21
放射光光電子分光によるLa 0.6 Sr 0.4 MnO 3 /SrTiO 3 スピントンネル接合界面の電子状態解析 PF研究会「磁性薄膜・多層膜を究める:キャラクタリゼーションから新奇材料の創製へ」 2011101514-15)日@KEK-PF小林ホール SR RHEED Monitoring Pulsed Laser Deposition Moving Edge Mask Pattern Ceramic Targets 組頭 広志 KEKPF(物構研&構造物性研究センター) JSTさきがけ

放射光光電子分光によるLa Sr0.4MnO /SrTiO - KEK IMSSpf...2-STO: 0.5 eVの界面ダイポール形成 LSMO/SrO-STO: -0.4 eVの界面ダイポール形成(界面ダイポールの反転)

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • 放射光光電子分光によるLa0.6Sr0.4MnO3/SrTiO3�

    スピントンネル接合界面の電子状態解析 �

    PF研究会「磁性薄膜・多層膜を究める:キャラクタリゼーションから新奇材料の創製へ」2011年10月15(14-15)日@KEK-PF小林ホール

    SR RHEEDMonitoring

    Pulsed LaserDeposition

    Moving EdgeMask Pattern

    Ceramic Targets

    組頭 広志 KEK−PF(物構研&構造物性研究センター)

    JSTさきがけ

  • Magnetic “dead layer” formation at the STO/LSMO interface

    La0.6Sr0.4MnO3�

    La0.6Sr0.4MnO3�

    SrTiO3 or La0.6Sr0.4FeO3

    Motivation

    Half Metallic La0.6Sr0.4MnO3

    Disappearance of [email protected].

    F. Pailloux et al., PRB 66, 014417 (02).

    Spin Tunneling Junctions

    Tc ~ 370K

    Small TMR ratio In actual TMR devices, the performance is far worse than what is expected from these physical properties.

  • Superlattice based on Transition Metal Oxides

    Charge Transfer at the interface

    ? ABO3AʼBʼO3It is indispensable to reveal the electronic structure

    at the heterointerface

    Interface EF

    t2g

    eg

    eg

    C.T.

    "in-situ Photoemission"

  • ☆Non-destructive☆Surface (Interface) Sensitive(5~30Å)☆Direct Determination of Electronic States

    High Directionality

    High Brilliance

    High Resolution

    Tunable Photon Energy

    Advantage of SR-PES

    Chemical Shift DOS Band Structure

    SR Analyzerhν e-High-throughput

    High-resolution Space Energy Angle

    100µm

    yx

    Elemental Selectivity

  • Resonant PES of LSMO (x=0.4)

    LSMO

    LSFO

    I = exp(-d/λ)

    IPES

    d

    LSMO Interface Interface

    Probing Electronic Structure at the Interface (Mn 3d PDOS)

    hν = 644 eV

    Resonant PES Approach

    Intensity (arb. units)

    660 660

    655 655

    650 650

    645 645

    640 640Ph

    oton

    Ene

    rgy

    (eV

    )

    Inte

    nsity

    (arb

    . uni

    ts)

    Binding Energy (eV)10 515 EF

    La0.6Sr0.4MnO3 thin filmT = R. T.

    On

    Off

  • RHEED Pattern & AFM Images

    1 x 1 µm

    LSFO x=0.4

    Nb-STO substrate

    LSMOx=0.55 LSMO x=0.4 (20 ML)

    1 ML 2 MLA B C D

    A B C D

  • Inte

    nsity

    (arb

    . uni

    ts)

    Binding Energy (eV)

    A B C D

    T = R.T.

    Mn 2p-3d Resonancehν = 640 eV

    EF24 135 -1

    STO substrate

    LSMOx=0.55

    LSMOx=0.4

    LSFO x=0.4

    1ML2ML

    (20ML)

    A B C D

    LSMO

    LSFO Charge Transfer

    Spectral Evidence of Charge Transfer at LSMO/LSFO Interface

    Mn 2p-3d Resonant PES

    Resonant PES of LSMO at Interface

    t2geg

    K. Horiba, H.K. et al., Phys. Rev. B 71, 155420 (‘05)

    H. Kumigashira et al., Appl. Phys. Lett. 84, 5353 (2004).

  • LSMO (20ML)

    LSFO

    LSMO (3ML)

    Inte

    nsity

    (arb

    . uni

    ts)

    730725720715710705700

    Photon Energy (eV)

    Fe 2p XAS

    LSMO/LSFO(1ML)/LSMO

    LSMO/LSFO(2ML)/LSMO

    Fe-2p XAS spectra

    XAS Spectra of Interfacial LSFO Layer

  • Comparison of Fe-2p XAS spectra
 between Interfacial LSFO layer and LSFO films

    Inte

    nsity

    (arb

    . uni

    ts)

    730 725 720 715 710 705 Photon Energy (eV)

    La1-xSrxFeO3 film

    x = 0.67 x = 0.4 x = 0.2 x = 0

    Fe 2 p the spin-orbit splitting of the Fe 2 p core hole

    Evidence of Charge Transfer from LSMO to LSFO

    Fe-2p XAS spectra In

    tens

    ity (a

    rb. u

    nits)

    725720715710705700

    Photon Energy (eV)

    Fe 2p XAS

    LSMO /LSFO (1ML) /LSMO

    LSFO film (x = 0.2)

    LSFO film (x = 0.4)

    LSMO /LSFO (2ML) /LSMO

    H. Wadati, H.K. et al., Phys. Rev. B 71, 035108 (2005).

  • LSMO

    LSFO

    LSMO

    Interface in LSMO/LSFO superlattices

    Phase diagram of LSMO

    A. Urushibara et al., Phys. Rev. B 51, 14103 (1995).

    Charge Transfer

    AFM or PM dead-layer formation at Interface

    Charge-Transfer at Interface

    AFM

    (La0.6Sr0.4)BO3

  • Robust Ti4+ states

    Ti3+�

    Ti4+�

    K. Morikawa et al., Phys. Rev. B 54, 5446 (1996).

    C.T.

