91
ELASTIC PROBLEMS LEADING TO THE BIHARMONIC EQUATION I N REGIONS OF SECTOR TYPE Hisharn Hassanein B.Sc., Alexandria University, 1969 A THESIS SUBMITTED IN PARTIXL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of Mathematics @ HISHAM HASSANEIN 1973 SIMON FRASER UNIVERSITY April 1973 All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.

ELASTIC PROBLEMS LEADING TO THE BIHARMONIC EQUATION

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

E L A S T I C PROBLEMS LEADING T O THE BIHARMONIC EQUATION

I N REGIONS O F SECTOR TYPE

H i s h a r n H a s s a n e i n

B . S c . , A l e x a n d r i a U n i v e r s i t y , 1969

A T H E S I S SUBMITTED I N PARTIXL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER O F S C I E N C E

i n the D e p a r t m e n t

of

M a t h e m a t i c s

@ HISHAM HASSANEIN 1973

SIMON FRASER UNIVERSITY

A p r i l 1973

A l l r ights reserved. T h i s thesis m a y n o t be

reproduced i n w h o l e or i n part , by photocopy

or other m e a n s , w i t h o u t p e r m i s s i o n of the author.

APPROVAL

NAME : H i s h a m H a s s a n e i n

DEGREE : M a s t e r of Science

T I T L E OF T H E S I S : E l a s t i c p r o b l e m s leading t o the b i h a r m o n i c equation i n

regions of sector type

EXAMINING COMMITTEE :

CHAIRMAN : G. A. C. G r a h a m

R. W. Lardner Senior Supervisor

D. L. S h a r m a

M. Singh

C - - . 7 - - ( - -

D. S h a d m a n E x t e r n a l E x a m i n e r

A p r i l 19 , 1973 DATE APPROVED :

(ii)

PARTIAL COPYRIGHT LICENSE

I hereby g r a n t t o Simon F rase r Univers i ty t h e r i g h t t o lend

my t h e s i s or d i s s e r t a t i o n ( the t i t l e of which i s shown below) t o u s e r s

of t he Simon F rase r Univers i ty Library , and t o make p a r t i a l o r s i n g l e

copies only f o r such use r s o r i n response t o a reques t from the l i b r a r y

of any o the r u n i v e r s i t y , o r o the r educa t iona l i n s t i t u t i o n , on i t s own

behal f o r f o r one of i t s u s e r s . I f u r t h e r agree t h a t permission f o r

mu l t ip l e copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted

by me or the Dean of Graduate S tudies . It is understood t h a t copying

o r publ ica t ion of t h i s t h e s i s f o r f i n a n c i a l ga in s h a l l no t be allowed

without my w r i t t e n permission.

Author : -- -

1

( s igna tu re )

(name )

\ I (da te )

ABSTRACT

A number of problems i n e l a s t i c i t y may be reduced t o so lv ing t h e

4 biharmonic equation V 4 = 0 i n two dimensions under appropr ia te

boundary condit ions on the function . The purpose of t h i s t h e s i s w i l l

be t o examine c e r t a i n methods o f s o l u t i o n of t h i s equation i n regions

bounded by l i n e s r a d i a t i n g from t h e o r i g i n and by a r c s of c i r c l e s centered

a t the o r i g i n . The b a s i c region of t h i s type i s t h e s e c t o r r < a ,

-w < 8 < w , where (r, 8) a r e p o l a r coordinates. We s h a l l be e s p e c i a l l y

concerned with t h e p a r t i c u l a r case when w = r, s o t h a t t h e s e c t o r becomes

a c i r c u l a r region with a crack l y i n g between the boundary and t h e cen t re

of the c i r c l e .

Af te r reviewing i n t h e f i r s t chapter t h e b a s i c equations of p lane

e l a s t i c i t y and of the theory of p l a t e bending, and showing how i n both

cases problems may be reduced t o t h e biharmonic equat ion , we proceed i n

Chapter I1 t o examine the s o l u t i o n of a number of p a r t i c u l a r problems,

most of which involve regions of s e c t o r type. I n t h i s chapter we

consider a problem previous ly examined by Williams [ 31 concerning a

cracked cy l inder wi th imposed t r a c t i o n s on t h e boundary r = a. H e

cons t ruc t s a b a s i c s e t of e igenfunct ions s a t i s f y i n g the biharmonic equation

and the homogeneous boundary condi t ions on the crack faces 0 = *IT . Unfortunately, these eigenfunctions a r e no t orthogonal which makes it

very d i f f i c u l t t o determine t h e unknown c o e f f i c i e n t s i n t h e expression

of t h e s t r e s s function.

I n an i n t e r e s t i n g paper, Gaydon and Shepherd [ 51 consider t h e problem 1

I of a semi- inf in i te r ec tangu la r s t r i p . Each of the e igenfunct ions is

expanded i n a s e r i e s of orthonormal beam funct ions , thus enabling them t o

compute numerically t h e c o e f f i c i e n t s of the s t r e s s funct ion corresponding

t o any a r b i t r a r y d i s t r i b u t i o n of t r a c t i o n on the end of the s t r i p . I n an

extens ion of t h e i r work, Gopalacharyulu [ 6 ] follows t h e same method i n

so lv ing the s e c t o r problem. He a l s o expands t h e e igenfunct ions i n a

s e r i e s o f orthonormal beam funct ions .

Xn Chapter 111, w e consider the problem of an i n f i n i t e cy l inder of

u n i t r ad ius cracked along the plane 0 = T. Ins tead of us ing the more

complicated beam eigenfunctions a s were used by Gopalacharyulu [ 6 ] , t h e

s e t of b a s i c eigenfunctions discussed i n Chapter I1 is expanded i n terms

of simple Four ier s i n e and cosine s e r i e s . An i n f i n i t e system of simul-

taneous equations is obtained from which we can compute numerically t h e

c o e f f i c i e n t s corresponding t o a r b i t r a r y t r a c t i o n s on t h e boundary r = 1.

W e have computed these c o e f f i c i e n t s numerically f o r a p a r t i c u l a r loading

a s w e l l a s the corresponding stress d i s t r i b u t i o n around the crack tip.

The stress i n t e n s i t y f a c t o r s f o r d i f f e r e n t loadings a r e a l s o computed.

Following the same method, t h e set of simultaneous equations f o r de te r -

mining the c o e f f i c i e n t s of t h e s t r e s s funct ion i s obtained i n t h e case

of an i n f i n i t e cy l inder having a crack w i t h a rounded t i p , and a l s o i n

t h e case of a semi-circular cyl inder .

ACKNOWLEDGMENT

I wish t o thank D r . R. Lardner, Mathematics Department, Simon Frase r

Univers i ty , f o r h i s invaluable he lp and continuous encouragement.

I a l s o wish t o thank M r s . A. Gerencser f o r h e r pa t i ence i n typing my

t h e s i s .

F i n a l l y , I would l i k e t o thank Simon Fraser Universi ty f o r t h e

f i n a n c i a l a s s i s t ance I received throughout my work.

TABLE OF CONTENTS

T i t l e Page

Approval Page

A b s t r a c t

Acknowledgment

Tab le o f Conten t s

L i s t o f F i g u r e s

L i s t o f T a b l e s

CHAPTER I ELASTOSTATIC PROBLEMS LEADING TO THE BIHARMONIC

EQUATION

1.1 P l a n e e l a s t o s t a t i c problems

1.1.1 P l a n e d e f o r m a t i o n s

1.1.2 G e n e r a l i z e d p l a n e stress

1.1.3 A i r y ' s stress f u n c t i o n

1.2 P u r e bend ing o f p l a t e s

1 .2 .1 C u r v a t u r e o f s l i g h t l y b e n t p l a t e s

1.2.2 R e l a t i o n s between bend ing moments and d e f l e c t i o n

1.2.3 The d i f f e r e n t i a l e q u a t i o n o f t h e d e f l e c t i o n s u r f a c e

o f l a t e r a l l y l o a d e d p l a t e s

1.2.4 Boundary c o n d i t i o n s

CHAPTER I1 THE SOLUTION OF CERTAIN ELASTOSTATIC PROBLEMS

2 .1 I n t r o d u c t i o n

2.2 The c r a c k e d c y l i n d e r

2 .2 .1 S e p a r a b l e s o l u t i o n s o f t h e b iharmonic e q u a t i o n

2.2.2 Expansion o f stresses i n terms o f t h e basic

PAGE

i

i i

iii

v

v i

i x

X

1

1

2

3

4

6

6

10

16

e i g e n f u n c t i o n s

( v i ) '

2.2.3 Radial s t r e s s v a r i a t i o n s nea r t h e crack t i p

2.2.4 Angular v a r i a t i o n s o f the p r i n c i p a l s t r e s s e s and

the d i s t o r t i o n a l s t r a i n energy dens i ty

2.3 The bending s t r e s s d i s t r i b u t i o n a t the base of a

s t a t i o n a r y crack

2.4 Plane s t r e s s e s i n a semi- inf in i te s t r i p

2.4.1 Solut ion of the biharmonic equation

2.4.2 Expansion of t h e s t r e s s funct ion i n terms of

orthogonal beam funct ions

2.4.3 Evaluat ion of the cons tants A h 1 B~

2.5 The s e c t o r problem

2.5.1 Solut ion of the biharmonic equation

2.5.2 Expansion of the a r c t r a c t i o n s i n terms of the beam

funct ions

2.5.3 Determination of %

CHAPTER I11 SOLUTION OF THE CRACKED CYLINDER AND SEMI-CIRCLE

PROBLEMS

3.1 The cracked cy l inder problem

3.1.1 S a t i s f a c t i o n of the condit ions of o v e r a l l s e l f -

equi l ibr ium

3.1.2 Separat ion of the cons tants An and Bn

3.1.3 S t r e s s i n t e n s i t y f a c t o r

3.1.4 Examples

3.2 S t r e s s d i s t r i b u t i o n around a crack w i t h a rounded t i p

3.2.1 Solut ion of t h e biharmonic equation

3.2.2 S a t i s f a c t i o n of the boundary condi t ions on the

boundaries r = R, r = 1

(vi i 1

PAGE

34

3 5

PAGE:

3.2.3 Satisfaction of conditions of overal l equilibrium 69

3.3 Stress dis tr ibut ion i n a semi-circular sector

3.3.1 Separation of An and Bn

3 . 3 . 2 Satisfaction of self-equilibrium conditions

TABLE I

TABLE I1

BIBLIOGRAPHY

( v i i i )

LIST OF F I G U R E S

FIGURE 1

2

3

4 '

5

6

7

8

9

10

11

12

13

14

15

16 (i)

16 (ii)

16 C i i i )

17

18

PAGE

7

8

10

11

11

12

14

15

16

17

23

34

36

36

4 3

6 3a

6 3b

6 3c

6 5

70

TABLE I

TABLE I1

LIST OF TABLES

PAGE

CHAPTER I

ELASTOSTATIC PROBLEMS LEADING TO THE BIHARMONIC EQUATION

In t h i s chapter we s h a l l consider two d i f ferent types of problems

tha t lead t o the biharmonic equation: plane e l a s tos ta t i c problems and

pure bending of thin plates .

