthroughthe4.3Vsource.(Note:foreasywiring,youcanrightclickonthemetersinyourcircuit,andflipthemhorizontally.)

    30. Changetheresistortoleranceto0%.31. Runthesimulation.EnterthevoltageandcurrentintotheappropriateplaceofTable3of

    theLabReport.32. Replacethe4.3Vsourcewiththezenerdiode(modelnumber1N749A)asshowninFigure

    8.RepeatStep31withsupplyvoltages(Vsupply)ofbetween20Vinstepsof4V(i.e.,20V,16V,12V,etc.)andplaceyourresultsinTable4inthelabreportandinyourlabnotesection.

    33. PlottheIVcharacteristicsofthediodeusingthedatafromTable4oftheLabReport.Youshouldeitherdoa**CLEAR**plotbyhandoruseaprogramlikeEXCELandpastetheresultsinthespaceprovided.

    34. TurninyourcompletedlabreporttoyourTA.FAQsQ: WhenIsimulatemyvalues,whyareallthevaluesthesameallthetimeevenwhenIhave

    tolerances?A: YoumusthaveUseTolerancesoptioncheckedundertheSimulatemenu.Q: Whyaresomeofmyvaluesreading0?A: Checkyourconnectionsonyourcircuit.Chancesaresomething'snotconnected.Move

    aroundsomeofyourcomponentstomakesurethecorrectpartsareconnected.Q: WhyamInotgettingmycalculatedvalues?A: Chancesareyouprobablywiredacomponentormultimeterwrong.Inaddition,check

    you'remeasuringtheappropriatevalue.Ifyou'remeasuringcurrentthroughsomething,makesureyourmeterisconnectedinserieswithit.Ifyou'remeasuringvoltage,besureyourmeterisconnectedparallelwiththevoltageyou'remeasuring.

    Q: Whycan'tIfindtoleranceinmyresistors?A: DonotuseRESISTOR_RATED.GotoBASIC=>RESISTOR,andpickouttheappropriate

    valuefromthere.Q: WhichvoltagesourceshouldIuse?Whereisground?A: UseDC_POWERunderSOURCES(ithastwoparallellines).Forground,it'sunder

    SOURCESaswell.

  • 34

    LabNote Date . . 2015

    Important concepts / Key ideas

    Procedure / DATA

    Try and error / Thoughts

  • 35

    Description of Diode Operation

    Name: EID:

    By placing by name and EID above, I am certifying that I determined the answer to the questions posed below and did not copy my answers from a fellow student.

    *** Due at the beginning of your lab session ***

    Youwillneed2completedcopiesofthisprelab.OneistobeturnedintoyourTAatthe

    beginningofthelabsession.Theotheroneistobedoneinyourlabmanual.

    1. Find a description on the operation of a diode on the internet (Places to check: How Stuff Works, Encyclopedia.com, etc. ). You need to refer to at least 3 different sources. Provide a summary of the information that you find. At the end of your description, provide the URLs for the sources that you read to write your description

    Description of Zener Diode Operation

    URLs Referenced http:// http:// http:// http:// http://

    Pre-lab: Multisim Simulation of Circuits 1

  • 36

    Multisim Simulation of Circuit Lab Report

    Submitted by (Print name)

    Lab Report : Multisim Simulation of Circuits 1

  • 37

    Table 1: Simulated current values in the circuit in Figure 3 of the Lab. Assume that positive currents flow left or right or up to down as appropriate. Make sure you use an appropriate number of significant figures and include your units.

    Simulated Value

    (Step 19) Simulated Value

    (Step 21) Current through 8.2 k resistor Current through 10 k resistor Current through 20 k resistor

    TA Signature (Step 22):

    Table 2a: Simulated values for the current flowing through the top 10 k resistor in Figure 7 of the Lab.

    Make sure you use an appropriate number of significant figures and include your units.

    0% tolerance 1% tolerance 5% tolerance

    Run #1 Run #2 Run #3 Run #4 Run #5

    Table 2b: Simulated values for the voltage across the 1 k resistor circuit in Figure 7 of the Lab. Make sure you use an appropriate number of significant figures and include your units.

    0% tolerance 1% tolerance 5% tolerance Run #1 Run #2 Run #3 Run #4 Run #5

    Lab Report : Multisim Simulation of Circuits 2

  • 38

    Table 2c: Simulated values for the current flowing through the 5 k resistor in Figure 7 of the Lab. Make sure you use an appropriate number of significant figures and include your units.

    0% tolerance 1% tolerance 5% tolerance

    Run #1 Run #2 Run #3 Run #4 Run #5

    TA Signature (Step 28):

    Table 3: Simulated values for Figure 8 of the lab

    4.3 V Source Voltage 4.3 V Source Current

    Table 4: Voltage and Current Values for the Diode in Figure 9 of the lab.

    Supply VoltageValue (V)

    Diode Voltage (V)

    Diode Current (mA)

    Lab Report : Multisim Simulation of Circuits 3

  • 39

    Plot the I-V characteristics of the diode using the data from Table 4. You should either do a **CLEAR** plot by hand or use a program like EXCEL and paste the results in the space provided below.

    Can you use a Zener Diode to replace a voltage source in a circuit? If so, how well does it

    match the operation of an ideal voltage source?

    Lab Report: Multisim Simulation of Circuits 4

  • 40

    Lab5:AudioEqualizer

    BackgroundKnowledge:BasicconceptsoffilterandequalizerLowpassFilter:Alowpassfilterisafilterthatpasseslowfrequencysignalsbutattenuates

    (reducestheamplitudeof)signalswithfrequencieshigherthanthecutofffrequency.Theactualamountofattenuationforeachfrequencyvariesfromfiltertofilter.

    HighpassFilter:AHighpassfilterisafilterthatpasseshighfrequencieswellbutattenuates

    (reducestheamplitudeof)signalwithfrequencieslowerthanthefilter'scutofffrequency.Theactualamountofattenuationforeachfrequencyisadesignparameterofthefilter.

    BandpassFilter:Abandpassfilterisafilterthatpassesfrequencieswithinacertainrangeand

    rejects(attenuates)frequenciesoutsidethatrange.AudioFrequency:Anaudiofrequency(abbreviation:AF),oraudiblefrequencyischaracterizedas

    aperiodicvibrationwhosefrequencyisaudibletotheaveragehuman.Whiletherangeoffrequenciesthatanyindividualcanhearislargelyrelatedtoenvironmentalfactors,thegenerallyacceptedstandardrangeofaudiblefrequenciesis20to20,000hertz.Frequenciesbelow20Hzcanusuallybefeltratherthanheard,assumingtheamplitudeofthevibrationishighenough.Frequenciesabove20,000Hzcansometimesbesensedbyyoungpeople,buthighfrequenciesarethefirsttobeaffectedbyhearinglossduetoageand/orprolongedexposuretoveryloudnoises

    Assignment1:DesigntheaudioequalizerDesignanaudioequalizerasshownbelowtoadjusttheoutputaudiosignaltothespeaker.Usethefilterexpressviundersignalanalysisfromthefunctionspalette.AlsousetheSpectral

    Measurementexpressvitodisplayyoursignal.

    LabGoals:

    LearnhowtouseLabviewtoprogramanaudioequalizer Understandhowfiltersareusedinsignalprocessing.

    RequiredLabMaterial:

    NImyDAQkit ASoundSource(Please,bringyouranysoundsourcesuchasiPod)

    DueattheendofLab:

    Demonstrationofaworkingaudioequalizer

  • 41

    Figure1showsthetemplatefortheFrontPanelofyourAudioEqualizer.ThisVIwillbeprovidedbyTA.AlthoughthegiventemplateprovidesgeneralconceptstoimplementanAudioEqualizer,youneedtofollowtheinstructions,modify,andfinishbuildingthecorrespondingblockdiagraminFigure2.

    Figure1:AudioEqualizerVItemplate,FrontPanel

    Figure2:AudioEqualizerVItemplate,BlockDiagram

  • 42

    Refertothefrequencyrangegivenbelow.

    TASignature:___________________________________________________________________________

    Acknowledgement:ThankstoEricDean(AcademicFieldEngineerofNI)fortheexampleaudioequalizervi.

