23
超新星におけるニュートリノ反応 @ 2011.12.26 超新星ニュートリノ τ weak 1 σ weak n target v relative 8 · 10 -8 sec ( T 10MeV ) -2 ( ρ 10 14 g/cm 3 ) -1 σ weak 4G 2 F ¯ h 2 c 2 π T 2 , n target ρ m u , v relative c τ dyn 1 0.4msec ( ρ 10 14 g/cm 3 ) -1/2 コア (T 10MeV> 10 14 g/cm 3 ) コア τ weak τ dyn ν n ν n γ n e λ ν λ γ e N ニュートリノがエネルギーを運び、コア する。 ニュートリノによって コアが える。

超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

  • Upload
    others

  • View
    65

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

超新星におけるニュートリノ反応東理大理工 鈴木英之 @基研 2011.12.26

超新星ニュートリノτweak ∼ 1

σweakntargetvrelative∼ 8 · 10−8sec

(T

10MeV

)−2(

ρ1014g/cm3

)−1

σweak ∼ 4G2F h2c2

π T 2, ntarget ∼ ρmu

, vrelative ∼ c

τdyn ∼ 1√Gρ∼ 0.4msec

1014g/cm3

)−1/2

超新星コア中心部 (T ∼ 10MeV, ρ>∼ 1014g/cm3)

• コア中心部 τweak � τdyn ⇒ νも熱平衡、化学平衡、nν ∼ nγ ∼ ne

• 平均自由行程 λν � λγ , λe, λN

⇒ ニュートリノがエネルギーを運び、コアの進化を駆動する。⇒ ニュートリノによって超新星コアが見える。

0-0

Page 2: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

Energetics

∆EG =

(GM2

core

RFe core− GM2

core

RNS

)∼ O(1053)erg

Ekin ∼ O(1051)erg (obs.)

Erad ∼ O(1049)erg (obs.)

EGW ∼ ??残り O(1053)erg ∼ Eν cf. Eν(SNIa) < 1049erg

すべての陽子が中性子に変ったとしても放出される νe は、

26MFe core

mFe〈Eνe〉 ∼ 1.2 · 1052ergMFe core

1.4M�

〈Eνe〉10MeV

であり Eν tot ∼ O(1053)erg の 10% でしかない。

=⇒ thermal ν � 電子捕獲に伴う νe=⇒ νe, νe, ’νµ’ がほぼ同等に寄与

Eνe(collapse) ∼ 1051ergEνe(neutronization burst) ∼ 1051ergEν(shocked accreted matter) ∼ 1053ergEν(PNScooling) ∼ 1053erg

0-1

Page 3: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

平均エネルギーσνe > σνe > σνµ

R(νesphere) > R(νesphere) > R(νµsphere)T (νesphere) < T (νesphere) < T (νµsphere)〈ωνe〉 < 〈ωνe〉 < 〈ωνµ〉

ニュートリノ反応T <∼ 100MeV, ρ<∼ 1015g/cm

3: µ±, τ± は無視することが多い

ν ≡ (νe, νe, νµ, νµ, ντ , ντ ), νµまたは νx = 14 (νµ + νµ + ντ + ντ )と記す

放出、吸収e−p←→ νen, e

+n←→ νepe−A(N,Z)←→ νeA

′(N + 1, Z − 1)e−e+ ←→ ννplasmon←→ ννNN′ ←→ NN′νν (核子制動輻射)Nn←→ Np`−ν`, Np`− ←→ Nnν` (modified URCA)νeνe ←→ νxνx

散乱νA −→ νAνN −→ νNν` −→ ν`NNν −→ NNννν′ −→ νν′

0-2

Page 4: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

bounce

>10 g/cm14 3

shock wave

ν neutronizationburst

shock stall

e ν(all)