Plane e l a s tos ta t i c problems

Plane e l a s tos ta t i c problems include generalized plane s t r e s s and

plane s t r a in problems. The f i r s t of these problems ar i ses when considering

a thin plate loaded by forces applied a t the boundary, p a r a l l e l t o the plane

of the plate . Therefore, i f we take the plane of the p la t e as the xy-plane,

- - the average s t r e s s components through the p la te thickness,

OXZ and

- - - 0 w i l l a l l be zero, whereas 0 , G and r are only functions of YZ YY xy

x and y. On the other hand plane s t r a i n problems ar i se when the dimen-

sion of the body i n the z-direction is very large. I f a long cyl indrical

o r prismatical body is loaded by forces which are perpendicular t o the

longitudinal elements and do not vary along the length, it may be assumed

tha t a l l cross-sections are i n the same condition. We assume t h a t the end

sections are confined between fixed smooth r ig id planes. Since there is

no axial displacement a t the ends, and, by symmetry, a t the mid-section,

it may be assumed tha t the same holds a t every cross-section.

In th i s section we s h a l l take the coordinate axes t o be xl, x2 and

x We use the Greek indices a and B for the range 1, 2. A repeated 3'

index w i l l represent the sum of a l l allowable values of tha t index.

1.1.1 Plane deformation

A body is sa id t o be i n a s t a t e of plane deformation, o r plane s t r a in ,

p a r a l l e l t o the x x -plane, i f the component u of the displacement vector 1 2 3

- u vanishes and the components u and u are functions of the coordinates

1 2

x and x but not x Thus, a s t a t e of plane deformation i s characterized 1 2 3 '

by the formulae,

The stress-displacement relat ions i n this case w i l l be

- where the d i la ta t ion V = u and G is the modulus of r ig id i ty .

a la The equilibrium equations are

where F are the components of the body force. a

I f the solutions of these equilibrium equations are t o correspond t o

\

the s t a t e of s t r e s s t h a t can ex i s t in an e l a s t i c body, the 0 must aB

sa t i s fy the Beltrani-Mitchell compatibility equation

where 0 5 oll + a22. 1

I f the components T (xl, x2) of external s t r e s se s are specif ied a

along the boundary i n the form

where the n are the components of the ex t e r io r un i t normal vector t o B

the boundary, the formulation of the problem i s complete.

\

1.1.2 Generalized Plane s t r e s s

A body is i n the s t a t e of plane s t r e s s p a r a l l e l t o the x x -plane when 1 2

the stress components o13, ~r~~ , 033 vanish.

Sokolnikoff [ l ] has shown t h a t the Beltrami-Mitchell compatibility

equation turns out t o be

- - - - 2 h ~ - - where O = all

1 + 022' X E

X i - 2 ~ ' oaB (xlI x2) and F~ (X1. x2) are

the mean values of (5 and Fa i n a cylinder of thickness 2h, and bases a@

i n the planes x = f h , i . e . 3

- Equations (1) and (2) su f f i ce t o determine the mean s t r e s se s OclB when

t h e boundary conditions on the edge are given i n the form

1.1.3 Ai ry ' s s t r e s s function

Re s h a l l consider boundary value problems i n plane e l a s t i c i t y i n which

body fo rces a r e absent . Accordingly, w e consider t h e equi l ibr ium equations

i n t h e form

w h e r e G s a t i s f y the compat ib i l i ty equation a@

and a r e given on the boundary by

where t h e T a b ) a r e known functions of the a r c parameter S on the

boundary C.

The equi l ibr ium equations imply t h e ex i s t ence of a function @ b l r x2)

such t h a t

The compat ib i l i ty equation impl ies t h a t 4 must s a t i s f y the biharmonic

equation

in the region R.

Every s o l u t i o n of t h i s equation of c l a s s c4 is c a l l e d a biharmonic

funct ion , b u t s i n c e we a r e i n t e r e s t e d i n those s t a t e s of s t r e s s f o r which

t h e 0 a r e single-valued, we need consider only biharmonic funct ions aB

with single-valued second p a r t i a l de r iva t ives .

Expressing t h e biharmonic equation and the s t r e s s e s i n terms of x

and y , we obta in

where

and

I n p lane p o l a r coordinates, these equations become

where

and

Here CT rr' '08 and (5 are the physical components of s t r e s s with respect r e t o the polar coordinates.

1.2 Pure Bending of p la tes

The c l a s s i ca l small-deflection theory of p l a t e s , developed by Lagrange,

is based on the following assumptions:

i) points which l i e on a normal t o the mid-plane of the undeflected

p l a t e l i e on a normal t o the mid-plane of the deflected p l a t e ;

ii) the s t r e s se s normal t o the mid-plane of the p l a t e , a r i s ing from

the applied loading, are negl igible i n comparison with the s t resses

i n the plane of the p la te . Thus, every transverse s ing le loading

considered i n the thin-plate theory i s merely a discont inui ty i n

the magnitude of the shearing forces. I f the e f f e c t of the surface

load becomes of spec ia l i n t e r e s t , thick-plate theory has t o be used;

iii) the slope of the deflected p l a t e i n any direct ion is small, so t h a t

i ts square may be neglected i n comparison with unity;

i v ) the mid-plane of the p l a t e remains neut ra l during bending, i .e .

any mid-plane s t r e s se s a r i s ing from the def lect ion of the p l a t e

section i n t o a non-developable surface may be ignored.

1.2.1 Curvature of s l i gh t ly bent p l a t e s

I n discussing small deflections of a p l a t e , we take the middle plane

of the p l a t e , before bending occurs , a s the xy-plane. During bending, t h e

p a r t i c l e s on this plane undergo smal l displacements w perpendicular t o

the xy-plane and form the middle su r face of the deformed p l a t e .

I n determining the curvature of the middle su r face of the p l a t e we

s h a l l be using assumption iii, namely the s lope of the tangent t o t h e

su r face i n any d i r e c t i o n can be taken equal t o the angle t h a t the tangent

makes wi th the xy-plane, and the square of the s lope is neglected compared

t o uni ty . Thus t h e curvature of the su r face i n a plane p a r a l l e l t o t h e

xz-plane (Fig. 1) i s equal t o

S imi la r ly , t h e curvature of t h e s u r f a c e in a plane p a r a l l e l t o t h e yz-plane

is approximately equal t o

- Now, f o r any d i r e c t i o n an (Fig. 2 )

- IT 7.r But, f o r any d i r e c t i o n an making an angle a with the x-axis, - - < a 5 - 2 - 2 '

a a - = - a cosa + - s i n a . an ax a~

.- Therefore, the curvature i n the an d i r e c t i o n w i l l be

1 - = r

a aw a a aw aw 'n

- 1 an an = -(- aX cosa + - a~ s i n a ) (= cosa + - a~ s i n a )

1 = - 2 1 2 rx cos a + - r s i n a - - s in2a , r . Y xy

w h e r e t h e quant 1 a2w

ity - = - is c a l l e d t h e t w i s t of t h e su r face with r axay xy

respect t o t h e x and y axes.

- I n the case of the d i r e c t i o n a t , t h e angle with the x-axis w i l l be

IT a 1- - 2 ' and the curvature i n t h e t -d i rec t ion w i l l be given by

1 1 2 1 2 - = - s in2a . s i n a + - cos a + - r r r r t x Y xy

W e note t h a t

a - - a _ - - a a t s i n a + -

ay cosa , ax

and the re fo re

1 a a aw aw - = ( - - s i n a + - cosa) (;j-;; cosa + - s i n a ) r n t ax a~ a~

1 1 Therefore, i f the q u a n t i t i e s - - 1

and - a r e known, we can g e t the r r r x Y xy

corresponding q u a n t i t i e s r e l a t e d t o any system of axes i n c l i n e d a t an angle

a t o the o r i g i n a l system, by using equations (10) - (12) . I n order t o o b t a i n the p r i n c i p a l curvatures of the s u r f a c e and t h e

corresponding p r i n c i p a l d i r e c t i o n s , we t ry t o f i n d t h e values of t h e angle

I a f o r which - is an extremum. Thus d i f f e r e n t i a t i n g equation (10) r n

with r e spec t t o a and equating t h e r e s u l t t o zero, we f i n d t h a t

IT Me denote the roo t s of equation (13) by al and a 1 2 + - . S u b s t i t u t i n g

these values o f a i n equation (10) we obta in the two p r i n c i p a l curvatures.

W e a l s o note t h a t i f a s a t i s f i e s (13) then from (12)

i .e. the t w i s t of the su r face i s zero on t h e p r i n c i p a l p lanes .

1.2.2 Relat ions between bending moments and d e f l e c t i o n -.

the

Consider a rec tangular p l a t e under uniformly d i s t r i b u t e d moments along

edges of the p l a t e (Fig. 3 ) .

I z Figure 3

The xy-plane i s taken a s t h e middle p lane of the p l a t e before bending. M X

w i l l denote the bending moment p e r u n i t l eng th a c t i n g on t h e edges p a r a l l e l

t o the y-axis and M t h e moment p e r u n i t length ac t ing on t h e edges p a r a l l e l Y

t o the x-axis. These moments a r e considered p o s i t i v e when they produce

compression i n the upper su r face of the p l a t e and t ens ion i n t h e lower. The

th ickness h of the p l a t e is assumed t o be smal l i n comparison wi th o t h e r

dimensions.