  • 43

    LabNote Date . . 2015

    Important concepts / Key ideas

    Procedure / DATA

    Try and error / Thoughts

  • 44

    Lab6:BreadboardandMeasurements

    BackgroundKnowledge:PrototypingwithabreadboardAbreadboard(orprototypingboard)isusedtoquicklyconstructcircuitsfortestingandevaluation.You

    willbeusingdifferenttypesofprotoboardsduringyourvariouslabsatUT.Thissectionprovidessomegeneralcommentsandsuggestionsforthesebreadboards.

    Thebreadboardhasmanystripsofmetal(copperusually)whichrununderneaththeboard.Themetal

    stripsareconnectedasoutlinedinorangebelow.Thesestripsconnecttheholesontheboard.Thismakesiteasytoconnectcomponentstogetherandbuildcircuits.Tousethebreadboard,thelegsofcomponentsareplacedintheholes(thesockets).Eachholeisconnectedtooneofthemetalstripsrunningunderneaththeboard.Anodeisapointinacircuitwheretwocomponentsareconnected.Connectionsbetween

    Duebeginningoflab:

    Completedprelabquestions.Onecopyistobeturnedinandonecopyshouldbeplacedinyourengineeringnotebook.

    BlankcopyoftheLabReport.Onecopyofthelabreportwillbeturnedin.

    Youcaneitherplaceanothercopyofthelabreportintoyournotebook,orcopydownthedatacollected.

    LabGoals:

    Learnhowtobuildacircuitonabreadboardfromacircuitschematic. Learnhowtomeasurevoltageandcurrentaccuratelyfromacircuit

    onaprotoboard. Observehowthevaluesobtainedfromrealcomponentsdifferfrom

    thosecalculatedfromidealcomponents. Gainanintuitiveunderstandingonhowchangesinresistanceaffect

    characteristicsofaDCcircuit.

    Equipmentneeded: Tworesistors,with5%precision,witheachofthefollowingvalues:

    2k,3k,5.1k,10k,and20k. One(1)breadboard Yourlabnotebook MyDAQwithconnectionprobes(BlackandRed) AcopyoftheResistorOrganizationSheet(Searchtheinternet)

    Dueattheendoflab:

    TurninyourcompletedlabreporttoyourTA.

  • 45

    differentcomponentsareformedbyputtingtheirlegsinacommonnode.Onthebreadboard,anodeistherowofholesthatareconnectedbythestripofmetalunderneath.Thelongread&bluerowofholesareusuallyusedforpowersupplyconnections.

    Figure1:TypicalBreadboard

    Herearetwoexamplecircuitsconnectingresistorsinseriesandparallel.

    Figure2:ResistorsinParallel

  • 46

    Figure3:ResistorsinSeries

    TheConceptWhenbuildinga"permanentcircuit"thecomponentsaretogether(asinanintegratedcircuit),solderedtogether(asonaprintedcircuitboard),orheldtogetherbyscrewsandclamps(asinhousewiring).Inlab,wewantsomethingthatiseasytoassembleandeasytochange.Wealsowantsomethingthatcanbeusedwiththesamecomponentsthat"real"circuitsuse.Mostofthesecomponentshavepiecesofwireormetaltabsstickingoutofthemtoformtheirterminals.HowitWorksTheheartofthesolderlessbreadboardisasmallmetalclipthatlookslikethis:

    Figure4:MetalClip

    Theclipismadeofnickelsilveramaterialwhichisreasonablyconductive,reasonablyspringy,and

    reasonablycorrosionresistant.Becauseeachofthepairsoffingersisindependent,wecaninserttheendofawirebetweenanypairwithoutreducingthetensioninanyoftheotherfingers.Henceeachpaircanholdawirewithmaximumtension.Tomakeabreadboard,anarrayoftheseclipsisembeddedinaplasticblockwhichholdstheminplaceandinsulatesthemfromeachother,likethis:

  • 47

    Figure5:BreadboardHoleswithclips

    Theholeintheblockaboveeachpairoffingersholdsthewireaccuratelycenteredintheclip.

    Dependingonthesizeandarrangementoftheclips,wegeteitherasocketstriporabusstrip.Thesocketstripisusedforconnectingcomponentstogether.Ithastworowsofshort(5contact)clipsarrangedoneaboveanother(Figure6).

    Figure6:BusStrip

    Thebusstripisusedtodistributepowerandgroundvoltagesthroughthecircuit.Ithasfourlong(25

    contact)clipsarrangedlengthwise(Figure7).

    Figure7:BusStrip

    Notethatthemanufacturerelectednottojointheadjacent25contactstripsintoasingle,fulllength,

    50contactstrips.Ifthisiswhatyouwant,youwillhavetobridgethecentralgapyourself.Whenwecombinetwosocketstrips,threebusstrips,andthreebindingpostsonaplasticbase,weget

    thebreadboard:

  • 48

    Figure8:Breadboard

    Thebreadboardletsusconnectcomponentstogetherandbywiringthebusstripstothebindingposts

    andthebindingpoststothepowersupply,toconnectthepowersupplytothecircuit.Nowwhatweneedisawaytobringconnectionsfromtherestoftheinstrumentsintothebreadboard.

    ABCDEFGHIJ

    ABCDEFGHIJ

    ABCDEFGHIJ

    ABCDEFGHIJ

    ABCDEFGHIJ

    ABCDEFGHIJ

  • 49

    Assignment1:BuildthecircuitOneofthegoalsofthislabistogiveyouexperiencebuildingacircuitonaprotoboard.Youstudied

    someaspectsofthisprocessaspartoftheprelabassignment.Ifyoustillhavequestionsaboutthis,reviewtheinformationinyourlabmanualordiscusstheprocesswithyourpartners.TheschematicforthefirstcircuitisshownbelowinFigure4.

    Figure9:BreadboardandMeasurementsFirstCircuit

    4. Buildthiscircuitonthebreadboard.GetTAsignature.5. AportforthepowersupplywillbetheAnalogOutputportofyourNImyDAQ.Theconnectionswill

    beAGNDandAO0.6. ConnectawirefromtheAGNDtothepointDinFigure9.Youmayneedtousemultiplewiresto

    makethisconnection.Forclarity,youshouldusewiresofthesamecolor.7. Connectanotherwire(ofadifferentcolor)fromtheAO0topointAofFigure9.Youmayneedto

    usemultiplewirestomakethisconnection.Forclarity,youshouldusewiresofthesamecolor.8. GetyourTAtoverifythatyourcircuitiscorrect.Ifitis,yourTAwillsigntheappropriateplaceinthe

    labreport.9. WewillnowmeasurevoltagesbetweenpointsA,B,C,andD.Thesevoltagescanbeusedto

    calculatethecurrentthroughtheresistors.Youcalculatedtheexpectedvaluesforthesevoltagesaspartofyourprelabassignment.Wewillcomparethoseresultstothoseyouwillmeasure.

    10. DrawthecircuitshowninFigure9aboveintheboxprovidedintheLabReport.Includewhereyou

    willplacevoltmeters(denotedbyaVinsideacircle;includethepositiveandnegativeterminals)tomeasureVAB,VBC,andVCD.Youwillhavemorethanonevoltmeterinyourcircuit.

    11. EnterthevaluesyoucalculatedfromtheprelabintotheappropriatelocationinTable1oftheLabReport.

    12. Runyourvifromlab3togenerateaDCvoltagetoyourcircuit.

  • 50

    13. SettheDCvoltagevalueto5volts.Youcaneitherusetheknobonthefrontpanelofyourviortypethevalue5V.

    14. MeasureVAB,VBC,andVCDusingyourmyDAQandtheDigitalMultimeter(DMM).(MakesureyourprobesareconnectedtotheVoltageslotandnotthecurrentslot).EnterthevoltagemeasuredintoyournotebookandintheappropriateplaceofTable1oftheLabReport.Makesureyouuseanappropriatenumberofsignificantfiguresandtheunits.ConfirmthatKVLissatisfiedbysummingyourmeasuredvaluesinthetabletofindVAD.

    15. Disassemblethecircuityouhavebuilt.Assignment2:MeasurementsonthesecondcircuitWewillnowcreateadifferentcircuitwhichisshowninFigure5.