(collapse)~O(10−100)msτ t(stall)=O(100ms)τ (neutronization burst)<O(10)ms

ProtoNeutron

Star

PNS cooling

(PNS cooling)=O(10)sτ

shock revival

heatingνHot Bubble

νwind

t(core exp.)=O(1)s

0-3

Page 5: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

SupernovaExplosion

t(SNE)=hours−day

Neutron Star

SN1987A カニ星雲

0-4

Page 6: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

• 重力崩壊の開始電子捕獲 (electron capture) e−A −→ νeA

′, λν � Rcore

• ν trapping (ρ > 1010 − 1012g/cm3)

νe from e−A −→ νeA′ and e−p −→ νen

main opacity source: coherent scattering νeA −→ νeA σ ∝ A2ω2ν

ρ↗→ λν < Rcore: 不透明 (neutrinosphere の出現)τdiff = 3R2

core/cλν > τdyn (neutrino trapping) → νe 縮退

coherentscattering

collapse

opaque trapping

σ∼ E^2

ν µ(ν) increase

increase

e capture suppressnuclei survive

degenerateν

not so n−rich

Positive feedback (Sato 1975) SN1987A で確認

νeA←→ e−A′, νen←→ e−p (〈ωνe〉<∼ 56µe)

νeA←→ νeA, νeN←→ νeN (∼ isoenergetic scat.)νee

− −→ νee− (down scattering: ων ↘ , λν ↗)

⇒ YL trap

0-5

Page 7: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

• バウンス、衝撃波の生成Rshock < Rνsphere

バウンスした内部コア Sc ∼ O(1), Tc ∼ O(10)MeV, Ye ∼ 0.3⇒静水圧平衡状態: 原始中性子星 (PNS: protoneutron star)νe, νe, νx: 化学平衡 (µνe > 100MeV, µνe = −µνe , µνx = 0)

Mi.c. ∼ 1.457M�

(YLtrap

0.5

)2

= 0.6 ∼ 0.9M�

Eshock ∼ GM2i.c.

Ri.c.∝ YL

10/3trap ∼ several 1051erg

> ESNE(kinetic + radiation) ∼ 1051erg

Rshock < Rνsphere

• 衝撃波が neutrinosphere を通過衝撃波の通過した領域: A→ np, e−p→ nνe が進行 (σ(e−A) < σ(e−p))

r(shock) < r(ν sphere): 生成された νe は trap されたまま

r(shock) > r(ν sphere): 生成された νe は自由に出てこられるmain opacity source だった原子核も分解される=⇒ νe の中性子化バースト (neutronization burst)

τNB ∼ τshock propagation<∼ 10msec, Lνe NB

>∼ 1053erg/sec⇒

∫Lνe NBdt ∼ 1051erg

Ye 分布に、deep trough を形成し、衝撃波を弱める

0-6

Page 8: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

• 外部コア内の衝撃波の伝播In the shocked region (S ∼ O(10), 高温低密度)

A −→ np, e−e+ 対

e−p←→ νen, e+n←→ νep

e−e+ ←→ νν

νN −→ νN, νe± −→ νe±

νe, νe, νx: thermal energy を持ち出す。νe, νe: 電子型レプトン数を持ちだす。νe, νx: 中心へ熱を運ぶ。(nνe,νx(center) < nνe,νx(mantle))静水圧平衡の原始中性子星に、衝撃波の通過した外部コアの物質が降り積もる降着物質の重力エネルギー→熱エネルギー→ニュートリノ放出MPNS = Mi.c.(∼ 0.7M�) −→MNS(∼ 1.4M�)

ニュートリノ放出による衝撃波の減衰• 停滞した衝撃波の復活原始中性子星からのニュートリノ Tν ∼数 MeVshocked matter (r ∼数 100km > Rνsphere) T ∼ MeV

νen −→ e−pνep −→ e+nνe± −→ νe±

νν −→ e−e+

heating =⇒

hot bubble

S > 100, ρ ∼ 105g/cm3

⇓delayed explosion (τ ∼ O(1)sec)