Now, t o de r ive the expressions f o r the bending moments i n terms of the

d e f l e c t i o n of the p l a t e , we consider an element c u t o u t of the p l a t e by two

p a i r s o f planes p a r a l l e l t o t h e xz and yz-planes (Fig. 4 ) .

Using assumption i, p. (61, the l a t e r a l s i d e s of the element w i l l remain

p lane during bending and w i l l r o t a t e about t h e n e u t r a l axes nn s o as t o

remain normal t o t h e de f l ec ted middle su r face of t h e p l a t e , and the re fo re

the middle su r face w i l l no t undergo any extension during bending. The

long i tud ina l s t r a i n of an element a t a d i s t ance z from t h e n e u t r a l su r face

i n t h e x-di rec t ion (Fig. 5) i s

Z e = - xx r

X Z

Simi la r ly e =- . YY

Figure 5

Using Hooke's Law, t h e normal s t r e s s e s a r e

The couples produced by these s t r e s s e s on t h e l a t e r a l s i d e s should obviously

be equal t o the ex te rna l couples Mx dy and M dx, thus Y

0 z d x d z = M d x . r" YY Y -h/2

S u b s t i t u t i n g equations (14) i n t o (15) f o r the values o f a and XX

0 we obta in YYI

where

D i s c a l l e d the f l e x u r a l r i g i d i t y o f the p l a t e .

Now we s h a l l express the moments a c t i n g on a s e c t i o n i n c l i n e d t o t h e

x and y axes i n terms o f Mx and M . I f we c u t t h e lamina abcd

Y

(Fig. 4) by a p lane p a r a l l e l t o t h e z-axis and i n t e r s e c t i n g the lamina

along a c (Fig. 5 ) , we can determine t h e normal and shea r s t r e s s e s a c t i n g

on t h i s i n c l i n e d face i n terms of

OXX and 0 . These w i l l be given

YY

by the we l l known equations

- - 2 2 'nn Gxx cos a + o s i n a, and

W 1 Grit=-(0 - 0 ) s in2a , where a 2 YY xx

is t h e angle between t h e normal n

t o the i n c l i n e d face and the x-axis. Figure 6

Considering a l l laminas, such a s acd (Fig. 61, over t h e thickness

of the p l a t e , the normal s t r e s s e s 'nn

give t h e bending moment ac t ing on

t h e inc l ined plane , t h e

h/2 0 zdz =

nn -h/2

magnitude of which p e r u n i t length along ac is

2 2 ( cos ai-0 s i n a) zdz y2 x. YY

2 2 M cos a + M s i n a

X Y

S imi lar ly

The shear ing s t r e s s e s 'nt

w i l l give a t w i s t i n g moment a c t i n g on

the inc l ined face , the magnitude of which p e r u n i t length of a c is:

Here we note t h a t the s igns of *n and Mnt a r e chosen i n such a manner

t h a t t h e i r p o s i t i v e values a re represented by vectors i n t h e p o s i t i v e

d i r e c t i o n s of t and n respect ively .

To obta in the expression f o r Mnt i n terms of the d e f l e c t i o n w,

consider the d i s t o r t i o n of a t h i n lamina efgh wi th t h e s i d e s e f and

14

eh p a r a l l e l t o the n and t d i r e c t i o n s r e spec t ive ly , and a t a d i s t ance

z from the middle p lane (Fig. 7) . During bending of the p l a t e , t h e

p o i n t s e , f , g and h undergo

smal l displacements. The components

o f the displacement of the p o i n t e

i n the n and t d i r e c t i o n s a r e

denoted by u and v respect ive ly .

Then the displacement of the adjacent

p o i n t h i n t h e n d i r e c t i o n i s u +

t he p o i n t f i n the t d i r e c t i o n is

ments, t h e shear ing s t r a i n w i l l be

au (at' d t , and t h e displacement of

av v + - an dn. Owing t o t h e s e d isplace-

and t h e corresponding shear ing s t r e s s i s

where G is the modulus of e l a s t i c i t y i n shear .

I n order t o express u and v i n terms of the d e f l e c t i o n w of the

p l a t e , consider a s e c t i o n of the middle su r face made by t h e normal p lane

through the n-axis. The angle of r o t a t i o n i n the counter-clockwise d i rec-

t i o n of an element pq, which i n i t i a l l y w a s perpendicular t o t h e xy

aw p lane , about an a x i s perpendicular t o t h e nz p lane i s equal t o - - an

(Fig. 8). Owing t o t h i s r o t a t i o n a p o i n t of the element a t a d i s t ance

z from the n e u t r a l su r face has a displacement i n the n-direct ion equal

Figure 8

S imi la r ly considering the s e c t i o n through t h e t -axis , t h e same p o i n t w i l l

have a displacement i n the t -d i rec t ion equal t o

Therefore, t h e shear s t r e s s w i l l be

and t h e corresponding t w i s t i n g moment from i ts d e f i n i t i o n i n eqn. (21)

IT From equation (21) , we n o t i c e t h a t i f a = 0 o r -

2 l i.e. when

the n and t d i r e c t i o n s coincide with the x and y axes, Mnt = 0

and t h e r e a r e only bending moments Mx

and M ac t ing on t h e sec t ions Y

perpendicular ly t o those axes a s was assumed i n Fig. 3 and i n de r iv ing

the equations of t h i s sec t ion . From equation (22) we s e e that the t w i s t

of the su r face i s p ropor t iona l t o Mnt '

and when Mnt = 0 , t h e t w i s t i s

1 zero. Hence t h e curvatures - 1

and - a r e p r i n c i p a l curvatures. r r X Y

1.2.3 The d i f f e r e n t i a l equation of the de f l ec t ion su r face of l a t e r a l l y

loaded p l a t e s

In the l a s t s e c t i o n we expressed the bending moment M n I Mt

and

M n t ' ac t ing on a s e c t i o n p a r a l l e l t o t h e z-axis and whose normal makes

an angle a with t h e x-axis , i n terms of the d e f l e c t i o n w. The x and

y-axes were considered t o be p r i n c i p a l axes. Consider now a p l a t e under

t h e ac t ion of loads normal t o i t s su r face . W e s h a l l assume t h a t , a t the

boundary, the edges of the p l a t e a r e f r e e t o move i n the p lane of t h e p l a t e .

This way the r e a c t i v e forces a t the edges w i l l be normal t o t h e p l a t e .

Together w i t h the usual assumption t h a t t h e de f l ec t ions a r e smal l compared

t o t h e th ickness of the p l a t e , the s t r a i n i n the middle p lane may be neglec-

t e d during bending.

Consider, a s was done i n Fig. 4 , an element c u t o u t of the p l a t e by

two p a i r s o f planes p a r a l l e l t o t h e xz and yz p lanes (Fig. 9 ) . We note a M

t h a t M and M a r e p o s i t i v e X Y

i f they produce compression i n

upper l aye r s and

l a y e r s , whereas

p o s i t i v e i f they

d i r e c t i o n of the

tens ion i n lower

M and M a r e xy Y X

produce r o t a t i o n i n the L --------

I \ outward normal. We i

3 \ aM* - .. denote the shear ing forces p e r u n i t aQY

M

Q +-dy YX ay

Y ay length a c t i n g on the p lanes perpendicular

t o t h e x and y-axes by Q and Q~ X

respect ive ly . Therefore Qx and Qy w i l l be given by

Figure 9

The load w i l l be considered d i s t r i b u t e d over the upper s u r f a c e of the

p l a t e , and has the i n t e n s i t y q dx dy. Fig. 10 represents the middle

p lane with the p o s i t i v e d i r e c t i o n s of the fo rces and the moments. M

M

dx

M '

Y

1

z Figure 10

For equi l ibr ium of fo rces i n the z-d i rec t ion , we have

aQx - aQ ax dx dy + - J d y d x + q d x d y = 0 ,

ay

f r o m which it follows t h a t

Taking moments about the x-axis

aQ aQx a M a M (Q, + 2 dy)dxdy + (- dx) dy + qdxdy - 2 dydx + dxdy = 0.

ay ax ay ax

18

The moments due t o t h e load q and change i n Q and Qy may be neglec ted X

because they a r e of a h igher order , s o t h a t

S imi la r ly t ak ing moments about the y-axis we

0 .

obta in

0 .

Equations (23) - (25) completely def ine t h e equi l ibr ium of t h e

element. S u b s t i t u t i n g the values of Q and Qy from (24) and (25) X

i n t o (23) we obta in

We a l s o have

I "" h/2 M 0 z dz and M = -1 0 z d z , xy xy YX YX

-h/2 -h/2

bu t s ince 0 = 0 it follows t h a t xy YX'

Therefore equation (26) reduces t o

I f the th ickness of the p l a t e i s smal l compared t o the o t h e r dimensions,

t h e e f f e c t of the s t r e s s OZZ produced by t h e load q, and the shear ing

fo rces Qx and Qy, on the bending of the p l a t e may be neglec ted , and

19

we can make use of the r e s u l t s obtained i n the l a s t s e c t i o n f o r the case

of pure bending.

Using t h i s assumption, w e can now express equation

of the de f l ec t ion w. From equations ( 1 9 ) , (20) and

and

(27) i n terms

(22) we have

S u b s t i t u t i n g these expressions i n equation (27) we g e t

which may be re-wri t ten as

4 - 2 2 2 - a + - a' Here V = V V where V = 2

i s t h e Laplacian opera to r i n the ax ay2

rec tangular coordinates. I n p o l a r coordinates ,

From equations (24) and (25) , t h e shear ing fo rces Qx and Qy

w i l l be given by

The problem of bending of p l a t e s by a l a t e r a l load q the re fo re reduces

t o the i n t e g r a t i o n of equation (29). I f the s o l u t i o n s a t i s f y i n g the given

boundary condit ions i s found, a l l t he r e l evan t q u a n t i t i e s may be computed.

They a r e l i s t e d here f o r convenience.

I n p o l a r coordinates

a = a s i n e a - - - cose - - - ax a r r 30 '

2 1

We can e a s i l y ob ta in the corresponding values f o r the second d e r i v a t i v e s

a2 a2 - - a2 2 , and - . Hence equations (31) l ead t o the fol lowing

ax ay2 ax ay

equivalent r e s u l t s i n terms o f p o l a r q u a n t i t i e s .