    Figure10:SecondCircuitforCircuitsILab

    1. Buildthiscircuitonthebreadboard.2. ConnecttheAGNDandAO0wirestotheappropriateplacesinthecircuit.3. GetyourTAtoverifythatyourcircuitiscorrect.Ifitis,yourTAwillsigntheappropriateplacein

    thelabreport.4. Thistime,wewillmeasurethecurrentsI1,I2,I3,andI4flowingthroughitsresistorbymeasuring

    thevoltageacrossitandthencalculatingthecurrentfromthismeasurement.5. DrawthecircuitshowninFigure10aboveintheboxprovidedintheLabReport.Includewhere

    youwillplaceammeters(denotedbyanAinsideacircle;includethepositiveandnegativeterminals)tomeasureI1,I2,I3,andI4.Youwillhavemorethanoneammeterinyourcircuit.

    6. EnterthevaluesyoucalculatedfromtheprelabintotheappropriatelocationinTable2oftheLabReport.

    7. SettheDCvoltagevalueto5volts.Youcaneitherusetheknobonyourviortypethevalue5Vintothespaceprovided.

    8. Measurethecurrentvalueflowingthrougheachresistor.UsethecurrentsettingonmyDAQtodothis.EnterthecurrentmeasuredintobothyournotebookandintheappropriateplaceofTable2oftheLabReport.Assumethatpositivecurrentsflowfromlefttorightoruptodownasappropriate.Makesureyouuseanappropriatenumberofsignificantfiguresandtheunits.RememberthatKCLmustbesatisfied.

    5V

    5k

    10k20k20k

    AI1

    I4I3I2

  • 51

    **Ifyouarehavingtroublegettinganonzerocurrentmeasurement,gotothepropertiesmenuforyourmultimeterandselectSpecifyRangeto20mAinsteadofAuto**

    9. Disassemblethecircuityouhavebuilt.10. TurninyourcompletedlabreporttoyourTA.

    FAQs Q: Whywontmycircuitwork?A: Checkyourconnections.Onlythe5holesinarowareconnected;thecolumnsarenot

    connected,androwsacrossthemiddlecrevassearenotconnected!Q: WhyamInotmeasuringcurrentcorrectly?A: IntheblockdiagramVI,edittherangeoptionforcurrentto20mA.

    Q: HowdoImeasurecurrentanyway?

    A: Breaktheconnection,andconnectyourmyDAQprobesinseriestocompletetheconnection,asyouwouldwitharesistor.Also,besuretochangeyourmyDAQredprobeintothecorrectplug.

    Q: WhydomyvaluesfluctuatesomuchandwhyamInotgettinganygoodreading?A: Youneedtomakeagoodcontactwithyourprobestothemetalleadsoftheresistorsin

    ordertominimizecontactresistanceandgiveagoodreading.Youmayneedtopressthemeterleadstotheresistorterminalsordosomeotherinterventiontomakeitwork.

  • 52

    LabNote Date . . 2015

    Important concepts / Key ideas

    Procedure / DATA

    Try and error / Thoughts

  • 53

    1

    2

    Name: EID:

    By placing by name and EID above, I am certifying that I determined the answer to the questions posed below and did not copy my answers from a fellow student.

    *** Due at the beginning of your lab session ***

    Youwillneed2completedcopiesofthisprelab.OneistobeturnedintoyourTAatthebeginningofthelabsession.Theotheroneistobedoneinyourlabmanual.Required Readings:

    APPENDIX A: MULTIMETER BASICS of the lab manual APPENDIX B: KEEPING AN ENGINEERING NOTEBOOK of the lab manual

    1. Determine what the appropriate color bands are for the resistors to be used in this lab. Place your

    answers in the table below.

    Resistor First Color Second Color Multiplier Color 1 k

    2 k 3 k 5 k

    10 k 20 k

    2. Draw the appropriate schematic diagram in the box provided for each of the following protoboard

    circuits.

    +10 volts 1

    2

    Ground

    (a)

    Pre-lab: Breadboard and Measurement 1

  • 54

    CB

    E D A

    R

    C Ground B

    E D A

    +5 volts

    (b)

    3. Indicate where you'd place a ammeter to measure the current through the voltage source and where you'd place a voltmeter to measure the voltage of resistor R2 in the diagram below. Place you re- drawn circuit in the box provided.

    R R2 5V R1

    Pre-lab: Breadboard and Measurement 2

  • 55

    4. Use the three circuits below to calculate the quantities requested. Assume that positive current flows either left to right or up to down as appropriate. Make sure you include units and an appropriate number of significant figures.

    Paramet Val

    Voltage between points A(+) & B(-) VAB

    Voltage between points B(+) & C(-) VBC

    Voltage between points C(+) & D(-) VCD

    (a)

    Re-do part (a) assuming that the 5 k resistor is 5.1 k.

    Paramet Val

    Voltage between points A(+) & B(-) VAB

    Voltage between points B(+) & C(-) VBC

    Voltage between points C(+) & D(-) VCD

    (b)

    Pre-lab: Breadboard and Measurement 3

  • 56

    Parameter Value

    I1

    I2

    I3

    I4

    (c) Re-do part (c) assuming that the 5 k resistor is 5.1 k.

    Parameter Value I1

    I2

    I3

    I4

    (d)

    Pre-lab: Breadboard and Measurement 4

  • 57

    Circuits II - Breadboarding and Measurements Lab Report

    Submitted by (Print names)

    Lab Report: Breadboard and Measurement 1

  • 58

    Assignment1:Buildthecircuit

    TA Signature (Step 4): Place the drawing asked for in Step 5 in the box below. Also, put your Voltmeters with

    appropriate polarity for the measurement.

    Table 1: Measured and Calculated voltage values in the circuit in Figure 9 of the Lab. Make sure you use an appropriate number of significant figures and include your units.

    Calculated Voltage Measured Voltage VAB

    VBC

    VCD

    VAD=VAB+ VBC+ VCD

    TA Signature (Step 13):

    Lab Report: Breadboard and Measurement 2

  • 59

    Assignment2:Buildthecircuit

    TA Signature (Step 3): Place the drawing asked for in Step 2 in the box below. Also, put your Ammeters with appropriate

    polarity for the measurement.

    Table 2: Measured and Calculated current values in the circuit in Figure 10 of the Lab. Make sure you use an appropriate number of significant figures and include your units.

    Calculated Current Measured Current

    I1

    I2

    I3

    I4

    Lab Report: Breadboard and Measurement 3

  • 60

    Lab7:SolderingandKitAssembly

    Assignment1:PracticesolderingUsingtheinstructionsstartingonpage4ofthekitinstructions,practicesolderingusingthepractice

    padsontheedgeofthecircuitboardasshowninFigure2intheinstructions.Beforeproceeding,haveyourTAinspectyoursolderingtechnique.

    Assignement2:SoldercomponentstotheboardUsingtheinstructionsstartingonpage6ofyourkitdocumentation,solderthecomponentstothe

    board.Payspecialattentiontotheorientationofthefollowingcomponents,astheymustbeinstalledinthecorrectorientation:

    C6100Felectrolyticcapacitor IC1555or1455timerintegratedcircuit C1,C2,C310Felectrolyticcapacitor Q1,Q22N3904transistors LEDs

    DemonstrateyourworkingboardtoyourTA.Ifyouhaveproblems,askhimorherforassistancein

    diagnosingthecause.

    Duebeginningoflab: Beforecomingtolab,reviewtheseonlineresourcesforlearningtosolderor

    findyourownusingawebsearch: http://en.wikipedia.org/wiki/Soldering http://www.instructables.com/id/E30LR180T4EWP872BS/?ALLSTEPS

    (Thissitecontainsvideoswhichyoumayfindhelpful.)LabGoals:Bytheendofthislab,studentswill: Learnhowtosolderelectroniccomponentstoaprintedcircuitboard. LearnhowtousetoolstobuildthesirenandflashingLEDcircuit.RequiredLabMaterial: Akittoassemblealongwiththefollowingtoolsandinstrument: Solderingiron,stand,solder,andsolderwick Screwdrivers,wirecutters,andpliersAtthecompletionofthislabpleasereturntheequipmentDueattheendoflab: Demonstrationofyourassembledandworkingkit.