    Mn3+→Mn4+

    Ti4+→Ti3+TiO2TiO2SrO

    SrOMnO20.6 0.4

    MnO2La Sr O0.6 0.4

    La Sr O

    Charge Transfer

    Ti 2p Core Level Spectra at Interfaces

    H. Kumigashira et al., Appl. Phys. Lett. 88, 192504 (‘06).

    1.5 eV

    TiO�2�

    TiO�2�SrO�

    SrO�

    MnO�2�La Sr O�0.6� 0.4�MnO�2�

    La Sr O�0.6� 0.4�

    STO

    LSMO

  • Mn3+→Mn4+

    Ti4+ TiO�2�TiO�2�SrO�

    SrO�MnO�2�

    La Sr O�0.6� 0.4�MnO�2�

    La Sr O�0.6� 0.4�

    STO/LSMO

    Difference of 3d levels among transition metals FeO�2�

    FeO�2�

    MnO�2�La Sr O�0.6� 0.4�MnO�2�

    La Sr O�0.6� 0.4�

    La Sr O�0.6� 0.4�

    La Sr O�0.6� 0.4�

    Mn3+→Mn4+

    Fe4+→Fe3+

    LSFO/LSMO

    Origin of Charge Transfer

    Mn 3d

    t2g

    t2g3eg1.6t2g3eg0.6t2g0

    Bin

    ding

    Ene

    rgy

    Ti 3d Fe 3d

    t2gt2g

    egeg

    e-

    Electron-donor layer Charge redistribution at interface

  • C. T. from AO Layer to BO2 Layer LSMO/STO interface

    (Valence mismatch)LSFO/LSMO interface

    (Charge transfer between TM ions)

    La0.6Sr0.4O electron-donor layer

  • A’B’O3/ABO3 interface: A’B’O3/BO2-ABO3 vs A’B’O3/AO-ABO3

    AOB’O2

    BO2AO

    A’OB’O2

    BO2

    A’O

    BO2AO

    A’OB’O2

    BO2AO

    A’OB’O2

    LSMO(x=0.4)/TiO2-Nb:STO LSMO(x=0.4)/SrO-Nb:STO

    + 0.6- 0.6 + 0.6

    - 0.6

    How does the band diagram modulates by changing the terminating layer at the interface?

  • Termination� Nb:STO (χi) � LSMO(x=0.4) (φm) �BO2� 4.08 eV � 4.87 eV �

    AO � 3.86 eV � 4.73 eV �

    0.14 ± 0.05 eV0.22 ± 0.05 eV

    Work functions of termination controlled STO and LSMO

    TiO2-terminatedNb: STOSrO-terminatedNb: STO

    MnO2-terminatedLSMOLa0.6Sr0.4O-terminatedLSMO

  • Heterojunctions� ΦB [exp.] � φm – χi�[exp.] �LSMO/TiO2-Nb:STO� 1.2 ± 0.1 eV � 0.65 eV �

    LSMO/SrO/Nb:STO� 0.6 ± 0.1 eV� 1.01 eV �

    Built-in potential of termination controlled LSMO

  • LSMO(x=0.4)/TiO2-Nb:STO LSMO(x=0.4)/SrO/Nb:STO

    …………

    Direction reversing

    The direction of interface dipole changes depending on the terminating layer.

    Vacuum level

    + -

    + -

    Band diagrams of termination controlled LSMO

  • Origin of the interface dipole(a) n-type interface (b) p-type interface

    ρ -V ρ -V

    Robust Ti4+ states H. Kumigashira et al., Appl. Phys. Lett. 88, 192504 (‘06).

    Ti 2p core level of LSMO/STO/LSMO sandwiched structures

    0.3e-

    0.3e-

  • H. Kumigashira et al., Appl. Phys. Lett. 88, 192504 (2006).

    Origin of the interface dipole

    0.6e-

    0.3e-

    0.3e-

    M. Minohara, H.K. et al., Phys. Rev. B 81, 235322 (2010).

  • V = Qdεrε0S

    εr = 30 [Ref.1]

    V = +0.5 eV (n-type)V = -0.2 eV (p-type)

    Experimental results

    V = +0.5 eV (n-type)V = -0.4 eV (p-type)

    [1] R. D. Shannon, J. Appl. Phys. 73, 348 (1993).

    Origin of the interface dipole

    M. Minohara, H.K. et al., Phys. Rev. B 81, 235322 (2010).

  • まとめ�ABO3/LSMO接合界面の電子状態について調べるために放射光電子分光を行った。

    ヘテロ界面の化学状態

    ヘテロ界面のバンドダイアグラム

    LSFO/LSMO: FeとMnイオン間の電荷移動

    STO/LSMO: TiとMnイオン間の電荷移動は起こらず、Ti4+状態を維持(Mn側が収納)

    La0.6Sr0.4O electron-donor layer 遷移金属イオンの3d準位の相対位置、 およびFillingが重要。

    LSMO/TiO2-STO: 0.5 eVの界面ダイポール形成 LSMO/SrO-STO: -0.4 eVの界面ダイポール形成(界面ダイポールの反転)

    静電ポテンシャルの発散を抑制するために、Mn側の価数が変調

    遷移金属イオンの3d準位位置、AO層の電荷量、終端面を考慮した界面設計