1.2.4 Boundary condit ions

I n t h i s s e c t i o n we s h a l l d iscuss s e v e r a l types o f boundary condi t ions

f o r s t r a i g h t boundaries. I n the case of rec tangular p l a t e s , we assume

t h a t the x and y-axes a r e taken p a r a l l e l t o the s i d e s of the p l a t e .

From the r e s u l t s f o r the rec tangular p l a t e , w e s h a l l ob ta in t h e

corresponding ones f o r boundaries of the type 0 = constant i n p o l a r

coordinates , and express them i n terms of the de f l ec t ion w of the p l a t e

using the appropriate r e l a t i o n s from (32) .

(a) Bu i l t - in edge

The de f l ec t ion w along the b u i l t - i n edge i s zero. Furthermore,

t h e tangent plane t o t h e de f l ec ted middle su r face along t h i s edge coincides

wi th the i n i t i a l p o s i t i o n of the middle p lane of the p l a t e . Assuming t h i s

b u i l t - i n edge is a t x = a, t h e boundary condit ions a r e

I n t h e case of a s e c t o r , with t h e b u i l t - i n edge along 0 = a , say , we g e t

(b) Simply supported edge

I f the edge x = a of the p l a t e i s simply supported, t h e d e f l e c t i o n

w along t h i s edge i s zero. Also t h e edge can r o t a t e f r e e l y about the

edge l i n e , i . e . M = 0. Therefore X

W

But we no t i ce t h a t

the boundary condit ions can be w r i t t e n as

x= a ax

2 2

" I a a = 0 and V w = O .

a w - 2

a w 2

- 0 and hence = 0. This implies t h a t - - ax

x=a

Again i n the case of the s e c t o r whose edge 8 = a i s simply supported we

s h a l l obta in

2 2 l a w 1 a w + , e

w 1 @=a = 0 and N e l = [ F z + - - e=a r2 ae2

2 aw a 2

2 - 0. Therefore - = But along 8 = a f - = - - a O f a d the boundary

ar ar ae2 condi t ions a re

(c) Free edge

I n case the edge x = a o f t h e p l a t e i s f r e e , we have no bending and

t w i s t i n g moments and a l s o no v e r t i c a l shear ing fo rces , s o t h a t a t f i r s t

s i g h t it appears t h a t the appropr ia te boundary condi t ions a r e

However t h e second and t h i r d condi t ions should be combined i n one condit ion

a s fol lows. Consider the t w i s t i n g couple M d produced by the hor i - xy Y

z o n t a l forces and a c t i n g on .an element of l eng th dy of the edge x = a . a

Figure 11

We replace t h i s couple by two v e r t i c a l forces of magnitude M and dy XY

a p a r t (Fig. 11). Such a replacement does no t change the magnitude of

t w i s t i n g moments and produces only l o c a l changes i n t h e s t r e s s d i s t r i b u t i o n

a t the edge of t h e p l a t e , leaving the s t r e s s condit ion of the r e s t of t h e

p l a t e unchanged. Considering two adjacent elements of the edge, t h e d i s -

t r i b u t i o n of t w i s t i n g moments M i s s t a t i c a l l y equivalent t o a d i s t r i - XY

but ion of shear ing fo rces o f i n t e n s i t y

and the re fo re the j o i n t requirement regarding M and Qx along x = a xy

be comes

I n terms of the d e f l e c t i o n w, t he necessary boundary condi t ions w i l l

For a s e c t o r wi th a f r e e edge 0 = a , t h e corresponding boundary

condi t ions a r e

Me [ = 0 , = 0 and Ve = Qe - - 0=a

o r i n terms of the def lect ion w,

and

CHAPTER I1

THE SOLUTION OF CERTAIN ELASTOSTATIC PROBLEMS

2.1 In t roduct ion

I n t h i s chapter we s h a l l i n v e s t i g a t e t h e so lu t ion of c e r t a i n e l a s to -

s t a t i c problems leading t o t h e biharmonic equation. The genera l method

of approach w i l l be separa t ion of v a r i a b l e s , leading t o the const ruct ion

of s e t s of b a s i c eigenfunctions. The s o l u t i o n s of genera l boundary value

problems f o r the types of regions considered a r e found a s l i n e a r combin-

a t i o n s of these eigenfunctions.

I n 52.2 t h e problem of th.e cracked cyl inder , previous ly inves t iga ted

by W i l l i a m s [ 3 ] , i s considered. Here t h e body c o n s i s t s of a cy l inder r < a

deformed i n plane s t r a i n ( o r p lane s t r e s s ) by means of t r a c t i o n s imposed on

t h e boundary r = a . The cy l inder conta ins a crack running from r = 0 t o

r = a on t h e p lane 8 = r , and t h e two su r faces , 8 = f ~ , of t h e crack

a r e t r a c t i o n f r e e . I n 52.3 the corresponding problem is considered f o r '

a c i r c u l a r p l a t e , cracked along the r a d i a l l i n e 8 = IT, and deformed under

bending loads. I n both of these s e c t i o n s the problem considered is solved

t o t h e e x t e n t of obta in ing genera l expansions f o r t h e s t r e s s f i e l d s i n terms

of the r e l evan t eigenfunctions. The c o e f f i c i e n t s i n these expansions w i l l

be r e l a t e d t o the t r a c t i o n s on r = a i n the nex t chapter .

I n s e c t i o n 32.4 t h e problem of p lane deformation of a semi - in f in i t e

s t r i p , -1 < y < 1, 0 < x < a, under t r a c t i o n s imposed on the end x = 0,

i s discussed. Again an eigenfunction expansion method is used, and i n this

sec t ion the c o e f f i c i e n t s i n the expansion a r e r e l a t e d t o t h e imposed

2 7

t r a c t i o n s using a method given by Gaydon and Shepherd [5]. F i n a l l y i n

92.5 the genera l s e c t o r problem (0 5 r < a , -w < 0 < w) is discussed

f o r the case when the edges 8 = &w a r e t r ac t ion- f ree and given t r a c t i o n s

a r e imposed on r = a. The c o e f f i c i e n t s i n the expansions a r e again

obtained f o r t h i s case using the method of Gopalacharyulu [6 ] r which is a

development of t h a t of Gaydon and Shepherd [ 5 ] .

2.2 The cracked cy l inder

Consider t h e p lane s t r a i n deformation of t h e c y l i n d r i c a l region

0 5 r c a , -71 c 8 < IT under t h e condi t ion t h a t the p a r t s of the boundary

8 = +IT, 0 5 r c a a r e t r ac t ion- f ree . Le t t ing $ ( r r 0) denote t h e Airy

s t r e s s funct ion , then the corresponding s t r e s s components a r e given by

( 5 ) . The condi t ions t h a t t h e crack faces , 8 = *IT , be t r a c t i o n - f r e e a r e

t h a t Gee = (5 = 0 t h e r e , o r i n o t h e r words re

I n t e g r a t i n g these equations w i t h r e spec t t o r gives the re fo re

where A , B, C a r e funct ions of 6 only. From the con t inu i ty of and

appropr ia te de r iva t ives a t the o r i g i n , it follows t h a t these cons tants a r e

i d e n t i c a l on 8 = +IT and 8 = -IT. Now the Airy stress funct ion i s

undefined up t o l i n e a r terms i n x and y : i f we add t h e funct ion

(+AX - B + Cy) t o , t he s t r e s s e s a r e unchanged, and t h e new s t r e s s

funct ion s a t i s f i e s the boundary condit ions

2.2.1 Separable s o l u t i o n s o f the biharmonic equation

Let us begin by seeking separable s o l u t i o n s of the biharmonic equation

4 V 4 = 0 s a t i s f y i n g boundary condi t ions (36) :

where R i s a function of r only and F i s a function of 8 only.

Then equation (3) w i l l be:

1 R R f (r) F + -5(2R1' - -

r r r r

a i a R' where f ( r ) = (7 + (R" + -1.

ar r

r 4

Multiplying throughout by - RF

and d i f f e r e n t i a t i n g w i t h r e s p e c t t o

r and 8 we obta in

Thus we have the two poss ib le cases:

2 F" - cons t . , s ay , (a) F -

2 i . e . F" - A F = 0

(b) ;(r2 R" - r R' + 2R) = const . , 2p say . R

The boundary condit ions (36) imply t h a t

The s o l u t i o n of (37 ) i s

It i s easy t o check t h a t the above boundary condi t ions w i l l l ead only t o

t h e t r i v i a l so lu t ion . S imi la r ly , i f h = 0 , the d i f f e r e n t i a l equation

w i l l be

and t h e s o l u t i o n is F(0) = A + B0 . Again the boundary condi t ions w i l l

g ive only the t r i v i a l so lu t ion . F i n a l l y the case when h2 i s negat ive

may a l s o be shown t o have only the t r i v i a l so lu t ion .

Therefore, we have t o cons ider E u l e r ' s equation (38). Its associa ted

i n d i c i a 1 equation i s :

2 o r m - 2m + 2 - u = 0. I f w e le t

the two roo t s w i l l be given by

and t h e r e f o r e the s o l u t i o n of equation (38) is

The cases A = 0, 1 w i l l be considered l a t e r .

I n order t o have a f i n i t e s t r a i n energy i n the neighbourhood of the

I crack-t ip r = 0 , we requ i re t h a t the s t r e s s e s a r e 0 (T) a s r + 0.

This condit ion w i l l imply t h a t B = 0 when A > 0. Therefore t h e s t r e s s

funct ion can be w r i t t e n i n t h e form

S u b s t i t u t i n g t h i s expression f o r $ i n the bihannonic equat ion , we

ob ta in

The genera l so lu t ion of equation (44) i s

~ ( 8 ) = A cos ( A + l ) 8 + B cos ( A - 1 ) 8 + c s in(A+l) 8 + D sin Ch-1) 8 .

Here, w e s h a l l d iscuss only the symmetric s t r e s s d i s t r i b u t i o n , i .e. F

w i l l be an even function of 8. (For antisymmetric stress d i s t r i b u t i o n ,

t h e method of s o l u t i o n w i l l be t h e same.) Then F may be w r i t t e n now as

~ ( 8 ) = A cos (A+1) 8 + B cos (A-1) 8 . (45)

Since we a r e considering the symmetric s o l u t i o n , only the boundary

condi t ions

w i l l be re levant . Applying the boundary condi t ions (46) on equation

(45) , we ob ta in

Here we s h a l l have two cases :

Case i) A + B # O .