  • 61

    FAQs

    Q: Whichpartshavepolarity?A: Theelectrolyticcapacitorshaveanegativeendmarkedbyawhitestripe.TheLED'shaveaflat

    endthatisthenegativeend;youmayhavetoholduptothelighttosee.Also,thenegativeterminalsofboththesedeviceshaveshorterleads.Ceramiccapacitors(orange),resistors,andspeakershavenopolarity.

    Q: HowdoIremovesolder?Isolderedapartonincorrectly!A: Usethecoppersolderingwickbysandwichingitbetweenthesolderingironandthesolder

    lump.Useplierstoremovetheaffectedpartonceyouremoveenoughsolder(youwillknow).Q: Mysolderingironwon'theatthesoldertomeltit!WhatshouldIdo?A: Chancesareyourtipisbadlyoxidized,soeithercleanthetiporgetanewiron.

  • 62

    LabNote Date . . 2015

    Important concepts / Key ideas

    Procedure / DATA

    Try and error / Thoughts

  • 63

    Lab8:SolarPowerDataLogging

    BackgroundKnowledge:SolarPanelsIncidentsunlightcanbeconvertedintoelectricitybyphotovoltaicconversionusingasolarpanel,which

    consistsofindividualcellsthatarelargeareasemiconductordiodes.Lightisabsorbedinthesilicon,generatingbothexcessholesandelectrons.TheseexcesschargescanflowthroughanexternalcircuittoproducepowerandtheequivalentcircuitofasinglecellamountstoacurrentsourceasshowninFigure5.

    Inelectricalengineering,itisoftenofinterestwhencharacterizingadevicetolookatitscurrentand

    voltagerelationship,knownastheIVcharacteristicsofthedevicebecauseofthecurrentversusvoltagegraphsthatarecommonlyusedtorepresentthisrelationship.Similarly,anotherrelationshipthatisofinterestforadeviceisthepowervoltageorPVcharacteristics.

    TheIVcharacteristicsofasolarpanelarenonlinearandfollowthegeneralshapeandequationshown

    inFigure6.Thecurrentismaximumfortheshortcircuitcondition(i.e.,V=0),andthevoltageismaximumfortheopencircuitcondition(i.e.,I=0).Maximumpower,Pmax,correspondstoVmandIm.

    SolarPowerandTypicalPanelFacts:

    Cleardayincidentsolarenergy(i.e.solarinsolation):1kW/m2

    Dueatthebeginningoflab: Readthebackgroundinformationtothislab.LabGoals: DeterminetheIVandPVcharacteristicsofasolarpanel Learnaboutarenewableenergysourceapplication Determinethemaximumpowerdeliveredbyasolarpanel LearntouseMicrosoftEXCELtodisplaydatagraphically.RequiredLabMaterial: SolarPanel myDAQ ComputerwithMicrosoftExcel

  • 64

    Solarpanelpoweroutputfacingabrightsun:140W/m2 For24/7poweravailability,deepdischargebatteriesstoreenergyfornighttimeorovercast

    daytimeuse.Solarpanelefficiency:14% Efficiencydecreaseswithhightemperatures. AneverydayapplicationofsolarpowerissomeoftheLEDflashingsignsfromtheTxDOTin

    schoolzones,forinstance. Vocpercell(refertofigure6):0.50.6V A12Vbatterychargingpanelhas(refertofigure6):36cells,atotalVoc19V,aVm14V Eachseriescellinasolarpanelmaycontainmultipleindividualcellsinparalleltoincreasethe

    totalsurfaceareaandpowergeneratingcapability. Solarpowercost:$45/Wperpanel+$45/Wforbatteriesandelectronics Vm,Im,andtheThveninequivalentresistancevarywithlightlevel,makingoperationat

    maximumpowerdifficult. DCDCconvertersoftenusedtomatchtheloadresistancetotheThveninequivalent

    resistanceformaximumpoweroutputandchargestoragebatteriesinawaythatmaximizesbatterylife.

    Ideally,asolarpanelshouldbeperpendiculartheincidentraysofthesunandtrackitlikeasunflowertomaximizeenergycapture.SunpositionsforAustinareshowninFigure7.

    Typically,panelsarefixedinpositionfacingtruesouthduetohighwindsurvivabilityandadjustedonlyseasonallyforaltitude(winterangle=latitude+20,summerangle=latitude10).ForAustinssuggestedseasonalpanelangles,seeFigure8.

    YourSolarPanelSystem:

    LookslikeFigure1. TranslatestoanequivalentcircuitasinFigure2 ShouldhavecharacteristicsonovercastandsunnydaysasinFigure3 ShouldhaveaVoc=19V(opencircuitvoltage),Isc=0.1A(shortcircuitcurrent),andPmax=1.2W

    (maximumpower) Usesacurrentsampling/sensingresistorof10 Hasapotentiometer(orvariableresistor)asaloadwitharangefrom01k Canbeusedfortricklechargingautomobileandboatbatteriestoreplenishleakagelossesand

    powerdrawnbydashboardelectronics,theftdetectors,etc. Isidenticaltocommercialgrade(40100W)panelsusedforpoweringremotecommunication

    sites,schoolzoneflashers,andotherloadswhereconventionalpowerisnotreadilyavailableorisexpensive,exceptforthecurrentscalefactor.

  • 65

  • 66

    Assignment1:ExperimentalProcedures1. Ifpossible,performtheexperimentsoutsideinfullsunlight.Analternativetothesunistousethe

    lampsprovidedinENS212(thepowerlab).2. Ifyouareperformingtheexperimentinsunlight,orientthepanelsothatitisperpendiculartothe

    sun.Shadowsprojectedbythesidesofthepanelwillhelpyoualignit.Holdingapencilalongsideandperpendiculartothepanelisalsohelpful.Theshadowofthepencilwillbeaminimumwhenthepencilpointsdirectlytowardsthesun.

    3. Ifyouareusingalamp,visuallyorientthepanelsothatitisperpendiculartothelamprays.Keepthepanelatleast12inchesfromthelightbulbtoavoidoverheatingthepanel.Ifyouareusingafocusedbeam,donotconcentratethelightonasmallpartofthepanel,butinstead,spreadthebeamovertheentirepanelface.

    4. Oncetheexperimentsbegin,donotmovethepanel.5. Addavoltagedividercircuitacrossthepanelvoltage,whichconsistsoftwohighvalueresisters

    connectedinseries.TheTAwillprovidethis.6. RunwiresfromAI0tooneofthevoltagedividerresisterandalsorunwiresfromAI1tothesensing

    resister(10)7. YouwillusetheVIyoucreatedforprelabtoacquiredata.8. EnsurethatthefileyouarewritingtoisanExcelfile.Todothis,doubleclickthewritetofilenode

    intheblockdiagramandadialogboxwillpopup.SelectMicrosoftExcelundertheFileformatcategoryandcreateafileinaconvenientfolderlocationundertheFilenamecategory.

    9. Turnthepotentiometercounterclockwiseuntilitcannotbeturned.10. StarttheVIandslowlyturnthepotentiometerinaclockwisedirectionuntilyoureachtheend.11. StoptheVI.12. YouwillusetheloggeddatatocreateanIVcharacteristicplotandPVcharacteristicplotofthe

    SolarpanelonMSExcel.13. BasedonthedataacquiredyouwillalsousetheequationinFigure3togenerateatheoreticalIV

    andPVplot.14. Haveboththemeasuredplotandthetheoreticalplotonthesamegraphforcomparison.15. CompletetheSolarPowerLabReportusingthehardcopyyoubroughttolabandturnacopyinto

    yourTAattheendoflab.

    Acknowledgments: ThesolarpanelsandassociatedhardwareusedinthislabweredonatedbyTXUElectric. TheintroductorymaterialwastakenfromDr.EwaldFuchslecturenotesforECEN3170,

    EnergyConversionI,UniversityofColoradoatBoulder.ForMoreInformation:ThreeexcellentwebsitesforinformationonsolarpowerareJadeMountain,www.jademountain.com,theTexasSolarEnergySociety,www.txses.org,andSouthwestPVSystems,www.southwestpv.com.