0-7

Page 9: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

• 原始中性子星の冷却 τ ∼ τdiff = O(10)sec� τdyn ∼ 1msec: 準静的進化冷却と deleptonizationhot lepton-rich PNS → cold Neutron Stare−p←→ νen e+n←→ νepe−e+ ←→ νν NN′ ←→ NN′νννN −→ νN νe± −→ νe±

温度が下がると、e+がなくなるので、e−e+ → νxνxより、NN→ NNνxνxが重要になる。PNS = cool (S ∼ O(1)) unshocked inner core + hot (S ∼ O(10)) shockedouter mantlePNS cooling = rapid cooling stage of the shocked outer mantle + coolingstage of the inner coreρ(mantle) is not so high → large λν

ニュートリノによる cooling/deleptonizationS(mantle)減少 → contraction → T (mantle)上昇T : mantle にピーク: 内向きの heat flux(νe, νµ) → S(core)上昇t > 10sec: T 分布単調減少、中心部も冷却開始

0-8

Page 10: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

原始中性子星の冷却シミュレーション

0-9

Page 11: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

Neutronization burst. Thompson et al., ApJ 592 (2003) 434 Fig.6 (failed explosion)

0-10

Page 12: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

原始中性子星からのニュートリノ

coolingと deleptonizationにより、npが減少、中性子の縮退が進むため、νep →ne+ が抑制され、σνe ∼ σνx、〈ωνe〉 ∼〈ωνx〉に向かう

0-11

Page 13: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

ニュートリノ反応の影響

Minner core ∼ 1.457M�

(YLtrap

0.5

)2

= 0.6 ∼ 0.9M�

Eshock ∼ GM2inner core

Rinner core∝ YL

10/3trap ∼ several 1051erg

YL,trap を決めるのは、ν trapping 前に core から出ていったνeの量ρ < ρtrap での電子捕獲率と Opacity が重要higher e-cap rate, smaller opacity → smaller YL,trap, Eshock

σ(e−p→ νen) > σ(e−A→ νeA′)なので、Xp ↗ → Eshock ↘

S(Fe core)↗ → Xp ↗ → Eshock ↘対称エネルギー (bulk/surface)の影響は複雑? Wsym ↗→Xp ↘→ Eshock ↗• down scattering (νe− → νe−, νA → νA∗) により、ων ↘, S ↗ → λν ↗YL,trap ↘, Eshock ↘

• 電子捕獲率Bruenn’85: p(f7/2)→ n(f5/2)の Gamow-Teller transitionN < 40: possible, N ≥ 40: impossibleshell modelに基づく新しい電子捕獲率/β崩壊率の計算 (LMP: Langanke andMartinez-Pinedo): これまで一般的だった Brueen 方式 (N > 40での電子捕獲反応抑制)や FFN(Fuller, Fowler and Newman)と異なる結果

0-12

Page 14: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

10 15 20 25 30 35 40

Star Mass (M⊙)

0.005

0.010

0.015

0.020

∆Ye

0.420

0.425

0.430

0.435

0.440

0.445

0.450

Ye

WWLMP

10 15 20 25 30 35 40

Star Mass (M⊙)

-0.2

-0.1

0.0

0.1

∆MF

e (M

⊙)

1.4

1.6

1.8

2.0

MF

e (M

⊙)

WWLMP

10 15 20 25 30 35 40

Star Mass (M⊙)

-0.2

-0.1

0.0

0.1

∆S (

k B)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

cent

ral e

ntro

py /

bary

on (

k B)

WWLMP

Figure 1: weak int. rate と Fe コア: WW(FFN) と LMP の比較。G. Martinez-Pinedo et al., astro-ph/0412091

LMP (A = 45 − 65, Shell model、許容遷移のみ): GT strength ↘ 電子捕獲率 ↘ Ye ↗ MFe core ↘

0-13

Page 15: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

1010 1011 1012 1013 1014

ρc (g cm−3)