This w i l l imply t h a t

coshIT = 0 and ACA+l) t B(A-1) = 0 ,

or A (1) = 2n-1 2

, n = 1 , 2 , 3 , . . . s ince A > 0. S u b s t i t u t i n g these eigen- n n

values i n (45) , we g e t

-

I 1 n+ -

2 F ( l ) (0) = a t cos(n+ T ) ~ - -

3 cos (n -

Z-) 0 n n

n- - 2 1

1 (n + y) 0 cos (n - ?) 0 -

n 1 n + -

3 2 n - - 2

J .

Case ii) A + B = 0

This implies t h a t

(2) o r h = n n = 2, 3 , 4, . . . and t h e corresponding s o l u t i o n is n

F ( ~ ) (0) = bn[cos (n-1) 0 - cos (n+ l ) 01 . n

Now we s h a l l r e tu rn t o t h e cases A = 0 , 1. For h = 0 , t h e s o l u t i o n

of (38) w i l l be

R(r ) = r [ a + b Rnr] .

The corresponding even function ~ ( 8 ) ~ from (44) , is F C ~ ) = A case +

B0 s i n 0 , and t h e condi t ions F(T) = F' (IT) = 0 imply t h a t A = B = 0.

3 2

Thus t h e r e is no eigenfunction f o r h = 0. For h = 1, w i l l be equal

t o 2, and equation (38) w i l l be

Its s o l u t i o n i s R(r) = a r 2 + b. We must take b = 0 t o avoid t o o

s i n g u l a r behaviour a t r = 0. The remaining r2 term leads t o an

e igenfunct ion of the same type a s case ii) above. Therefore

(2) on = r F ( ~ ) n (0) , A n = 1, 2, 3, . . . . Here we note t h a t . f o r

n = 1, (2 ) (0) = b l [ l - c o s ~ e l . F1

It follows t h a t the genera l even s o l u t i o n of the biharmonic equat ion

(.3) s a t i s f y i n g t h e boundary condi t ions (46) is a,

where l, (47)

2.2.2 Expansion of s t r e s s e s i n terms o f t h e b a s i c eigenfunctions - By using equations (5 ) , t h e s t r e s s e s w i l l be

n-i [i 1 1 1 'rr

( r , 8 ) = C a r 2

1- (n+Z) cos (n+-18 + n = l \ n n--

n-1 2 + bnr { [ (n+l) - (n-1) ] cos (n-1) 8 + [ (n+1) 2- (n+l) ] cos (n+l) 0 ) 1 1

3 7

n-- n--

1 2 -

= n= 1 1 1%' (i-n) Icos (n+-) 2 8 - n-- 2 3 cos (n-;I 8

Let

Then the normal s t r e s s a t any p o i n t (r , 0) i n the considered domain

w i l l be given by

2

Simi la r ly the shea r and t a n g e n t i a l s t r e s s e s a r e given by

3

n-1 + B r [ (n-1) s i n (n-1) 8 - ( n + l ) s i n ( n + l ) 81 1 (50) n

3 1 n +-

2 3 o (r, 8) = - - 88 3

cos (n - -1 81 n -- 2

2

n-1 + B r (n+l) [ cos (n-1) 8 - cos (n+l) 81 n (51)

The constants An

and B n = 1, 2, ..., a r e determined from the n

boundary condit ions on r = a , where a i s a f ixed rad ius i n the case

of a f i n i t e domain, o r a t i n f i n i t y i n the case of an i n f i n i t e domain.

I t may be i n t e r e s t i n g a t t h i s p o i n t t o consider the term

2 B1 r [ l - cos28l appearing i n the s t r e s s funct ion (47) . This term

corresponds t o the case where A = 1. I n rec tangu la r coordinates t h i s

2 2 2 2 term may be w r i t t e n a s B1 r [l - cos281 = 2B r s i n 8 = 28 y .

1 1

The corresponding terms for the s t r e s ses , from equation (4) , are

given by

I f axx = 0 along some s t r a igh t boundaq x = -x (Fig. 1 2 ) , the constant 0

B1 w i l l be equal t o zero.

I f Y

1 Figure 1 2

2.2.3 Radial s t r e s s variations near the crack t i p

31 Equations (49) - (51) w i l l a l l be of the form r-' + O(r ) w i t h

respect t o the rad ia l variation. The loca l s t r e s s variations i n the

v ic in i ty of the base of the crack, r + 0, are dominated by the contri-

bution of the f i r s t term. I t is also noted tha t along the l ine of

propagation of the crack, 8 = 0, the shear s t r e s s is zero. Hence

a ( r , 0) and a ,, ( r , 0) are pr incipal s t resses ; we denote them by rr '5

a2 respectively, so t h a t

In other words, a t the base of the crack there ex is t s a strong tendency

toward a s t a t e of two-dimensional hydrostatic tension which consequently

may permit the e l a s t i c ana lys i s t o apply c lose t o the crack- t ip , notwith-

s tanding the square root s t r e s s s i n g u l a r i t y . I t has been suggested t h a t

t h i s f ea tu re would tend t o reduce t h e amount o r a r e a of p l a s t i c flow a t

t h e crack- t ip which might o r d i n a r i l y be expected t o e x i s t under such high

s t r e s s magnitudes and l ead the re fo re toward more of a b r i t t l e type f a i l u r e .

2.2.4 Angular v a r i a t i o n s of the p r i n c i p a l s t r e s s e s and t h e d i s t o r t i o n a l

s t r a i n energy dens i ty

From (49) - (511, the s i n g u l a r terms i n t h e s t r e s s e s a s r -+ 0 a r e

3 0 0 'rr

- A r-li[-cos - + ~ C O S -1 , 1 2 2

9 CJ - A ;'[sin 9 + s i n -1 , r e 1 2

The p r i n c i p a l s t r e s s e s a r e given by the expression

-31 6 9 - 4 ~ ~ r cos - [ 1 f s i n - ] . 2 2

The maximum p r i n c i p a l s t r e s s occurs when - = ae 0. This condit ion a u m

impl ies t h a t cos0 = s i n - 2

, i .e. t h e maximum p r i n c i p a l s t r e s s occurs m

7T a t 0 = -

m 3 ' The value of t h i s maximum s t r e s s i s

A A1

3&" 5.2 - = x max r r 4 .

Also the expression f o r t h e d i s t o r t i o n s t r a i n energy dens i ty , i . e .

t h e t o t a l s t r a i n energy l e s s t h a t due t o change i n volume, p e r u n i t volume,

is given by

From t h i s expression we obta in

and

W i l l i a m s [ 3 ] shows t h a t the two p r i n c i p a l s t r e s s e s Ol and 0 2 have

t h e angular v a r i a t i o n shown i n Fig. 13, and t h a t the d i s t o r t i o n a l s t r a i n

energy dens i ty is as shown i n Fig.

Figure 13 Figure 14

It i s i n t e r e s t i n g t o note t h a t because of the h y d r o s t a t i c tendency,

t h e maximum energy of d i s t o r t i o n does no t occur along the l i n e of crack

3 7

-1 1 d i r e c t i o n , 0 = 0 , bu t r a t h e r a t 0* = +cos (-1 - +70 deg. , where it 3

i s one-third higher.

2.3 The bending s t r e s s d i s t r i b u t i o n a t the base of a s t a t i o n a r y crack

Following the same procedure as f o r the ex tens iona l s t r e s s d i s t r i -

bu t ion , Williams [4 ] s tud ied the s t r e s s e s around a crack p o i n t owing t o

bending loads.

The problem i s formulated as follows. We have t o s a t i s f y t h e

d i f f e r e n t i a l equation

where q is the appl ied load on t h e p l a t e . For a p l a t e s u b j e c t t o edge

loading only , q = 0. We s h a l l t ake t h e edges 8 = ?nr a s f r e e edges.

Then, from (35)

Again, a s sec t ion 2.2, t h e symmetric c h a r a c t e r i s t i c so lu t ions a r e of the

form

I n order t o s a t i s f y t h e phys ica l boundary condit ion of f i n i t e s lope a t

t h e o r i g i n , X > 0. Applying the boundary condit ions (53) , w e have n

o r , denoting A by 1, n

The second of equations (53) w i l l be

Now

There f o r e

S u b s t i t u t i n g these values i n (54) we g e t

which reduces t o

{ ( A + l ) (1-V) A + [A (1-v,) - (3+V) 1 B) C O S ~ T = O . (56)

Equation (55) w i l l g ive

which reduces t o

2n-1 NOW i f cosAn = 0, o r A(') = -

2 , n = 1, 2, 3 , . .., t h i s w i l l n

imply t h a t

1 (n + 5) (1 -V)

The r e f ore w c o s ( n - ?)€I . n n ' 1

(2) On the o the r hand i f s i n A ~ = 0, o r A = n, n = 1, 2, 3, . . ., t h i s n

w i l l imply t h a t

From the above, t h e genera l s o l u t i o n of (52) s a t i s f y i n g (53) w i l l

1 1 (n +TI (1-V)

c 0 s ( n + ~ ) 8 - 3 cos (n- T) 8 4+ (14) (n - I 'n+" "-" cos (.-I) 81 1 . (581 + \rn+l [cos in+li 0 - (l-v) - ( 3+v)

This equation may a l s o be w r i t t e n i n the form

1 - 1 n+- cos (n + -) 8

2 - 1-v - 43 + (1-v) 3

n + - n - - 2 2 n--

2

cos (n+l) - + BP+' [ 1 -v cos (n-1) 8 n n(l-V) -(3+v) J I -

The s t r e s s e s a t any p o i n t ( r , 8) a r e now determined us ing (32) :

1 7 1 [ (n+?) -v (n --I 1 - 3 - - c 0 s ( n + ~ ) 8 -

5 cos (n --I 8

(n+T)-V(n- 3 2 2

where 2 1

An = an(n - 2 and Bn = bn n ( n + l ) ;

(n-3) -V (n+l) + B r -'Os (n+l)e + (n-3) -v (n+l) cos (n-1) 8

n

3 1 (n -5) (1-V)

= -2rz n= r 1 \Anrna s i n + - 2 0 + -- . 5 3 s i n ( n - 0 (n + T) -V (n - -1 2 I

E Using the r e l a t i o n G = - 2 ( 1 + V ) ' where G i s the modulus of e l a s t i c i t y

i n shea r , t h e s t r e s s e s w i l l be

1 7 1

(n+ T) -V (n -?I = - 2 ~ z r \ (n 0 - 5 3

cos (n - -1 8 'rr n= 1 3 (n+ -v (n I

7 1 (n - -v (n + -) 2

5 3 cos (n - 6 (n +z) -v (n - Z) I

+ Bnrn-'[ -cos (n+l) 0 + cos (11-11 8 1 1 I ' (60)

+ ~ ~ r ~ - ~ [-sin(nt1) 0 + (n- (n-1) 3) -V (1-V) (n+ 1) s i n (.-I) 01 ] . (61)

I n equations (59) - (61) ' w e n o t i c e t h a t the s t r e s s e s have the

same c h a r a c t e r i s t i c square r o o t s i n g u l a r i t y a s i n the case of extension

considered i n 52.2.