    ThislabwascreatedbyDr.Gradyon11/16/01andmodifiedbySeunghyunChunon12/18/2010.FAQs

    Q: WhatamIsupposedtomeasure?A: Removethecurrentsensingresistorandmeasurethevoltageacrosstheterminalswherethe

    resistorusedtobe.Thisisyouropencircuitvoltage.Replacetheresistor.Whilesweepingthevariableloadresistor,measurethevoltageacrosstheloadresistor,VL,thenmeasurethevoltageacrossthecurrentsensingresistorVR.DivideVRby10(thevalueofthecurrentsensingresistor,andthisvaluewillbeyourmeasuredcurrentIR.Takeseveraldatapointsof(VR,IR).

  • 67

    LabNote Date . . 2015

    Important concepts / Key ideas

    Procedure / DATA

    Try and error / Thoughts

  • 68

    Solar Power Data Logging Lab Report

    Submitted by (Print names)

    Lab Report: Solar Power and Data Logging 1

  • 69

    Please, state the Weather Condition (Cloudy, Sunny, or Using a light source in the lab) Solar Power: I-V plot (Both Theoretical and Measured values in the same plot)

    Solar Power: P-V plot (Both Theoretical and Measured values in the same plot)

    Explain why there is a difference between the theoretical values and measured values. Lab Report: Solar Power and Data Logging 2

  • 70

    Lab9:IntroductionofFinalProject(RobotCar)Trainingmodule1(Rock,Paper,Scissors),Subsystem(LineFollower)

    IntroductionThefinalprojectwillbedoneingroupsof34people.Eachmemberofthegroupwillberesponsible

    foroneofthesubsystems.Theoverallgoaloftheprojectistodesignandbuildarobotcarthatwillautomaticallytraverseanobstaclecourse.Asameobstaclecoursecanbefoundacouplepageslater.Theobstaclecoursewillbesplitupintosixphases.Thegradethatyouandyourgroupwillgetdependsonbothhowmanyphasesoftheobstaclecourseyourrobotsuccessfullyclears.Therewillbearobotcarcompetitioninthefinaldemonstration;moreover,theawardandprizewillbeendowedtothebestperformedgroup.

    GradeBreakdown

    Phase Your grade can be up to 1 70 2 80 3 90 4 100 5 (Bonus) 105 6 (Bonus) 110

    Dueatthebeginningoflab: Readthelabmanual.LabGoals: Learnhowtoworkinagrouptocompletealargeproject Learnhowtobreakdownalargeprojectintosmallerparts LearnhowtobrainstormandconstructsolutionstoperformataskRequiredLabMaterial: 3xmyDAQ(numberofmyDAQcanbevariedbytheRobotCarfunctions) Computerwithatleast3USBports

  • 71

    SubSystemOverviewSteeringLogic

    Description:Willworkoncontrollingtheindividualmotorsthatdrivethecar.Needstoacceptandperformsimplefunctionssuchasturningleft/right90degrees,etc.TrainingModule1:Rock/Paper/Scissor

    LineFollower

    Description:WillworkonthecircuitandLabViewtogetthecartofollowadarklineonawhitesurface.InterfacesstronglywiththeSteeringLogicsystem.Needstofigureouthowtogetthecartostayontheline,followsharpturns,andgetbacktothelineifitgetsoff.TrainingModule2:OPAmplogicLab

    ProximitySensorLogic

    Description:theIRdistancesensorswillbeusedtonavigatethecarthroughthepartofthemazethathaswalls.Therewillbenolinestofollow.

    GeneralPathAlgorithm

    Description:Mainlyasystemsintegrationandprogrammingheavysystem.Willhavetointerfacestronglywitheveryonetomakesurethatthecarfinishesthemaze.

    TrainingModule

    Thefinalprojectisdifferentfromyourpreviouslabsinthatyouwillnotgetasetofinstructionsto

    followandimplement.Instead,youwillneedtobrainstormwithyourteamtodeterminethebestdesignforyourrobottocompletetheobstaclecourse.Inordertohelpyouaccomplishthisgoal,wehavedesignedspecialtrainingmodulesthateachstudentmustcompletebeforestartingtoworkonyourfinalproject.Eachsubsystemwillhaveitsownassociatedtrainingmodulethatismeanttoexposethestudentstosomeoftheconceptsandskillsnecessarytocompletetheirsubsystem.Keepinmind,however,thatmuchofthefinalprojectwillrequireeachstudenttoperformmanysearchesintheliteratureandonlineinordertocomeupwiththebestsolution.

  • 72

    ObstacleCourseYourcarwillneedtofollowthesolidblacklineasitmakesitswaythroughthecourse.Thenumberof

    phasesthatyourcarsuccessfullyclearsdeterminesyourgrade.

    Phase1:Straightline.Thecarmustbeabletofollowastraightlineforadistance.

    Phase2:Slowturn.Thecarmustbeabletotakeseverallargeanglet

    Phase3:Sharpturn.Thecarmustbeabletoa90degreeturn.

    Phase4:Atacertainsectionofthecourse,theTAwillintroduceanobstacleinthepathofyourcar(suchasabook).Thecarmustbeabletosensethisandstopmovingwhiletheobstacleisthere.TheTAwillthenremovetheobstacleandthecarshouldresumeitspath.

    Phase5:Thecarwillnavigatethroughasectionofthemazewithnolinesontheground,onlywalls.Theproximitysensorshouldpreventthecarfromhittingawall.

    Phase6:Attheendofthecourse,theguidelinewillturnred.Thecarshouldstophere.

  • 73

    TrainingModule1:Rock,Paper,Scissors

    BackgroundKnowledge:UnderstandingaFlexSensorAflexsensorhastheuniquepropertythatitchangesitsinternalresistancebasedonhowmuchitis

    bent.Atypicalflexsensorwillhavearesistanceof20kOhmswhenitisflat.Thisresistancegraduallyincreasesandthesensorisbentfurther.Typicalrangesofbentresistancesarebetween40kand60kOhms.Figure1showstheSpectraSymbolFlexSensor.Noticethatthereisagridononesideofthesensor.Thegridshouldbefacingoutwardwhenthesensorisbent,astheresistancewillnotchangeifbenttheotherway.

    Flexsensorscanbeusedinavarietyofapplications,fromroboticbumperstoplayingtheairguitar,andonceyouunderstandthebasics,withalittlecreativitythepossibilitiesareendless!

    Dueatthebeginningoflab: Completedprelabquestions.Onecopyistobeturnedinandonecopy

    shouldbeplacedinyourengineeringnotebook BlankcopyoftheLabReport.Onecopyofthelabreportwillbeturned

    in. Youcaneitherplaceanothercopyofthelabreportintoyournotebook,or

    copydownthedatacollected.LabGoals: Learnaboutbasicgesturerecognitionusingflexsensors Understandhowtovaryvoltageusingaflexsensor Implementavoltagedividerinacircuit

    RequiredLabMaterial: 2xSpectrasymbolFlexSensor(SEN10264) 2x22kOhmresistors Yourlabnotebook NImyDAQkit

    Dueattheendoflab: TurninyourcompletedlabreporttoyourTA

  • 74

    Figure1:SpectraSymbolFlexSensor

    TheFlexsensorhastwoleads,andsinceitactsmuchlikearesistor,theorientationoftheleadsdoes

    notmatter.Anadditionalresistorisrequiredinordertoturnthesensorintoasimplevoltagedivider.TheoutputvoltageissenttoanAnalogInputpin.

    Assignment1:BuildingtheCircuit1. FillinChart1inyourlabreport.Makesuretomeasureresistancewhentheflexsensorisnot

    poweredbyasource.2. AnexamplecircuitisshowninFigure2.Buildtwocopiesofthiscircuitonyourbreadboard.Make

    suretoattachtheoutputofoneofthemtoAI_0asindicatedinFigure2andtheothertoAI_1.

    Figure2:FlexSensorschematicmadeinMultisim

    3. FillinChart2ofyourlabreport.4. CallaTAovertosignyourlabreporttoverifythefunctionalityofyourcircuit.5. DownloadtheVIforthislabfromblackboard.Itshouldresemblethefollowing.

