45
Shannon Boettcher – Electrochemical Energy Storage 1 Electrochemical Energy Storage: Design Principles for Oxygen Electrocatalysts and Aqueous Supercapacitors Shannon W. Boettcher Asst. Prof. of Chemistry University of Oregon Eugene, USA Boettcher Solar Materials and Electrochemistry Laboratory

Electrochemical Energy Storage: Design Principles for Oxygen

  • Upload
    dothien

  • View
    237

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 1

Electrochemical Energy Storage: Design Principles for Oxygen Electrocatalysts

and Aqueous Supercapacitors

Shannon W. Boettcher Asst. Prof. of Chemistry University of Oregon Eugene, USA

Boettcher Solar Materials and Electrochemistry Laboratory

Page 2: Electrochemical Energy Storage: Design Principles for Oxygen

Motivation: Powering the planet

Solar is the only renewable source capable of providing 20-50 TW of power worldwide.

3 TW

*Lewis, MRS Bulletin, (32) 808 2007.

Wind < 4 TW Biomass < 5 TW Hydro < 1.5 TW Geothermal < 1 TW Solar ~ 120,000 TW

Worldwide potential*:

Global power consumption: ~18 TW

Shannon Boettcher – Electrochemical Energy Storage 2

Page 3: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 3

Cost of solar energy must be reduced. We must store that energy.

Solar Electricity > 11 ¢ per kWh (sunny climate, large installation) Industrial Electricity ~ 5-10 ¢ per kWh

Solar Energy Challenges

Page 4: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 4

Solar Materials and Electrochemistry Lab solar fuels electrochemical capacitors

scalable III-V semiconductors for PV

2H2O O2

O Ni ?

OER active site design?

interface theory

aq. low-T synthesis of functional films precise precursors

Fe

Page 5: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 5

Solar fuels synthesis using semiconductors and electrocatalysts

solution n-type SC

solution p-type SC

Walter, M.; Warren, E.; McKone, J.; Boettcher, S. W.; Qixi, M.; Santori, L.; Lewis, N. S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446-6473.

Page 6: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 6

Oxygen electrocatalysis has broad importance

solar water splitting

air-breathing batteries

fuel-cells (ORR)

http://protononsite.com/

large scale electrolysis

Page 7: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 7

From Wang et al., Electrochimica Acta, 2005, 50, 2059–2064

Need for well-defined systems and clean measurements

Smith, R.D.L. et al. Science, 2013, 340, 60.

Designed for maximum current per geometric area Dark colored – poorly suited for integrating in solar fuels systems

What is the role of composition, conductivity, and porosity? What is the surface-active component? Complicated!

O2

h+

Page 8: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 8

How do we design well-defined catalysts? What determines their activity?

Kerisha Williams

James Ranney

(Dr.) Lena Trotochaud

Team Catalyst c. 2011

Page 9: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 9

Solution-processed ultra-thin film catalysts

Advantages for fundamental study:

• Catalyst electrical conductivity (largely) irrelevant • Film composition controlled

exactly by precursor solution • Mass known • Surface area controlled • Facile gas and ion transport

~50 wt% surfactant ~ 0.05 M metal nitrate ethanol

spin-casting

E-QCM

Trotochaud, L.; Ranney, J.K.; Williams, K.N.; Boettcher, S.W. J. Am. Chem. Soc., 2012, 134, 17253.

100 nm NiOx

= Film

E-QCM

Page 10: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 10

Initial target: Ni-Co-O

1. Trasatti, S.; Lodi, G. In Electrodes of Conductive Metallic Oxides; Trasatti, S., Ed.; Elsevier: Amsterdam, 1981; Vol. B, p 521-626. 2. Rasiyah, P.; Tseung, A. C. C. A mechanistic study of oxygen evolution on NiCo2O4 J. Electrochem.Soc. 1983, 130,2384-2386.

Mixing Co and Ni oxides reported = better performance. electronic? chemical? morphological?

* Indicates bonded to the surface H2O → *OH → *O + H2O → *OOH → O2

* Indicates bonded to the surface (see Rossmeisl, Norskov, etc.)

Page 11: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 11

Oxygen evolution with NixCo1-xOy films

1Rasiyah, P.; Tseung, A. C. C. A mechanistic study of oxygen evolution on NiCo2O4 J. Electrochem.Soc. 1983, 130,2384-2386.

Performance increases with increasing Ni content. No synergistic effect apparent. Apparent activity of “plain NiO” very high. Why?

- steady-state (> 15-30 min/step), 1 M KOH (99.999%) -Hg|HgO 1 M KOH reference (0.929 V vs. RHE at pH 14 or 0.112 V vs. NHE) - Rs 2-3 Ω via AC impedance

NiCo2O4 20 μm film,1 pH 14

Teff = 2-3 nm Performance increases with increasing Ni content. No synergistic effect apparent. Apparent activity of “plain NiO” very high. Why?

Page 12: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 12

Samples containing NiO evolve as a function of time

in-situ formation of a NiOOH?

?

Corrigan, D. A.; Bendert,. J. Electrochem. Soc. 1988, 135, C156-C156.

NiOx

1M 99.999% KOH, 20 mV s-1

0.3 V vs. Hg|HgO

Page 13: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 13

XPS analysis confirms transition to Ni(OH)2/NiOOH

Grosvenor, A. P.; Biesinger, M. C.; Smart, R. S.; McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771-1779.