2.4 Plane s t r e s s e s i n a semi - in f in i t e s t r i p

I n the two problems considered s o f a r , Williams expressed the stresses

i n a s e r i e s of non-orthogonal eigenfunctions. This c r e a t e s considerable

d i f f i c u l t y when it comes t o obta in ing the c o e f f i c i e n t s i n the expansions

i n terms of the prescr ibed boundary values. I n so lv ing a s i m i l a r problem

f o r a semi- inf in i te s t r i p , Gaydon and Shepherd [ 5 ] expanded each of the

eigenfunctions i n a s e r i e s of orthogonal functions. This way it was

p o s s i b l e t o obta in the c o e f f i c i e n t s of the s t r e s s function corresponding

t o any a r b i t r a r y d i s t r i b u t i o n of t r a c t i o n on the end of t h e s t r i p d i r e c t l y

from two numerical matr ices.

2.4.1 Solut ion of t h e biharmonic equation

The problem is formulated a s fol lows. We have t o determine t h e stress

funct ion 4 which i s t h e s o l u t i o n of the biharmonic equation

and corresponds t o ze ro t r a c t i o n s on y = -+I. The t r a c t i o n s on x = 0

a r e p resc r ibed , s o t h a t 4 s a t i s f i e s t h e boundary condi t ions

We f u r t h e r assume t h a t $ + 0 as x -+ 03. Here we s h a l l consider p ( y )

and s (y) t o be even and odd funct ions of y respect ive ly .

Figure 15

F i r s t of a l l , we look f o r separable s o l u t i o n s ,

where X(x) , Y (y) a r e r e spec t ive ly funct ions of x only and y only.

Y (y) must be an even funct ion , s a t i s f y i n g the boundary condi t ions

Y (1) = Y ' (1) = 0 . Then equation (62) w i l l reduce t o

Dividing (65) by X Y and d i f f e r e n t i a t i n g wi th r e spec t t o x and y

we obta in

This implies t h a t e i t h e r

X " - = const . h2 say i)

2 = const. 11 say . ii)

2 I f Y" - p Y = 0, the even s o l u t i o n is

Y = A coshyy .

By applying the boundary condi t ions Y ( 1 ) = Y' (1) = 0, we obta in only

2 the t r i v i a l so lu t ion . I n the same way, i f 5 0 we obta in no non-

t r i v i a l so lu t ions .

Theref ore consider the d i f f e r e n t i a l equation

Its genera l so lu t ion is

Considering the requirement t h a t X -+ 0 a s x -t m, we must have A = 0.

This requirement w i l l a l s o exclude the p o s s i b i l i t y t h a t Re h = 0. Hence

S u b s t i t u t i n g (66) i n (65) we obta in the f o u r t h o rde r ordinary

d i f f e r e n t i a l equation

Its genera l s o l u t i o n is

Yly) = CA+BY) cosAy + (C+Dy) sinhy .

Considering the even s o l u t i o n , w e ob ta in

Yly) = A coshy + ~y s inhy . (67

N o w applying the boundary condi t ions Y C 1 ) = Y ' ( 1 ) = 0 on (-67) w e ge t

A and - = -tanA.

D

I f we take D = -21, t h e cons tant A w i l l be

The s t r e s s function may now be w r i t t e n as

where

yA (y) = (cos2A-1) COSAY - 2ky sinAy ,

and

a r e the roo t s of equation (68). The constants B a r e r e a l and A ~ ' A

a r e determined from the end s t r e s s d i s t r i b u t i o n s p ( y ) and s (y) , i .e.

and

Expansion of the s t r e s s funct ion i n terms of orthogonal beam functions

The functions YA(y) a r e n o t orthogonal , s o we expand each of them i n

terms of the beam funct ions Fk(y) which a r e complete and possess orthogonal

p r o p e r t i e s i n the range -1 y 1. Fk(y) s a t i s f i e s the equation

and the boundary condit ions

F k = F i = O on y = f l .

The genera l even s o l u t i o n of equation (74) is

(y) = A cosky + b coshky . Fk

Applying the boundary condit ions (75) , we obta in

tank + tanhk = 0

A coshk and - = - - B

. Therefore cosk

cosky coshky . (y) = cosk coshk 1-

Fk cosk coshk

The normalized so lu t ion w i l l be

1 3 where the norm i s { I [FLi)y]2 dy} . It is easy t o check the following

- 1 orthogonal i ty r e l a t i o n s which w i l l be u s e f u l i n the expansions

where 6 is t h e Kronecker d e l t a . mn

The functions Fk (y) a re r e a l , which s i m p l i f i e s t h e evaluat ion of

the c o e f f i c i e n t s ; furthermore, s i n c e they s a t i s f y a fourth-order d i f f e r -

e n t i a l equat ion , with the same four boundary condi t ions , a s do t h e o r i g i n a l

funct ions Yh (y) , they give r i s e t o expansions of the l a t t e r which a r e

considerably more convergent than would be obtained by Four ie r s e r i e s .

The expansion of YA(y) w i l l be

OD

Y (y) = (coszh-1) coshy - 2h s inhy = L a ~ ~ ( y ) . A i=l i h

Mult iplying both s i d e s by F and i n t e g r a t i n g from -1 t o +1, then j

We now have

and t h e s t r e s s e s w i l l be

Evaluat ion of the cons tants and -

Now i n o rde r t o eva lua te the cons tants Ah and BA, we expand the

given funct ions p (y) and s (y) i n terms of F" and F' r e spec t ive ly .

Thus

where

S imi la r ly

where

From equations (80) and (81) , w i t h x = 0, we obta in

and

These a r e s a t i s f i e d i f

and

Now

= a ' + ib' say . i A i A

Also l e t

and

Then a ' i A ' b i A can be w r i t t e n as

where

pA = ah s i n a A coshbA - b cosa s inhb X A A

q A = -b s i n a coshb A A A -aA cosaX sinhb A

rA = cosa coshb A A

sA = s i n a s inhb A A .

Equations (84) and (85) now reduce t o

and

E{A (2aX a i X +2bX b j X ) + BX(2bX a i X - 2a b i X ) 1 = -Bi . A X

I f we p u t 2a iX = CiA , -2bfh = DiX I

2a a j X + 2bX b i A = EiX , X 2b a j X - 2aX b i X = FiX I A

then

The matrices (C. ) , (DiX) , (EiX) , (F. ) a r e known, and s o (86) and l h l h

(87) provide an i n f i n i t e system of l i n e a r equations f o r t h e unknown

c o e f f i c i e n t s (AX) , (BX) . Gaydon and Shepherd [ 5 1 computed numerically an

approximate matrix M such t h a t

Therefore f o r any boundary condi t ions p (y) and s (y) , t h e cons tants

A and B can be evaluated. Knowing these cons tants , the s t r e s s e s a t X X

any p o i n t (x, y) can now be e a s i l y evaluated.

2.5 The s e c t o r problem

Gopalacharyulu [6 ] determined t h e s t r e s s f i e l d f o r the p lane defor-

mation of a s e c t o r wi th s t r e s s - f r e e r a d i a l edges and given s e l f - e q u i l i b r a t i n g

loads on the c i r c u l a r boundary. The method followed was s i m i l a r t o t h a t

given by Gaydon and Shepherd [5 ] i n so lv ing the rec tangular s t r i p problem.

The s t r e s s function s a t i s f y i n g the biharmonic equation and t h e t r a c t i o n -

f r e e condit ions on the r a d i a l edges i s i n i t i a l l y determined a s a s e r i e s

of non-orthogonal eigenfunctions. Each of these eigenfunctions is again

expanded i n a s e r i e s of orthogonal funct ions s a t i s f y i n g a fourth-order

d i f f e r e n t i a l equation and t h e same boundary condit ions.

2.5.1 Solut ion of the biharmonic equation

The s e c t o r occupies the region -w 8 w, 0 5 r < 1. The s t r e s s

funct ion 4 has t o s a t i s f y the biharmonic equation

From equation (431, the separable s o l u t i o n s a r e of t h e form

and

(Here we a r e considering again only t h e symmetric so lu t ion . ) The function

F(8) has t o s a t i s f y the boundary condit ions

which represent the t r ac t ion- f ree condi t ions along the r a d i a l edges. The

shear and normal s t r e s s e s a r e s p e c i f i e d along the c i r c u l a r boundary,

= 010) and are = T (8) .

The boundary condit ions (88) imply t h a t

where the eigenvalues \ a r e determined from the t ranscendenta l equation

( \ + l ) s i n ( \ + l ) w cos ( A - 1 ) w - (Ak-1 ) sin(Ak-1) w cos (Ak+l)w = 0 . k

This equation may be w r i t t e n as

(\+l) sin2w + 2 s i n ( - 1 ) w cos ( A + l )w = 0 . "k k

Let pk = \ + l , s o t h a t the genera l s t r e s s function @ w i l l there-

f o r e be the l i n e a r combination of the eigenfunctions @k -

where F (8) i s given by k

The eigenvalues Pk a r e themselves determined from

p sin2w + 2 s i n ( p -2)w cosp w = 0 . k k k

2.5.2 Expansion of the a r c t r a c t i o n s i n terms of the beam funct ions

The constants % a r e determined from the appl ied loads on t h e

c i r c u l a r boundary 0 (8) and T (8) , equation (89) . Due t o t h e l ack of

or thogonal i ty of the functions % (8) , each Fk(e) i s expanded i n terms

o f the orthogonal beam funct ions ( 8 ) which a r e the s o l u t i o n s of the

four th o rde r d i f f e r e n t i a l equation

and s a t i s f y t h e boundary cond i t i ons

So lu t ions o f t h e d i f f e r e n t i a l equat ion (93 ) , s a t i s f y i n g the boundary

cond i t i ons (94) a r e

where

and t h e e igenvalues ' m s a t i s f y t h e equat ion

There e x i s t o r thogona l i t y r e l a t i o n s s i m i l a r t o those given i n (78),

namely

where 6 is t h e Kronecker d e l t a . mn

NOW expanding t h e func t ions Fk (8) i n a s e r i e s of the orthogonal

functions $m(e) , we ob ta in

%m a r e the Four ier c o e f f i c i e n t s given by

"m + - cosp w cos(p -2)w tanhum w k k 1

I n de r iv ing t h i s expression we have made use of equation (96).