  • 75

    Figure3:FrontPanel

    Figure4:BlockDiagram

    6. Attachoneflexsensortoyourmiddlefingerandtheothertoyourringfinger.Refertothechart

    belowandtheVItodeterminewhichsensorshouldgoonwhichfinger.ThevaluesofthesetwosensorswilldeterminethepositionaccordingtoTable1.A1representsabentfinger.Forexample,ifthemoveisPaper,thenneithersensorwillbebent,andifthemoveisScissors,thenonlytheringfingershouldbebent.

    7. Connectthe0pinstoground.8. **Ensurethatthegridsideofthesensorisfacingupwards.Youcanattachthesensorstoyour

    fingerswithtapeorrubberbands.Experimentwithwhatpositioningofthesensoronthefingerworksbest.

  • 76

    Table1

    Ring Finger Bit 1

    Middle Finger Bit 0

    Decimal Number Game Move 0 0 0 Paper 0 1 1 Invalid 1 0 2 Scissors 1 1 3 Rock

    9. Writeinyourlabnotesectiontoindicatewhichfingergoestowhichinputport(AI_0,AI_1).10. ThesetupscreenfortheDAQAssistantisshowninfigure5.

    Figure5:DAQAssistantsetup

    11. AstatemachinewasusedtoprogramtheRockPaperScissorsgame.Atthestartofeachgame,

    thevalueoftheflexsensorsisreadinontheAnalogInlinesusingtheDAQAssistant.Thevoltagesfromtheflexsensorsarethencomparedtoathresholdvoltagethatdetermineswhetherthesensorisbentornot.Thismayvarydependingontherestingandbentresistanceoftheparticularflexsensor.Inourcase,agoodthresholdwas3V.Oncethemoveoftheuserisdetermined,thesoftwaredetermineswhowinstheroundanddisplaysapopuptotheuser.Iftheplayerpressesstop,thenthestatemachinewillgotoaQuitstate,andtheprogramwilldeterminewhowonthemostRockPaperScissorsbattles.ThefrontpanelandblockdiagramareshowninFigure4and5.Taketimetolookthroughthevariousstatesinthisvi.Whenyouunderstandhowitworks,playthegame!

    12. Playwiththeprogramandthenwhenyouaresatisfiedwithitsperformance,callaTAovertoverifythefunctionalityofyourgame.

    13. Measureresistanceorvoltageforothersensors.(Photoresistor:resistancemeasurement,IRsensor:directVoltagemeasurementwithwhiteline)

  • 77

    Acknowledgement:AspecialthankstoJackieLeverett(SummerELPInternofNI)fortheexampleRockPaperScissorsgame.

    Subsystem:LineFollowerDescriptionUsetheAPIcreatedbytheSteeringsubsystemandaphotoresistorcircuittodetectawhitelineona

    blacksurfaceandfollowtheline.Mustdeveloptheoptimalphotoresistor/IRsensorsetuptoaccomplishthistask.

    Thelinewillnotbejustastraightlinebutwillalsohavesharp(90degree)turns.Thispartofthecarmustenablethecartostayontheline.Ifthecarlosestrackoftheline,thereshouldbeawayforthecartofindthelineagainandcontinueinthecorrectdirection.

    SuggestedReading

    Photoresistoro http://www.societyofrobots.com/schematics_photoresistor.shtml

    Photocelldatasheeto http://www.advancedphotonix.com/ap_products/pdfs/PDVP8103.pdf

    DeliverablesBuildthephotoresistorarraytokeeptrackofthewhitelineduringoperation.Couldpotentiallyuse

    anarrayofphotoresistorstobettertheperformanceofthissubsystem.Thealgorithmwillvaryaccordingly.

    FollowLine(Boolean) Follows the line as long as the Boolean is set

    to true. FindLine() Searches for the line

    LabGoals: Learnhowaphotoresistorworks HandsonexperiencebuildingavoltagedividerRequiredLabMaterial: Photoresistor,IRsensor 5x20kOhmresistors

  • 78

    LabNote Date . . 2015

    Important concepts / Key ideas

    Procedure / DATA

    Try and error / Thoughts

  • 79

    Name: EID: ByplacingbynameandEIDabove,IamcertifyingthatIdeterminedtheanswertothe

    questionsposedbelowanddidnotcopymyanswersfromafellowstudent.***Dueatthebeginningofyourlabsession***

    Youwillneed2completedcopiesofthisprelab.OneistobeturnedintoyourTAatthebeginningofthelabsession.Theotheroneistobedoneinyourlabmanual.1. ReadthebackgroundknowledgesectionofLabX.2. WritedowntheequationforthevoltageatAI_0forthecircuitinFigure1.LetRflexbethe

    resistanceoftheFlexSensor.

    Vai_0=

    Figure1

    3. Drawacircuitdiagramforthefollowing.OmittheAI_0wire.Instead,drawwhereyouwould

    placeyourvoltagemetertoobtainthevoltageatAI_0 Pre-lab: Final Project, Training Module 1 1

  • 80

    4. MakethiscircuitinMultisim.5. Filloutchart1bysimulatingthiscircuitusingmultisim.ReplacetheFlex_Sensorwitha

    normalresistor.Assumetolerance0%forallresistors.

    Rflex(kOhms) Vai_0(calculatedfrom Q2) Vai_0(Multisim)204060

    6. DothesimulatedvaluesinMultisimmatchthecalculatedvaluesfromyourequationinQ2?Whyorwhynot?

    Pre-lab: Final Project, Training Module 1 2

  • 81

    FinalProject:TrainingModule1Rock,Paper,ScissorsandSensorlevelmeasurements

    Submittedby(Printnames)

    Lab Report: Final Project, Training Module 1 1

  • 82

    Chart1:ResistanceMeasurementsofFlexSensorHowmuchtobendtheFlex Sensor ResistanceoftheSensor(ohms)

    UnbentHalfwaybentFullybent

    Chart2:VoltageMeasurementsattheOutputHowmuchtobendtheFlex Sensor VoltageatOutput(v)

    Unbent Halfwaybent Fullybent

    TASignature(Step4):

    TASignature(Step12):

    Question:Dothevaluescalculatedintheprelabfromananalyticalapproach,simulatedinMultisimandmeasuredonthebreadboardmatch?Whyorwhynot?

    Lab Report: Final Project, Training Module 1 2

  • 83

    Chart3:ResistanceMeasurementsofPhotoresistorColorLinebelowthephotoresistor ResistanceoftheSensor(ohms)

    BlackWhiteRed

    Chart4:VoltageMeasurementsofIRsensors(Directmeasurementofwhiteline)

    Distancefromthesensor Voltageat Output(v)10cm

    20cm

    30cm

    TASignature:

    Question:Howdoyouapplyabovemeasuredvaluesofyoursensorsforthesensorsystemfor

    yourrobotcar?Please,describeyourthoughtsconcisely.

    Lab Report: Final Project, Training Module 1 3

  • 84

    r

    Circuit Correct 1st Time? Circuit Correct 2nd Time? Circuit Correct 3rd Time? Circuit Correct 4th Time? Circuit Correct 5th Time?

    Lab10:ProficiencyExam EE 302 Lab Proficiency Exam - Example

    (Time for Exam: 20 minutes) Name: EID: Professor:

    The goal of this exam is to measure your abilities to build a circuit on a breadboard based on a

    circuit schematic and accurately measure currents and voltages from this circuit. The circuit you are to build is shown below:

    Your MUST have a TA check your circuit BEFORE moving onto the measurements.

    Build this circuit using the breadboard and resistors provided. Use the multimeter provided to

    fill in the table below. The value of DC will be provided to you by your TA.

    Quantity

    Value (include units)

    Verification By TA

    Req seen by the voltage source

    V

    I

    Notes

    1. All resistors have a tolerance of 5% 2. You may write any information that you want on this sheet.

    You CANNOT use MultiSim, the circuit simulation package 3. All values placed in the table above MUST BE CONFIRMED by TAs.

    NO EXCEPTIONS! 4. If you blow a fuse in the multimeter when taking a measurement, you will not receive any

    credit for that measurement or any measurements that would still need to be taken. 5. All resistors must be returned to the packet provided at the end of the exam.