0.20

0.25

0.30

0.35

0.40

0.45

Ye,

c, Y

lep,

c

BruennLMSH

Ylep

Ye

1010 1011 1012 1013 1014

ρc (g cm−3)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

s c (

k B),

Tc

(MeV

)

BruennLMSH

T

s

1010 1011 1012 1013 1014

ρc (g cm−3)

10−1

100

101

102

103

104

105

106

dE dt (

MeV

s−

1 bar

yon−

1 )

BruennLMSH

1010 1012 1014

ρc (g cm−3)

0

10

20

30

40

50

⟨Eν⟩

(M

eV)

Figure 2: 電子捕獲反応率と 15M�星のコアの重力崩壊。G. Martinez-Pinedo et al., astro-ph/0412091

LMS: N > 40の原子核による電子捕獲率を評価 (A = 66− 112 Shell ModelMonte Carlo + RPA)LMSH: FFN(A < 45)+LMP(A = 45− 65、許容遷移のみ)+LMS(A = 66−112), NSEXp だけが重要ではない、電子捕獲率 ↗ YLtrap ↘

多核種が混在する NSE での、電子捕獲率の評価が重要

0-14

Page 16: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

Juodagalvis, Langanke et al., 2010, FFN/Shell model/Shell Model Monte Carlo+RPA に加え

Fermi-Dirac parameterization+RPA(Z = 28 − 70, N = 40 − 160), electron screening

Fig. 1. (Color online.) Nuclei included in the calculation of the NSE-averaged rates and spectra. The sd pool is marked

by circles, the shell model pool is marked by pluses, the SMMC + RPA pool is marked by crosses, and the FD + RPA

pool is marked by diamonds.

Fig. 2. (Color online.) A comparison of the electron capture rates on 64,65Ni calculated from the diagonalization shell

model (only allowed contributions) and the hybrid SMMC + RPA model (both allowed and forbidden contributions).

Stellar conditions of the 25M⊙ trajectory (see Table 1) are used.

Fig. 10. (Color online.) Pool-averaged electron capture rates calculated along the stellar trajectories for the 15M⊙ and

25M⊙ progenitor stars. The rates based on the sum of all pools of nuclei are shown by solid lines. The dashed lines show

the average rate when the FD + RPA pool is omitted. The dotted lines show the average rate for the sum of all pools

when the screening effects to the rates are neglected.

Fig. 11. (Color online.) Pool-averaged emitted neutrino spectra for the 15M⊙ and 25M⊙ trajectories. The line legend is

the same as in Fig. 10. Two stellar conditions are used in each case corresponding to snapshot numbers 10 and 15 of the

respective trajectory. For snapshot number 10 in the lower panel the curves “no FD” and “full” coincide.

electron screening は、電子捕獲率を下げる ρ ∼ 1011, 1012g/cm3

0-15

Page 17: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

Fig. 6. (Color online.) Fraction of nuclei covered by the various pools of nuclei as defined in the text. The fractions

have been calculated for the two stellar trajectories given in Table 1. The pools are sd (dotted line), LMP (dashed

line), SMMC + RPA (double-dash-dotted line), and FD + RPA (dash-double-dotted line). Solid lines show the summed

pool coverage. Thick solid lines show present pool coverage, and thin solid lines show coverage by the LMSH pool.

(∑

i Yi )nuclei is calculated by summing over all nuclei except protons, neutrons and α particles.

0-16

Page 18: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

NSE EOS (Furusawa et al., ApJ738, 2011): 電子捕獲率だけでなく散乱率にも影響

Figure 1. Mass fractions in log10 of nuclei in the (N, Z) plane for ρB = 1011 g cm−3, T = 1 MeV, and Yp = 0.3. The cross indicates the representative nucleus forthe H. Shen EOS under the same condition.

Figure 2. Mass fractions in log10 of nuclei in the (N, Z) plane for ρB = 1013.5 g cm−3, T = 1 MeV, and Yp = 0.3. The cross indicates the representative nucleus forthe H. Shen EOS under the same condition.