The s t r e s s function given i n (90) can now be w r i t t e n as

Using the expressions f o r the s t r e s s e s i n ( 5 ) , we g e t on the a r c r = 1

and

Le t

and

Then equat ions (99) and (100) may be w r i t t e n a s

Mul t ip ly ing bo th s i d e s o f (1041 by I)" ' (8) and i n t e g r a t i n g between n

-w t o +w

From which

(1) 'n - o = - ( q 4 ~rce, @;l(e) de = Kn s a y . n (105)

'n -w

To overcome t h e d i f f i c u l t y o f non-orthogonal i ty of JI and $J; i n (103) m

Gopalacharyulu [6] m u l t i p l i e d bo th s i d e s o f t h i s equat ion by (JIn - and

i n t e g r a t e d between -w t o +w t o g e t one more r e l a t i o n between the

cons t an t s Cn and Dn

Thus, we have

From (103) and (104), the coeff ic ients Cn and D are n

2.5.3 Determination of %

I n order t o determine % l e t

qc = ek + i f k

%m = gkm + i h

km

pk = % + i B k

Hence, expressions (101) and (102) w i l l be

The r i g h t hand s i d e s o f these two equations a r e known q u a n t i t i e s ,

from (107) and (108) , and the c o e f f i c i e n t s (and hence and

hkm) a r e given e x p l i c i t l y i n (98) . Hence equations (110) provide an

i n f i n i t e system of l i n e a r a l g e b r a i c equations f o r e and fk . k

Gopalacharyulu [ 6 ] obta ins approximate numerical s o l u t i o n s of t h i s

system of equations by r e t a i n i n g only a f i n i t e number of the c o e f f i c i e n t s

\ , and shows t h a t q u i t e good r e s u l t s a r e obtained by using only very

few non-zero % I s .

CHAPTER I11

SOLUTION OF THE CRACKED CYLINDER AND SEMI-CIRCLE PROBLEMS

I n t h i s chapter we s h a l l complete the s o l u t i o n of t h e cracked

cy l inder problem described i n 52.2. The method used w i l l be s impler

than t h a t of Gaydon and Shepherd [5] and Gopalacharyulu [6] i n t h a t

Four ier cosine and s i n e s e r i e s a r e used r a t h e r than beam eigenfunctions.

I t does have the disadvantage of leading t o q u i t e slow convergence of the

s e r i e s expansions employed, b u t , a s we s h a l l s e e , reasonably accura te

approximate r e s u l t s a r e obtained by r e t a i n i n g only a few terms i n t h e

expansions.

In l a t e r sec t ions of the chapter we examine t h e problem of a crack

with a rounded t i p and the semi-circle problem using e s s e n t i a l l y the same

method. Numerical s o l u t i o n s have no t been obtained however f o r these

problems .

The cracked cy l inder problem

We wish t o so lve t h e problem of t h e plane s t r a i n deformation of a

cy l inder 0 5 r < 1 under given t r a c t i o n s on r = 1 and i n t h e case when

t h e r e is a p lane crack running from t h e a x i s o f the cy l inder t o t h e boundary

on the p lane 8 = ?IT. I n 52.2 it was shown t h a t , i f the two faces of the

crack a r e t r ac t ion- f ree , t h e Airy s t r e s s funct ion has an expansion of the

form (47) and the s t r e s s components 0 (r, 8) , Ore (r, 8) and rr

C l e o ( r , 0) a re given by (48) - (51) . The constants

An and Bn have y e t t o be determined from the given

59

t ract ions on the c i rcu lar boundary r = 1. The d i f f icu l ty here i s t h a t

these s t resses are expanded i n a non-orthogonal se r i e s of functions of 8,

which does not allow us immediately t o determine the constants An

and

Bn. Therefore we s h a l l expand each of these functions i n a simple Fourier

cosine se r i e s i n the in te rva l [-IT, IT], i n the case of the normal s t r e s ses ,

and s ine ser ies i n the case of shear s t resses . Hence the s t resses on the

c i rcu lar boundary r = 1 w i l l be writ ten as

The coefficients Ok and nd a re the Fourier coefficients defined k

and r are known once the boundary t ract ions are prescribed. k

Using (49) , (51) these coefficients are a l so given as

l. where t h e r i g h t hand s i d e s have been obtained by expanding cos (n + Z) 8

3 1 3 and cos (n --) 8 as Four ier cosine s e r i e s and s i n (n + -) 8 and s i n (n - -) 8

2 2 2

as Four ier s i n e s e r i e s and then e x t r a c t i n g the c o e f f i c i e n t s of coske i n

'rr (1, 8) and of s ink8 i n a r , 1). I n these equat ions , we def ine r 8 -

Bo = 0.

3.1.1 S a t i s f a c t i o n of the condit ions of o v e r a l l se l f -equi l ibr ium

We assume t h a t the cyl inder is i n se l f -equi l ibr ium under the prescr ibed

s t r e s s e s on the c i r c u l a r boundary r = 1. The t h r e e condi t ions of e q u i l i -

brium i n a p lane a r e

IT

i 1 [[a rr (1, e)] cos8 - [ore (1, 8) ] s ine ] = o ,

iii) r are 0, 8) d8 = 0 . -IT

Since 'rr

(1, 8) and ore (1, 8) a r e even and odd funct ions of 8

r e spec t ive ly , condit ions (ii) and ( i i i ) a r e r e a d i l y s a t i s f i e d .

Condition (i) i s equ iva len t t o al = TI. From (116)

1 n - -

- - n 2 - C -1) An '1 n = l n + - [ n

and from (117)

Thus a l l t he s e l f - e q u i l i b r a t i n g condi t ions a r e s a t i s f i e d .

3.1.2 Separat ion of the cons tants and Bn An -

I n equations (115) - (117) t h e cons tants A n and Bn a r e mixed.

I t is poss ib le though t o separa te them and t h i s s i m p l i f i e s by a g r e a t

amount the determination of these cons tants . In separa t ing these cons tan t s ,

we s h a l l express Bn

i n terms of An . Thus, from (115).

Adding (116) and (117)

L e t k -t k - 2 , we ob ta in

There f o r e Bk+ 1

and Bk-l w i l l be given by

By s u b s t i t u t i n g back i n (116) we obta in

This equation may be w r i t t e n a s

From equation (116) wi th k = 2

Using equation (118), we ob ta in

Equations (121) and (122) c o n s t i t u t e an i n f i n i t e system of simultaneous

equations from which An

may be determined. Once t h e s e have been deter -

mined, the s e t of cons tants Bn can be obtained from (118) and (119).

I n determining the c o e f f i c i e n t s An, Gauss-Seidel i t e r a t i o n method has

been used.

3 . 1 . 3 S t r e s s i n t e n s i t y f a c t o r

The s t r e s s i n t e n s i t y f a c t o r i s defined by

+J KI = l i m r Gee ( r , 0) .

r t o

Using expression (51) f o r the t a n g e n t i a l s t r e s s we ob ta in :

3.1.4 Examples

i) On the boundary r = 1, we apply a cons tant normal s t r e s s o f u n i t

"0 2

- 1.0, ok = 0, k = 1, 2, ... . We assume t h a t the re magnitude, i . e . - -

is no shea r on the boundary, i n o t h e r words T = 0 , k = 1, 2, 3 , . . . . k

I n equations (121) and (122) we s h a l l r e t a i n 100 terms (n = 1, 2 , . . . , 100) and use t h e equations with k = 2, 3 , ..., 101, s o t h a t w e have 100

simultaneous equations with a 100x100 matrix of c o e f f i c i e n t s . An IBM 370

computer model 155 i s used t o determine {A n }loo n=l ' {B }loo a r e determined n n = l

from (118) and (119).

Having found {A } and { B ~ } , t h e s t r e s s d i s t r i b u t i o n may be ca lcu la ted n

from (49) - (51) . We l e t t h e r ad ius r vary wi th 0.1 i n t e r v a l s and t h e

angle 8 with f i v e degrees i n t e r v a l s i n these expressions f o r t h e s t r e s s e s ,

thus g e t t i n g the s t r e s s d i s t r i b u t i o n throughout the cyl inder . The r e s u l t i n g

s t r e s s - f i e l d s a r e drawn i n Fig. 16, which shows l i n e s o f cons tant 0 r r r 're

and 0 . I t can be seen t h a t a and 0 approach t h e i r r e spec t ive r 8 rr

given boundary values on r = 1 and 8 = f?T, while they diverge as r + 0.

LINES OF CONSTANT NORMAL STRESS Orr

. . FIGURE 16 Ci?

LINES O F CONSTANT SHEAR STFU3SS Or,

FIGURE 16 (ii)

ii) Secondly we s h a l l c a l c u l a t e t h e s t r e s s i n t e n s i t y f a c t o r KI provided

by each of the Four ier c o e f f i c i e n t s {ok, Tk} o f t h e app l i ed s t r e s s d i s t r i -

but ion . Therefore we keep t h e shea r a s zero , and take each of the O k l s

equal t o uni ty i n t u r n while keeping the remaining ones a s ze ros , i . e.