  • 85

    Lab11:TheveninEquivalentCircuits

    Dueatthebeginningoflab: YourcompletedPrelab.OnecopyistobeturnedintoyourTA.Asecond

    copyshouldbeplacedintoyourengineeringnotebook.LabGoals: YouwillconstructandverifyThveninequivalentcircuitsusing

    experimentalmeasurements. YouwillpracticemeasuringcurrentandvoltageusingamyDAQ. Youwillcalculateloadresistanceandderivethemaximumpowerfroma

    circuit.RequiredLabMaterial: Yourlabnotebook Wiresforbuildingcircuits(availableinlab) MyDAQsettingforDigitalMultimeter(DMM)withconnectionprobes Thefollowingresistors:

    Quantity Value1 1001 330 1 4701 1k5 1.5k1 3.9k1 5.1 k1 10k

    Dueattheendofthelab: Acompletedcopyofyourlabreport.Onecopyistobeturnedinandonecopyis

    tobeplacedintoyournotebook.

  • 86

    Assignment1:Constructthefirstcircuit

    Figure1:FirstCircuitforCircuitsVLab

    1. ConstructthecircuitshowninFigure1onabreadboard.Providethewiringneededtousethe

    positivevariablepowersupply.2. ConfirmwithyourTAthatyourcircuitiscorrectandhaveyourTAsignyourlabreport.3. Setthepowersupplyvoltageto6volts.UsetheviyoucreatedfromLab2.4. MeasuretheoutputvoltageacrosstheloadresistorRL=470andrecordyourreadinginyour

    notebookandinTable1inyourlabreport.5. ChangetheloadresistorRLto100andmeasurethenewoutputvoltage.Recordyourreading

    inyournotebookandinTable1.RememberthatyouneedtoturnoffthepowersupplyappliedusingthevifromLab2eachtimeyouremovearesistor.

    6. RepeatStep5forloadresistancevaluesof1k,3.9kand10k.7. Turnoffthepowerandremovethe10kloadresistorfromthecircuit.8. Turnonthepowerandmeasuretheopencircuitvoltage(VOC)andshortcircuitcurrent(ISC).

    UsingthesevaluescalculateThveninvoltage(VTH)andThveninresistance(RTH).RecordtheresultsinTable1ofyourlabreport.(Hint:tomeasureshortcircuitcurrentrememberthattheinternalresistanceofanidealammeteriszeroohms.Tomeasuretheshortcircuitcurrent,youcansimplyplacetheidealammeteracrosstheloadterminals.)

    9. Drawtheequivalentcircuitinthespaceprovidedinyourlabreport.Disassembleyourcircuit.10. UsingtheVTHandRTHvaluesconstructaThveninequivalentcircuitusingthebreadboard.

    Providethewiringneededtousethepositivevariablepowersupply.11. AddtheloadresistanceRL=470toyourcircuit.12. SetthepositivepowersupplytothevalueofVTHcalculatedinStep9.Measurethevoltage

    acrosstheloadresistor.RecordyourreadinginyournotebookandinTable2.13. UsingtheThveninequivalentcircuitwhatyoufoundinstep8,changetheloadresistorRLto

    100andmeasurethenewoutputvoltage.RecordyourreadinginyournotebookandinTable2.Rememberthatyouneedtoturnoffthepowereachtimeyouremovearesistor.

    14. RepeatStep12forloadresistancevaluesof1k,3.9kand10k.15. Disassembleyourcircuit.

    9 V

    1k 1k 330RL=4701k

    1.5k 1.5k1.5k6V

  • 87

    Assignment2:Constructthesecondcircuit

    Figure2:SecondCircuitofCircuitVLab

    1. ConstructthecircuitshowninFigure2usingthebreadboard.Forthisstep,usethestandard

    +15VandAOchannelonyourmyDAQ.(Connectthegroundonlytotheloadresister!)2. ConfirmwithyourTAthatyourcircuitiscorrect.3. Turnonthepower.4. MeasuretheoutputvoltageacrosstheloadresistorRL=1.0k.Recordyourreadinginyour

    notebookandinTable3inyourlabreport.5. RepeatStep4forloadresistancevaluesof100,470,3.9k,and10k.Recordyourreading

    inyourlabnotesectionandinTable3inyourlabreport6. Turnofftheprotoboardpowerandremovethe10kloadresistorfromthecircuit.7. Turnontheprotoboardpowerandmeasuretheopencircuitvoltage(VOC)andshortcircuit

    current(ISC).UsingthesevaluescalculateThveninvoltage(VTH)andThveninresistance(RTH).RecordyourreadingsandcalculationsinyournotebookandinTable3.

    8. DrawtheThveninequivalentcircuitinyourlabreportinthespaceprovided.9. Usingthemeasuredoutputvoltagesrecordedinthistask,computethepowerintheload

    resistorandrecordthesevaluesinTable4.Plotthepowerversusloadresistanceontheprovidedgraph.

    10. Atwhatvalueofloadresistanceisthemaximumoutputpowerrealized?Markthisvalueonyourplot.

    11. FindtheThveninequivalentforanunknowncircuit12. Youhavebeenprovidedwithablackboxthatcontainsanunknowncircuit.Determineits

    Thveninequivalentcircuit.RecordthevaluesyoumeasureinTable5ofthelabreportandinyournotebook.

    13. Drawthiscircuitinthespaceprovidedinyourlabreport.14. CompletethequestionsinyourlabreportandturninacopytoyourTA.

    15V

    1.5 k 1.5 k 2.2 k

    RL=1.0 k

    1.5 k1.5 k

    1.5 k

    5V

    5.1k

  • 88

    FAQsQ: WhyamIgettinganoticesayingImdrawingtoomuchcurrent?A: Forcircuit2,youactuallyhave3powersupplyterminals:+15,+5,andGND.Sincethe

    railsonthesidecanonlyaccommodateonly2supplyvoltages,youneedtodesignateanothernodesomewhereonyourbreadboardasthe+5Vsource.

    Q: WhyarentmyvaluesclosetowhatIcalculated?A: Tryadjustingtherangesettingsonyourmultimeterto20Vand20mAorso.

  • 89

    LabNote Date . . 2015

    Important concepts / Key ideas

    Procedure / DATA

    Try and error / Thoughts

  • 90

    Name: EID:

    By placing my name and EID above, I am certifying that I determined the answer to the questions posed below and did not copy my answers from a fellow student.

    *** Due at the beginning of your lab session ***

    Youwillneed2completedcopiesofthisprelab.OneistobeturnedintoyourTAat

    thebeginningofthelabsession.Theotheroneistobedoneinyourlabmanual.Questions 1. Select the correct choice to complete the following two sentences: a. To find the Thvenin equivalent voltage of a circuit, one must measure the

    open circuit (i.e. no load) output (voltage / current). b. To calculate the Thvenin equivalent resistance of a circuit, all voltage

    source are replaced by a/an sources are replaced by a/an (open / short) circuit and all current (open / short) circuit.

    2. Derive and draw the Thvenin equivalent circuit (i.e. find Thvenin voltage and

    Thvenin resistance) for the circuit in Figure 1 of your lab manual, that has a load resistance of 470 . (The 470 resistor is the load resistor and should NOT be included in your Thvenin equivalent circuit calculations.)

    Show your work in order to get full credit. 3. Using Multisim, derive and draw the Thvenin equivalent circuit (i.e. find Thvenin

    voltage and Thvenin resistance) for the circuit of Figure 2. To use Multisim, you will need to enter the circuit of Figure 2 and use a virtual voltmeter to measure the

    open-circuit voltage. The diagram below shows what your simulation should look like. Double click on the virtual voltmeter and change the resistance to 10 M. Print your simulated results showing your voltage measurement and attach this print to the Prelab. To complete the derivation of the Thvenin equivalent circuit, you will need to measure the short-circuit current using a virtual ammeter, measured at the output terminals. Print your simulated circuit showing the current measurement and attach it to the Pre-lab.

    Hints:

    To measure short-circuit current remember that the internal resistance of an ideal ammeter is zero ohms. To measure the short-circuit current, you can simply place the ideal ammeter across the load terminals.)

    In Multisim, you can select the circuit you have entered, copy it, and paste to create an exact copy. You can then use the original circuit and the copy to simulate VOC and ISC simultaneously.

    Pre-lb: Thvenin Equivalent Circuits 1

  • 91

    Remember that VTH = Voc, the open-circuit voltage and RTH = Voc/ISC, the short- circuit current.

