24
EE5940: Wind Essen.als Materials and Structural Reliability Sue Mantell Mechanical Engineering

EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

EE5940:  Wind  Essen.als  Materials  and  Structural  Reliability    

Sue  Mantell  

Mechanical  Engineering  

Page 2: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Overview  

•  Quick  overview  of  Loads  •  Typical  characteris.cs  of  

rotor  blades  

•  Material  Selec.on  

•  Manufacturing  •  Reliability  

Focus  on  Rotor  Blades  “the most complex structural component of a wind turbine”

Page 3: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

What  are  the  loads  on  a  rotor  blade?  

• Variable  wind  speed  along  the  .p  of  the  blade  

• Loads  are  both  sta.c  and  dynamic  (varied  wind  speed,  and  rota.on)  

• Flapwise  bending  • Can.lever  bending  

lift

gravity

Page 4: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

What  is  the  Blade  Size?  

Page 5: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Aerodynamic shape Lightweight

Size/twist

Desirable  Rotor  Blade  Features  

Taper

Size

Page 6: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Desirable  Material  Proper.es  

Size Lightweight Stiff Strong Complex Shape Long Fatigue Life

Rotor Qualities

Modulus Density Fracture toughness Specific Strength (Y/ρ) Specific Stiffness (E/ρ)

Material Properties

Page 7: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Modulus,  Strength,  Toughness  

Modulus: slope Strength: maximum stress Toughness: area beneath

curve

Page 8: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Materials  Selec.on  

Merit index for a beam

Considerations of beam weight (f(ρ,t)) and stiffness (f(E,t2)) GFRP: Glass fiber reinforced plastic CFRP: Carbon fiber reinforced plastic

Page 9: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Other  Considera.ons:    Strength  vs.  Toughness  

Page 10: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Composite  Materials  Layers with Directional properties

Samples of material, laminates, core materials

Laminate Heat, pressure

Add core material for stiffness in bending

Fibers with a polymer matrix

Page 11: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Composite  Materials  

Fibers

Resins Thermosets (epoxy, heat cured) Thermoplastics (can be reheated and reformed)

Specific strength: Y/ρ Specific stiffness: E/ρ

Page 12: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Anatomy  of  a  Rotor  Blade  

How should fibers be oriented?

Page 13: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Blade  Manufacture:  VARIM  

Vacuum Assisted Resin Infusion Molding

Page 14: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Forming  the  shell  

Laying up woven fiber sheets

Resin infusion

Page 15: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Finishing  steps  

Interior webs provide shear stiffness

Completed blade halves are bonded together, surface checked for smoothness

Page 16: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Improvements  in  Manufacturing  Lead  to  Reduced  Weight  

Page 17: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Health Monitoring Cost effective Wind Energy: Critical to achieving the 2020/30 DOE goal

•  Reliability leads to reduced costs: Health monitoring and early fault detection can reduce maintenance costs and system downtime

•  Condition Based Maintenance (CBM): System-wide sensors, mathematical models, and fault detection algorithms are key to improved cost effectiveness

Page 18: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Approach  to  Health  Monitoring  

PC-GBS

Internet

2.3 mW Siemens Turbine Main Rotor Bearing Gearbox Generator High Speed Shaft Brake Yaw Drive Blade Pitch/brake hydraulics

Remote

In Nacelle or Ground

Performance Assessment (sensors)

Estimate/Predict Performance (algorithms, system models)

Compare sensor data with expected performance

Detect Incipient Failures

Generator

Controller/ Data Collection

Gearbox

Gearbox: Accelerometers,tachometer

Generator: current, voltage

All turbine sensor data

Data Acquisition

Additional Environmental Sensors

In Nacelle

Blade: Fiber optic strain sensors

Blade control: Hydraulic pressure, temperature, and flow sensors

Model based Observer

Page 19: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

lift

gravity

Real  .me  Evalua.on  of  Blade  Health  

Various types of sensors Strain Gages Acoustic Emission Accelerometers Smart Materials (PZT)

Sensor Location

Where do you expect failure?

lift

Page 20: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Sensor  Loca.ons  (1)  

Strain gages

Page 21: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Smart materials

Sensor  Loca.ons  (2)  

Page 22: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Acoustic Emissions Sensors

Sensor  Loca.ons  (3)  

Page 23: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Turbine  Health  Monitoring:  Jobs  • Wind  Farm  Opera<ons  &  Maintenance  

–  40%  of  long  term  “direct”  employment    –  80,000  jobs  predicted  by  2030  –  Assumes  20-­‐year  turbine  life  –  Wind  farm  developers  offering  abermarket  services  

•  Economic  Benefits  of  CBM/Health  Maintenance  –  Early  fault  detec.on  CBM  (Condi.on  Based  Monitoring)  –  Avoid  costly  repairs  &  lead  .me  –  Common  repair,  maintenance  &  overhaul  profile  –  Skilled  U.S.-­‐based  workforce  vs.  overseas  abermarket  shops  

•  Job  Impact  for  Sensor,  Data  acquisi<on  &  Analysis  –  Engineers:  sensing  &  control  subsystems  –  Knowledge  workers:  on-­‐site  /  remote  monitoring  –  3rd  party  providers:  asset  management  and  CBM  

Page 24: EE5940:’Wind’Essen.als’ · EE5940:’Wind’Essen.als’ Materials)and)Structural)Reliability)) Sue)Mantell) Mechanical)Engineering)

Clicker  Quiz  

Which of the following properties is NOT important when selecting a material for wind turbine rotor blades?

a.  Toughness b.  Density c.  Specific heat d.  Modulus