Figure 5. Average mass number, A, of heavy nuclei with Z > 6 for our EOS (solid red lines) and Hempel’s EOS (dotted green lines) together with the mass numberof representative nucleus for H. Shen’s EOS (dashed blue liens) as a function of density for T = 1 MeV and Yp = 0.1, 0.3, 0.5. The insets are the close-ups of thehigh density regimes.

Figure 6. Square of mass numbers (top), the standard deviation of mass number, σA =√

A2 − A2 (middle), and the dispersion normalized by the average mass

number squared, σ 2A/A2 (bottom), of heavy nuclei with Z > 6 for T = 1 MeV and Yp = 0.1 (left), 0.3 (middle), and 0.5 (right). In the top panels, the solid and

dotted lines show the average mass number squared, A2, and the square of average mass number, A2, in our EOS, respectively, whereas the dashed lines display themass number squared of the representative nucleus for the H. Shen EOS.

Aの分散は大きくないが,single nucleus EOS とは A2 平均が大きく異なる

0-17

Page 19: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

• ion screening (Horowitz 1997, Bruenn and Mezzacappa 1997)Coulomb effect → ions in correlated statesσ(νA→ νA) decreases when the wave length of neutrinos > ion seperation

FIG. 2. The angle-averaged ion screening correction ^Sion(e)& atthe core center for selected central densities, as a function of neu-trino energy, for models S15s7b and S25s7b.

コアの重力崩壊のシミュレーション (Bruenn and Mezzacappa 1997)∆YLtrap = −0.015 not so drastic

(narrow ων window is affected)

YLtrap ↘ ⇒Minner core ↘ (2− 6%)⇒ Eshock ↘

0-18

Page 20: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

• 核子制動輻射 NN′ ←→ NN′ννSuzuki and Ishizuka: One Pion Exchange modelνxνx生成: ρ > 1013g/cm

3, T ∼ 10MeV で低エネルギーνに対して e−e+ →

νxνx を上回る。低エネルギーニュートリノを enhance Lνx ↗、〈ωνx〉 ↘一方 multiple scattering suppression (Raffelt and Seckel 1991) は低エネルギーニュートリノの核子制動輻射を抑制(Hannestad and Raffelt, Raffelt and Seckel 1998, Shen and Suzuki, Burrowset al. 2000)

• νN散乱によるエネルギー交換: ρ > 1011g/cm3, ων > 10MeVで ESを上回り

〈ωνx〉 ↘• νNN散乱によるエネルギー交換: νN散乱の影響に埋もれる• νN↔ eN′ に対する weak magnetism (←核子の異常磁気モーメント):σνep(20MeV) : −15%

0-19

Page 21: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

• effective mass, nucleon density/spin fluctuations⇒ reduction of opacity → Lν ↗(Sawyer 1995, Munchen group 1995-1998, Burrows and Sawyer 1998-1999,Reddy et al. 1998-1999, Yamada and Toki 1999-2000)

νN反応に対する多体効果 (密度・スピン相関): ρ > 1014g/cm3で σ → 1

2 ∼13、

Lν(t > 100ms)↗

FIG. 11. Log10 of the electron neutrino luminosity (Lne

) in1051 ergs s21 versus time after bounce in ms, with and withoutaccretion. For the accretion models, total opacity suppression fac-tors of 0.3, 0.1, and 0.05 were assumed above 531013 g cm23 andof 0.3 and 0.1 were assumed above 1014 g cm23. The fiducialmodel is dashed, the model without accretion is dot-dashed, themodels with correction above 531013 g cm23 are dotted, andthose with correction above 1014 g cm23 are solid. On this plot, themodels with the largest corrections have the highest luminositiesafter 2500 ms. The comparisons between the dashed curve and allothers are the most germane.