    4. Enter your Thvenin equivalent circuit into Multisim. Your circuit will look like the

    one below with your derived values for VTH and RTH substituted in the circuit. Using a virtual voltmeter and virtual ammeter, measure the open-circuit voltage and short- circuit current. Confirm that these measurements are identical to those measured in step 3. Print out your simulated results and attach them to the pre-lab.

    Pre-lab: Thvenin Equivalent Circuits 2

  • 92

    Circuits VI - Thvenin Equivalent Circuits Lab Report

    Submitted by (Print names)

    Lab Report: Thvenin Equivalent Circuit 1

  • 93

    Assignment1:Constructthefirstcircuit1. TA Signature (Step 2):

    Table 1: Quantities asked for in the assignment 1

    Quantity Value (include units)Open Circuit Voltage VOC Short Circuit Current ISC Thvenin Equivalent Voltage Thvenin Equivalent Resistance Output voltage across RL = 100 Output voltage across RL = 470 Output voltage across RL = 1 k Output voltage across RL = 3.9 k Output voltage across RL = 10 k

    2. TA Signature (Step 8):

    3. Draw the Thvenin Equivalent circuit you derived in the assignment 1 (Step 9).

    Table 2: Quantities asked for in the assignment 1

    RL Output Voltage (V)

    100 470 1 k

    3.9 k 10 k

    4. TA Signature (Step 14):

    Lab Report: Thvenin Equivalent Circuit 2

  • 94

    Assignment2:Constructthesecondcircuit 1. TA Signature (Step 2):

    Table 3: Quantities asked for in the assignment 2

    Quantity Value (include units)

    Open Circuit Voltage VOC Short Circuit Current ISC Thvenin Equivalent Voltage Thvenin Equivalent Resistance Output voltage across RL = 100 Output voltage across RL = 470 Output voltage across RL = 1 k Output voltage across RL = 3.9 k Output voltage across RL = 10 k

    2. TA Signature (Step 5):

    3. Draw the Thvenin Equivalent circuit you derived in Task 2 (Step 8).

    Table 4 Measured Voltages and Computed Power (Step 9)

    A

    ssign

    ment

    2 RL Output Voltage (V) Power (mW) 100 470 1 k

    3.9 k 10 k

    Lab Report: Thvenin Equivalent Circuit 3

  • 95

    Powe

    r

    Output Power (mW) Vs. Load Resistance ( ) (Step 9)

    3.0 2.5 2.0 1.5 1.0 0.5

    0 2000 4000 6000 8000 10000

    Load Resistance in Ohm( )s

    4. Record your measured values for Step 11 in the following table. Be certain to record the quantities measured and their units.

    Table 5. Measurements for Unknown Circuit

    5. Draw the Thevenin Equivalent Circuit in the table 5. (Step 13)

    Lab Report: Thvenin Equivalent Circuit 4

  • 96

    Lab12:FinalProject(MotorControl,CollisionDetection)

    Subsystem:MotorControlDescriptionResponsibleforthereliableimplementationofsteeringfunctionsaswellasbuildingthecircuitto

    controlthemotors.Thissubsystemcontributesgreatlytothesuccessoftheproject.Withoutreliablesteeringthecarwillnotbeabletocompletethecourse.

    SuggestedReadingThefollowingdocumentsmayhelpyoucompleteyourtask:

    HBridgeo http://en.wikipedia.org/wiki/H_bridge

    L293DHBridgedatasheeto http://www.parallax.com/Portals/0/Downloads/docs/prod/compshop/60300019

    L293DDatasheet.pdf DCMotor

    o http://en.wikipedia.org/wiki/DC_motorDeliverablesMustcreateanAPIforturningfunctionsthattheothersubsystemscancall.Canpotentiallyutilize

    theWheelEncodertoensurereliabilityofthesteering.Needtoalsobuildthecircuittocontrolthemotors.

    TurnCounterClockwise() When called, the car should turn counter

    clockwise

    Dueatthebeginningoflab(1foreachgroup): BuildtheGearBox(lowestspeedoptionisrecommend) Completedprelabquestions.Onecopyistobeturnedinandonecopy

    shouldbeplacedinyourengineeringnotebookLabGoals: LearnhowtocontrolaDCmotor LearnaboutHBridgeControllerRequiredLabMaterial: MyDAQ,L293DHBridge,6Vbattery

  • 97

    *Could also choose to take TIME as the input.

    In which case the car will turn for the specified amount of time (seconds, milliseconds, etc).

    TurnClockwise() When called, the car should turn clockwise *Could also choose to take TIME as the input.

    In which case the car will turn for the specified amount of time (seconds, milliseconds, etc).

    Stop() Acts as an interrupt. Stops the motion of both wheels.

    Forward() Moves both wheels at the same speed so that the car will move forward in a straight line.

    Moves at a certain speed setting. *Maybe have to implement a control structure

    to make sure that the car moves in a straight line forward.

    Backward() Moves both wheels at the same speed so that the car will move forward in a straight line.

    Moves at a certain speed setting. *Maybe have to implement a control structure

    to make sure that the car moves in a straight line forward.

    Pause() Similar to Stop() except the last state of the car will be saved.

    Resume() Continues the movement of the car after a Pause()

    **Thesearejusttheminimumintermsofsteeringfunctions.Dependingonyourspecific

    implementationyoumightwanttoimplementmorecomplicatedfunctionsthatcombinethecorefunctions.

    Subsystem:CollisionDetection

    DescriptionProgramandbuildthecircuittoutilizetheIRsensorsandavoidobstaclesinthepath.Therewillbea

    sectionofthemazethatwillincludeasectionwithnolineandthecarwillhavetomovethroughthatareawithouthittingthewalls.Also,wewillrandomlyputdownaroadblockintheroadatsomepointinthemazeandthecarwillhavetostopandwaitfortheobstacletoclear.

    **NeedstocallfunctionsfromtheSteeringAPI

  • 98

    SuggestedReading

    SharpIRRangeFinderDatasheeto http://www.sparkfun.com/datasheets/Sensors/Infrared/gp2y0a02yk_e.pdf

    FormulaNodeo http://zone.ni.com/reference/enXX/help/371361D01/glang/formula_node/

    Threshold1DArrayo http://zone.ni.com/reference/enXX/help/371361D01/glang/threshold_1d_array/

    InRangeandCoerceo http://zone.ni.com/reference/enXX/help/371361E01/glang/in_range_and_coerce/

    Comparisono http://zone.ni.com/reference/enXX/help/371361E01/lvexpress/comparison/

    DeliverablesAPIoffunctionsthatutilizeyourIRRangeFindercircuit

    Navigate() The car should be able to navigate between two walls without crashing. There will be no line to follow.

    ObstacleFound() An interrupt that stops the motion of the car when an obstacle is in front of the car.

    Need to resume operation of the car when

    obstacle is removed.

  • 99

    LabNote Date . . 2015

    Important concepts / Key ideas

    Procedure / DATA

    Try and error / Thoughts

  • 100

    Name: EID: ByplacingbynameandEIDabove,IamcertifyingthatIdeterminedtheanswertothequestions

    posedbelowanddidnotcopymyanswersfromafellowstudent.

    ***Dueatthebeginningofyourlabsession***

    Youwillneed2completedcopiesofthisprelab.OneistobeturnedintoyourTAatthebeginningofthelabsession.Theotheroneistobedoneinyourlabmanual.

    1.ReviewtheHBridge:http://en.wikipedia.org/wiki/H_bridge2.ReviewtheL293DHBridgedatasheet:http://www.ti.com/lit/ds/symlink/l293d.pdf

    3.LabelpinsfunctionsoftheHbridgebelowinawaythatmakessensewiththeHbridge:

    4.DrawabreadboardconnectionoftheHbridgeincludingmyDAQports:

    Pre-lab: Final Project (Motor Control, Collision Detection) 1

  • 101

    Lab13:FinalProject(TrainingModule2(OpticalTheremin),PathLogic)

    BackgroundKnowledge:PhotodiodesAphotodiodeconvertslightintoeithercurrentorvoltage,dependingonthemodeofoperation.

    Whenaphotonofsufficientenergystrikesthediode,itexcitesanelectron(photoelectriceffect).Belowisacircuitdiagramforaph