27
EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold Circuit Design Rajeevan Amirtharajah University of California, Davis

EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

EEC 216 Lecture #10:Ultra Low Voltage and

Subthreshold Circuit Design

Rajeevan AmirtharajahUniversity of California, Davis

Page 2: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

R. Amirtharajah, EEC216 Winter 2009 4

Opportunities for Ultra Low Voltage

Moteiv Sky mote, 2006

• Battery Operated and Mobile Systems– Wireless sensors– RFID tags– Biomedical implants– Mobile Phones, internet devices, and

netbooks– Maximize operating lifetime for stored

energy (minimum energy operation)• Wall-plug and Rack Mounted Systems

– Power-down and sleep modes in servers

– Maintain state in on-chip caches, SRAM memory while minimizing leakage power

Page 3: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

R. Amirtharajah, EEC216 Winter 2009 5

CMOS Delay and Power Dissipation

leakstaticcircuitshortdynamicTOT PPPPP +++= −

Total Power:

Voltage scaling decreases all power components, at expense of increasing circuit delay.

leakddstaticdd

frpeakddddL

IVIV

ftt

IVfVC

++

⎟⎟⎠

⎞⎜⎜⎝

⎛ ++=

22α

( )22 thddox

ddL

D

ddL

VVLWC

VCIVC

IVCt

−≈=

Δ=Δ μDelay:

Page 4: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

R. Amirtharajah, EEC216 Winter 2009 6

Low Voltage CMOS Inverter Operation

Swanson and Meindl, JSSC 1972

• Thermal noise limit:

• Inverter gain limit:

• Equalized NMOS-PMOS off currents:

1004≈

qkT

mV

2008≈

qkT

mV

572≈

qnkT

mV

Page 5: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

R. Amirtharajah, EEC216 Winter 2009 7

Supply Voltage Scaling With Technology Node

• From 2007 ITRS Roadmap

0

0.2

0.4

0.6

0.8

1

1.2

2007 2009 2011 2013 2015 2017 2019 2021

Year

VDD

(V

0

5

10

15

20

25

30

Leng

th (n

m

VDD (High Perf.)

VDD (Low Power)

MPU Physical Gate Length

Page 6: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

R. Amirtharajah, EEC216 Winter 2009 8

Commercial Wireless Sensor Mote

Moteiv Sky mote, 2006Jiang, IPSN/SPOTS 2005

• Current sensor node: 70 mW all active, 17 μW idle• Power sources contribute significant volume and cost• Smaller system (1 cm3) desirable (less obtrusive military

sensor, implantable biomedical device)• Reduce power consumption, get energy from environment

Page 7: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

R. Amirtharajah, EEC216 Winter 2009 9

Specific Opportunities for ULV Design• Extremely low power mixed-signal circuits

– Analog design without operational amplifiers

• Low voltage swing on-chip interconnects– Good current drive at low VDD desirable

• Power gates and cutoff devices to minimize leakage power during inactive state– Need steep subthreshold slope to limit leakage current when

blocks turned off

• Low voltage active mode and sleep mode memories, caches– Need reliable operation under variable VDD

• Low voltage standard cells– Operate at minimum energy point, balancing leakage and

dynamic power

Page 8: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

R. Amirtharajah, EEC216 Winter 2009 10

Extremely Brief MOSFET Review

Triode:

“Classical” MOSFET model, will discuss deep submicron modifications as necessary

( ) ( )DSTGSox

D VVVLWCI λμ

+−= 12

2Saturation:

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−−=

2

2DS

DSTGSoxDVVVV

LWCI μ

Subthreshold:⎟⎟

⎜⎜

⎛−=

−q

kTDS

qkTGS V

nV

SD eeII 1

Page 9: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

R. Amirtharajah, EEC216 Winter 2009 11

Subthreshold Current Equation

( )DS

VnV

SD VeeII qkTDS

qkTGS

λ+⎟⎟

⎜⎜

⎛−=

11

• Is and n are empirical parameters

• Typically, often ranging around

• Usually want small subthreshold leakage for digital designs

– Define quality metric: inverse of rate of decline of current wrt VGS below VT

– Subthreshold slope factor S:

1≥n 5.1≈n

( )10lnq

kTnS =

Page 10: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

R. Amirtharajah, EEC216 Winter 2009 12

Detailed Subthreshold Current Equation

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ −−⎟

⎠⎞

⎜⎝⎛ +−−=

kTqVVVVV

nkTqAI DS

DSTGSD exp1exp 0 ηγ

• VT0 = zero bias threshold voltage,

• μ0 = zero bias mobility

• Cox = gate oxide capacitance per unit area

• γ = linear body effect coefficient (small source voltage)

• η = DIBL coefficient

8.12

0 eq

kTLWCA ox ⎟⎟

⎞⎜⎜⎝

⎛= μ

Page 11: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

R. Amirtharajah, EEC216 Winter 2009 13

Leakage Currents vs. Active Currents

1=A

1=B

Out

M0

M1

Ileak

• Iactive/Ileak (Ion/Ioff) ratio can be small in subthreshold

Ileak

Iactive

Page 12: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

R. Amirtharajah, EEC216 Winter 2009 14

Degraded Output Levels

• Balance current ratio through sizing, limiting fanin

Vdd

VddVin

Vout

ideal

actual

0 V

VOH

VOL

Page 13: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

R. Amirtharajah, EEC216 Winter 2009 15

Degraded Logic Levels Impact Functionality

D

Q

80=Clk

220=Clk

80=Clk mV

mV Driven by two inverters to intermediate voltage

• VDD = 0.3 V

Iactive

Ioff

mV

Page 14: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

R. Amirtharajah, EEC216 Winter 2009 16

SRAM Cell Leakage Paths

BL BL

WL

0 1

• Leakage paths can degrade read and write noise margins

Page 15: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

R. Amirtharajah, EEC216 Winter 2009 17

Circuit Design Summary

• Subthreshold design similar to ratioed ckt design– Must guarantee active currents sufficiently greater than

leakage currents to maintain valid logic levels– Degraded logic levels can cause failure in

combinational and sequential circuits– All circuits (esp. SRAMs) sensitive to VTH variation

• Be careful with subthreshold circuits– Consider worst case leakage situations (data

dependent) when analyzing Ion/Ioff ratio problems– Use nonminimum channel lengths, limit fanin– Watch sneak leakage paths through pass gates– Interrupt pass gate chains with static logic

Page 16: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

16

Challenges for Ultra Low Voltage

• Device variability (within die, across dies, and across wafers)

– Variations in threshold voltage drastically affect critical circuit performance parameters

– Examples: Ion/Ioff ratios, gate delays, static memory noise margins, subthreshold slope for leakage limiting devices

• Noise and event tolerance– Approaching fundamental noise limit may decrease

reliability and MTTF– Limited charge storage on circuit nodes may increase

susceptibility to soft errors in both memory and logic

Page 17: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

0 0.1 0.2 0.30

0.1

0.2

0.3

VIN

(V)

VO

UT (

V)

Sub-Vt Design Challenges

Sub-Vt static CMOS gates exhibit variation in logic levels (VOH, VOL)

Active

Leakage

on off

RDF

t

© 2008 IEEE International Solid-State Circuits Conference © 2008 IEEE

From Kwong et al., ISSCC 08

Page 18: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

0 0.1 0.2 0.30

0.1

0.2

0.3

VIN

(V)

VO

UT (

V)

0 1 2 30

0.1

0.2

0.3

Time (µµµµs)

Vo

lta

ge

(V

)

Sub-Vt Logic Functionality

Degraded logic levels adversely impact functionality

CLK

N2N3

N4Not completely off, causing functional

failure

CLKCLK N3

N4

N2,Q

© 2008 IEEE International Solid-State Circuits Conference © 2008 IEEE

From Kwong et al., ISSCC 08

Page 19: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

Sub-Vt Logic Design

Functional metric necessary to manage

sizing trade-off

0 0.1 0.20

0.1

0.2

VIN-NAND

, VOUT-NOR

VO

UT

-NA

ND,

VIN

-NO

R

NAND

NOR

0 0.1 0.20

0.1

0.2

VIN-NAND

, VOUT-NOR

VO

UT

-NA

ND,

VIN

-NO

R

Logic failure

NAND

NOR

NAND NOR

t

WLtVσ 1∝∝∝∝

© 2008 IEEE International Solid-State Circuits Conference © 2008 IEEE

From Kwong et al., ISSCC 08

Page 20: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

Sub-Vt Standard Cell Library

0.2 0.25 0.30

500

1000

VOH

(V)