Burrows and Sawyer, Phys. Rev. C58 (1998) 554, Fig.11

0-20

Page 22: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

• 軽元素との反応 Sumiyoshi and Ropke2H,3H,3He,4He

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

X i

10 100r [km]

Xn Xp Xd Xt X3He X4He XA

FIG. 2: (Color online) Mass fraction Xi of light clusters asfunction of the radius for the post-bounce supernova coreshown in Fig. 1.

Sumiyoshi and Ropke PRC77 (2008) 055804

0.001

0.1

10

1000

0 2 4 6 8 10

<σω>/A

[10

−4

2cm

2 M

eV]

Tν [MeV]

ν CCν NC

ν scatt 0.001

0.1

10

1000

0 2 4 6 8 10

<σω>/A

[10

−4

2cm

2 M

eV]

Tν [MeV]

ν– CCν– NC

ν– scatt

(a) (b)

FIG. 3: Thermal average of energy transfer cross sections. The solid and dotted curves in (a)

((b)) show the cross sections for νed → e−pp(νCC) and νd → νpn(νNC) (νed → e+nn(νCC) and

νd → νpn(νNC)), respectively. The dot-dashed curve in (a) and (b) shows cross section for the

elastic νd scattering.

0.001

0.1

10

1000

0 2 4 6 8 10

<>/

A [cm

MeV

]

T [MeV]

CC

d3H(–)4He 0.001

0.1

10

1000

0 2 4 6 8 10

<>/

A [cm

MeV

]

T [MeV]

NC

d3He4He

0.001

0.1

10

1000

0 2 4 6 8 10

<>/A

[cm

MeV

]

T [MeV]

CC NC scatt 0.001

0.1

10

1000

0 2 4 6 8 10

<>/A

[cm

MeV

]

T [MeV]

– CC– NC– scatt

0.001

0.1

10

1000

0 2 4 6 8 10

<σω>/2

A [10

−4

2cm

2 M

eV]

Tν [MeV]

CC

d3H(ν–)4He 0.001

0.1

10

1000

0 2 4 6 8 10

<σω>/2

A [10

−4

2cm

2 M

eV]

Tν [MeV]

NC

d3He4He

FIG. 4: Averaged energy transfer cross sections in unit of 10−42 MeV cm2. The solid, dashed and

dash-dotted curves show the νd, ν-4He and ν-3H (left panel) and ν-3He (right panel) cross sections,

respectively. (See the main text for the references on A=3, 4 nuclei cross sections.)

Nakamura et al., 2009, d の分解がν加熱に効くかも

0-21

Page 23: 超新星におけるニュートリノ反応超新星におけるニュートリノ反応 東理大理工鈴木英之@基研2011.12.26 超新星ニュートリノ ˝weak ˘ 1 ˙weakntargetvrelative

ν反応率は状態方程式と密接に関連: EOS とセットでテーブル化が必要

FIG. 1.—Explosion energies vs. time after the start of the simulations (125ms after bounce) for exploding one-dimensional (dotted lines) and two-dimensional models (solid lines). The numbers denote the initial ne and ne

luminosities in 1052 ergs s21.

ニュートリノ加熱率の正確な評価が重要 1D/2.10: no exp. ⇔ 1D/2.20: exp. (Janka and Muller, ApJ 448

(1995) L109, Fig.1)

0 0.05 0.1 0.1510

1

102

103

time after bounce [ms]

radi

us [k

m]

A

B

C

D

mistake: σ(νN → νN) too small ⇒ Explosion!.Liebendorfer et al., astro-ph/0006418 v1 Fig.4

0 0.1 0.2 0.3 0.4 0.510

1

102

103

Time After Bounce [s]R

adiu

s [k

m]

Newton+O(v/c)Relativistic

No Explosion!. NH 13M�, GR Boltzman, LSEOS+Si burning, S = 103, E = 12, A = 6, 3νGR→ compact PNS → T ↗ Lν ↗,Boltzmann → heating rate ↗Liebendorfer et al., Phys.Rev. D63 (2001)103004 (astro-ph/0006418 v2) Fig.6

0-22