I n the case of r = 1, f o r se l f -equi l ibr ium we had al = T 1 ' hence t h i s

condit ion may be w r i t t e n as

For each r , we have computed t h e corresponding s t r e s s i n t e n s i t y f a c t o r

using (1231, and they a r e l i s t e d i n Table I. We have only considered

t h e f i r s t 25 values of r , s i n c e f o r h igher 0 and T it becomes r r

inc reas ing ly necessary t o inc lude more than 100 non-zero c o e f f i c i e n t s

I n exac t ly the same way, we t a k e t h e normal s t r e s s t o be ze ro , and

t ake each Tk equal t o one i n t u r n , wi th t h e provis ion t h a t ol = T 1 '

ri = 6il , o1 = 6 wi th i = 1, 2 , . . . , 101 . i 1

The corresponding s t r e s s i n t e n s i t y f a c t o r s a r e l i s t e d i n Table 11.

3.2 S t r e s s d i s t r i b u t i o n around a crack with a rounded t i p

I t i s more r e a l i s t i c t o allow t h e crack t o have a rounded t i p , r a t h e r

than t h e i n f i n i t e l y sharp t i p considered s o f a r . We model t h i s s i t u a t i o n

by supposing t h a t the crack extends from a cy l inder o f smal l r ad ius R

around t h e i n f i n i t e cy l inder a x i s , t o the e x t e r n a l boundary with u n i t

radius . Thus the s i n g u l a r i t y a r i s i n g a t the cy l inder a x i s i n t h e previous

problem w i l l no t show up. The region under cons idera t ion i s R < r < 1,

-IT c 8 < IT. The boundary condi t ions x=l

a r e o , , = o = O on 8 = + 7 r , r 8

'rr and O a r e p r e s c r i b e d o n r = 1 .

r 8

The s t r e s s e s expressed i n terms o f Airy ' s

s t r e s s function a r e given by (5) wi th

the funct ion @ s a t i s f y i n g the biharmonic

4 equation V 4 = 0.

Figure 17

Considering again the separable s o l u t i o n s

we look f o r symmetric s o l u t i o n s t h a t w i l l s a t i s f y t h e condi t ions of zero

t r a c t i o n on the crack faces 8 = +IT, namely

Having found t h i s s e t of s o l u t i o n s , t h e genera l problem wi th p resc r ibed

t r a c t i o n s on r = R and r = 1 is solved by t ak ing a l i n e a r combination

of these separable so lu t ions . The c o e f f i c i e n t s i n t h i s l i n e a r combination

w i l l be found i n terms of the given t r a c t i o n s .

3.2.1 Solut ion of t h e biharmonic equation

I t was determined i n 32.2 t h a t t h e s o l u t i o n s t o the biharmonic

equation s a t i s f y i n g the zero t r a c t i o n condi t ions on t h e crack faces may

be w r i t t e n as

Using equation (47) we may w r i t e t h e s t r e s s funct ion a s

where

1 n+-

1 2 .+i) j.ol;;, 0 cos

$n(r , 0) = [ ' r n + ~ ; r - 3 (124) n-- 2

-n+ 1 + (c' rn+' + D: r ) [cos (n-1) 0 - cos (n+l) 01 . n

I n de r iv ing (124) , w e have taken a s i n s e c t i o n 2.2

2n-1 A(') = - 2

, n = 1 , 2 , 3 , . . . , n

Here we note t h a t , a s i n 52.2, f o r t h e case of A = 0, we g e t only the

t r i v i a l so lu t ion . It should a l s o be noted t h a t the terms which become

s i n g u l a r a s r + 0 cannot be r e j e c t e d f o r t h e p resen t problem.

67

From the s t r e s s funct ion given by (124), we ob ta in the s t r e s s e s (5)

3 cos (n+- 1 ) 8 cos (n-Z 3 8 n-- 3

r c-n+-) B I r-n-'] [ 2 ( r r 8) = nLl -

'rr 2 n 1 n+- 3

2 n--

2

3 n--

+ [ A ' r n 2+Blr-n-:] n - (n+-) 2 cos (n+-) 1 2 8+ (n-2) 2 cos (n--) 2 8 I

where

+ ~ ' r ~ - ' + D ' r 2 2

[ n n Cn-1) cos (n-1) 8+ (n+l) cos (n+ l ) 8

1 -n-- 5 n+-

2 1 + B r - cos (n+-) 8 + cos

n 2

+ D r n

[-(n-1) cos (n-1) 8 + (n+3) cos (n+l) 8 I1 (125)

and we def ine C f D = 0 . 0 0

Simi la r ly the shear s t r e s s w i l l be given by

3.2.2 S a t i s f a c t i o n of t h e boundary condi t ions on t h e boundaries r = R, r = 1

Expanding the normal and shea r s t r e s s e s i n Four ie r cosine and s i n e

s e r i e s r e spec t ive ly , we obta in

where Uk , k = 0 , 1, 2, ..., a r e t h e Four ier c o e f f i c i e n t s def ined by

1 Uk (r) = 7 in Urr ( r , 8) cosk0 d0 .

Simi la r ly ore ( r , 0) = C T Cr) sink0 where k = l k

IT

r = Ore k, 8) sink8 d0 , k = 1, 2 , ... . k

-IT

Therefore, f o r k = 1, 2, 3 , ...

where

For k = 0 , we g e t

I n order t o complete the s o l u t i o n of t h e o r i g i n a l l y posed problem,

w e now s e t o (R) = ' r k ( ~ ) = 0 , s i n c e t h e t r a c t i o n s on the inner boundary k

r = R a r e given t o be zero; and s e t ok ( l ) and 'Ck (1) equal t o t h e

corresponding Four ier c o e f f i c i e n t s of the given normal and shea r t r a c t i o n s

on the e x t e r n a l boundary. The r e s u l t i n g system of equations can be solved

numerically a s i n s e c t i o n 3.1.

3.2.3 S a t i s f a c t i o n of condi t ions of o v e r a l l equi l ibr ium

Here it w i l l be s u f f i c i e n t t o s a t i s f y t h e condit ion = 1 on r = l ,

s ince - brr - ore = 0 on r = R . Therefore on r = 1, using equations

(127) and (128) , we obta in

and

Hence our Four ier c o e f f i c i e n t s do s a t i s f y t h e condit ions of equil ibrium.

3 . 3 S t r e s s d i s t r i b u t i o n i n a semi-c i rcular s e c t o r

I n the case of a semi-circular boundary, t h e formulation of the problem

w i l l be a s follows :

We have t o determine a s t r e s s funct ion @ which is biharmonic i n t h e region

IT IT - - < % < - I O < r < l 0

2 0 a r e p resc r ibed on r = 1, 2 r r r r e '0%' 're

IT a r e zero on 0 = f -

2 -

Figure 18

Again, t h e s t r e s s function @ i s w r i t t e n as

, 0) = r1+I ~ ( 0 )

k- r e h > 0 t o s a t i s f y boundedness of t h e s t r a i n energy dens i ty i n the

neighbourhood of the o r ig in .

The function F i n the symmetric case (equation ( 4 5 ) ) i s

F ( 0 ) = A cos ( h + l ) 8 + B cos ( A - 1 ) 8 .

I n order t o have zero t r a c t i o n s on 0 = &'IT, we must have

'JT 'IT F(-) = F' = 0 . 2

Applying these boundary condi t ions on (45) , we ob ta in

Here we have two cases ;

(i) I f A # B , t h i s implies t h a t

IT (1) s inh - = 0 o r An = 2n .

2

This l eads t o

Cii) A = B and t h i s impl ies t h a t

Therefore the s t r e s s function may now be w r i t t e n as

2n+1 cos (2n+1) 0 + cos C2n-1) 0 $k t 0 ) = n 2 1 ~ ~ ~ r I 2n+1 2n-1

On t h e boundary r = 1, the normal and shea r s t r e s s e s a r e found t o be

where A = 2n A ' and Bn = 2 (2n-1) BA. n n

I n order t o determine An and Bn, we expand (130) and (131) i n

Four ie r cosine and s i n e s e r i e s r e spec t ive ly , t h e s e r i e s having ranges

IT IT (- - -1. Hence

2' 2

O o

'rr (1, 8) = - + Z a cos2k8 ,

2 k = l k

where ak , k = 0, 1, 2 , .. . a r e t h e Four ier c o e f f i c i e n t s def ined by

Also,

where T k t k = 1, 2, 3,. . a r e given by

The expressions f o r ak and T a r e given by k

where

2 2 2 Dnk

= [4k2 - (2n+l) ][4k - (2n-1) 1 .

3.3.1 Separat ion of An and Bn

From (128), we can express B1 i n terms of An a s

8 n - 1 - - 1 (-1) An '0

2 + -

B1 n n = l 2 (2n+l) (2n-1)

and from (133) and (134), w e ob ta in

S u b s t i t u t i n g t h e expressions f o r Bk given by (135) - (137) i n equations

(132) - (133) and rearranging t h e terms, we ob ta in t h e i n f i n i t e system of

equations (138) - (139) :

"0 8 - - - C (-1," An -2n+5 CT + - -

1 2 'rr n = l (2n+3) ( l n + l ) (2n-1)

2 I

The system of equations (138) - (139) is solved i n the same way as i n

s e c t i o n 3.1. The constants Bk a r e determined from (135), (136) and

the s t r e s s e s a r e r e a d i l y evaluated.

3.3.2 S a t i s f a c t i o n of se l f -equi l ibr ium condi t ions

I n order t o s a t i s f y se l f -equi l ibr ium, we must have

This impl ies t h a t

I n posing any boundary value problem, {CTk , rk} must be chosen t o be

c o n s i s t e n t wi th t h i s condit ion.

I t i s easy t o check using the t r igonometr ic expansion

t h a t the Four ier c o e f f i c i e n t s given by (132) - (134) do s a t i s f y

condit ion (140) .

TABLE I:

TABLE I1

BIBLIOGRAPHY

[ 1 1 Sokolnikof f, I. S. , ath he ma tical Theory o f E l a s t i c i t y , McGraw-Hill, 1956.

[ 2 ] Timoshenko, S. and ~o inowsky -Kr i ege r , S . , Theory o f P l a t e s and S h e l l s , McGraw-Hill, 1959.

[ 3 ] Wi l l i ams , M. L. , J. Appl. Mech. - 24, (1957) , 109-114.

[ 4 ] Wi l l i ams , M. L. , J. Appl. Mech. - 28, (.1961), 78-82.

[ 5 ] Gaydon, F. A. and Shepherd, FT. M . , Proc. Roy. Soc. A281, (1964) , 184-206.

[ 6 ] Gopalacharyulu, S . , Quar t . J. Mech. and Appl. Math. - 22, (1969) , 305-317.