Occu

rren

ces

0.2 0.25 0.30

5000

10000

VOH

(V)

Occu

rren

ces

0 0.1 0.2 0.30

1000

2000

VOL

(V)

Occu

rren

ces

t

Leakage

Active

Outliers

t

0 0.1 0.2 0.30

5000

10000

VOL

(V)

Occu

rren

ces

© 2008 IEEE International Solid-State Circuits Conference © 2008 IEEE

From Kwong et al., ISSCC 08

Page 21: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

Sub-Vt SRAM Challenges

Hold SNM Read SNM

Hold SNM preserved to low-voltages

NT NCNT NC

NC, NT (V)

0.2 0.4 0.6 0.8 1.00

NT

, N

C (

V)

0.2

0.4

0.6

0.8

1.0

0

NC, NT (V)

NT

, N

C (

V)

0.2

0.4

0.6

0.8

1.0

00.2 0.4 0.6 0.8 1.00

Read SNM degraded at low-voltages

WLWL

BLBL

© 2008 IEEE International Solid-State Circuits Conference © 2008 IEEE

From Kwong et al., ISSCC 08

Page 22: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

SRAM Architecture and Bit-Cell

Buffer eliminates read SNM limitationPeripheral assists allow sub-Vt writing and sensing

Based on Verma, ISSCC 2007

© 2008 IEEE International Solid-State Circuits Conference © 2008 IEEE

From Kwong et al., ISSCC 08

Page 23: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

Peripheral Assists

“0”

PCHRG

“1”

No sub-Vtleakage

VVDD

ReadWrite

“0”

“1” (64 Cells)

“1” (256 Cells)

“1” (256, 64 Cells)

RD

BL

Vo

ltag

e 0.3

0.4

0.2

0.1

0

10 20 30 40µs

6T Cell

VVDDWR

NTNC

0.3

0.2

0.1

0

Vo

lts

0.3

0.2

0.1

0

Vo

lts

10 12 14 16 18 20

10 12 14 16 18 20µs

NT NC

“1” “0”

VVDD

“1” “1”

WR

© 2008 IEEE International Solid-State Circuits Conference © 2008 IEEE

From Kwong et al., ISSCC 08

Page 24: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

Sub-Vt Timing Analysis Challenges

Order-of-magnitude higher delay variation in sub-Vt

Oc

cu

rre

nc

es

Occ

urr

en

ces

© 2008 IEEE International Solid-State Circuits Conference © 2008 IEEE

From Kwong et al., ISSCC 08

Page 25: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

0 200 4000

0.2

0.4

0.6

Mean delay [ns]

σσ σσ/ µµ µµ

(S

td.

de

v.

ov

er

me

an

)

Comprehensive Timing Simulations

Increasing mean delay

Delay (ns)Path #

Simulation of 30000 timing paths illustrates trends in sub-Vt delay variability

© 2008 IEEE International Solid-State Circuits Conference © 2008 IEEE

From Kwong et al., ISSCC 08

Page 26: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

Test-Chip Summary

Performance

1.36mm2SRAM

0.12mm2DC-DC Converter

Area

0.14mm2Logic

65nm CMOSProcess

VDD = 300mVMinimum

Functional VDD

VDD = 500mVMinimum

Energy Point

2.29mm

128Kb SRAM

array

DC-DC

converter

Core logic

(2 power domains)

1.8

6m

m

© 2008 IEEE International Solid-State Circuits Conference © 2008 IEEE

From Kwong et al., ISSCC 08

Page 27: EEC 216 Lecture #10: Ultra Low Voltage and Subthreshold ...ramirtha/EEC216/W09/lecture10.pdfR. Amirtharajah, EEC216 Winter 2009 4 Opportunities for Ultra Low Voltage Moteiv Sky mote,

17

Conclusions

• Many opportunities for ultra low voltage design exist– Energy Constrained Applications: wireless sensors,

mobile devices, biomedical implants

– Minimum Power Applications: sleep and minimum leakage modes in processors and memories

• Main challenge is device parameter variations– Threshold voltage variation severely impacts delays,

noise margins in logic and SRAM

• Very active area of circuits research– ISSCC 2009 Advanced Circuits Forum on Ultra Low

Voltage