O 1s Ni 2p

NiO

Ni(OH)2 Ni2O3

NiO

Page 14: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 14

Co substitution suppresses transformation to oxyhydroxide

1M 99.999% KOH, 20 mV s-1

Alloying with Co suppresses formation of Ni(OH)2 / NiOOH during conditioning.

sample e- per metal e- per Ni CoOx 0.04 n/a

Ni0.25Co0.75Ox 0.07 0.27 Ni0.5Co0.5Ox 0.31 0.63

Ni0.75Co0.25Ox 0.61 0.82 NiOx 1.0 1.0

CV curves collected after 6 hr conditioning: # Ni measured with QCM

Page 15: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 15

In-situ phase transformation

Rock Salt (NiO) catalysis limited to surface

Brucite/Hydrotalcite (e.g. M(OH)2/MOOH) catalysis throughout bulk – “3D”

Spinel (e.g. Co3O4) catalysis limited to surface

X

Active structure:

Page 16: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 16

Ni(OH)2 electrochemistry studied extensively for alkaline batteries

Corrigan, D.A. J. Electrochem. Soc. 1987, 134, 377. Corrigan, D.A.; Bendert, R.M. J. Electrochem. Soc. 1989, 136, 723.

Fe is incorporated into electrochemically conditioned

NiOOH films

Dennis Corrigan: – Ni(OH)2 films cathodically

electrodeposited • Fe increases OER activity

– Fe added intentionally – or Fe impurities in

electrolyte

Electrochemically Conditioned Sample

EPMA Fe/(Ni+Co)

XPS Fe/(Ni+Co)

CoOx 0 0 Ni0.5Co0.5Ox 0.034 0.11

NiOx 0.18 0.14 NiOx, electrolyzed

KOH 0.035 0.079

Page 17: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 17

Thin-film OER catalyst quantitative comparison using an EQCM

sample

η @ J = 1 mA cm-2

(mV)

Tafel Slope (mV

dec-1) A g-1 TOF

(sec-1)

MnOx 512 49 ± 3 1.3 0.0003

FeOx 409 51 ± 3 4.5 0.0009

CoOx 395 49 ± 1 7.6 0.0016

IrOx 381 42 ± 1 24.2 0.014 (Fe)

Ni0.5Co0.5Ox 321 35 ± 2 273 0.056

NiOx (Fe) 300 29 ± 0.4 773 0.17

Fe0.1Ni0.9 Ox 297 30 ± 1 1009 0.21

at η = 300 mV

• Fe:NiOOH >10x more active an IrO2 and >100x more active than CoOx • Highest activity OER known in basic media. Why???

TOF = # O2 produced per metal per second

Trotochaud, L.; Ranney, J.K.; Williams, K.N.; Boettcher, S.W. J. Am. Chem. Soc., 2012, 134, 17253. Corrigan, D.A. J. Electrochem. Soc. 1987, 134, 377.

E-QCM

2 nm film: 10 mA cm-2 η = 336 mV

Page 18: Electrochemical Energy Storage: Design Principles for Oxygen

The role of Fe in NiOOH

• Crystal structure and (dis)order? • “Energetics” of electronic states, i.e. “d-band” position? • Film electronic conductivity?

Smith, R.D.L. et al. Science, 2013, 340, 60. Smith, R.D.L. et al. J. Am. Chem. Soc. 2013, 135, 11580. Corrigan, D.A. J. Electrochem Soc., 1987, 134, 377. Corrigan, D.A.; Bendert, R.M. J. Electrochem. Soc. 1989, 136, 723.

Louie, M.W.; Bell, A.T. J. Am. Chem. Soc., 2013, 135, 12329.

Active site between the

sheets?

Shannon Boettcher – Electrochemical Energy Storage 18

E(Ni2+/3+)

shifts with [Fe]

Page 19: Electrochemical Energy Storage: Design Principles for Oxygen

Minimizing Fe Impurities

Corrigan, D.A. J. Electrochem Soc., 1987, 134, 377. Trotochaud, L.; Young, S.L.; Ranney, J.K.; Boettcher, S.W. Submitted.

Activity increase with each cycle

Glassy C (GC) rotating disk electrode Teflon cell, TraceSelect KOH (< 36 ppb Fe) 99.999% Ni(NO3)2·6H2O

1500 rpm

No applied potential required for Fe incorporation

X-ray photoelectron spectroscopy Need to use Mg X-ray source

Shannon Boettcher – Electrochemical Energy Storage 19

Page 20: Electrochemical Energy Storage: Design Principles for Oxygen

Electrolyte Purification

• Precipitate Ni(OH)2 – TraceSelect KOH and 99.999% Ni(NO3)2·6H2O

• Wash/centrifuge/decant • Add electrolyte and shake…

No Fe after 300 CV cycles

Trotochaud, L.; Young, S.L.; Ranney, J.K.; Boettcher, S.W. J. Am. Chem. Soc. 2014.

Shannon Boettcher – Electrochemical Energy Storage 20

Page 21: Electrochemical Energy Storage: Design Principles for Oxygen

Role of 3D structure?

from Godwin, I.J.; Lyons, M.E.G. Electrochem. Commun. 2013, 32, 39. Louie, M.W.; Bell, A.T. J. Am. Chem. Soc., 2013, 135, 12329.

Is β-NiOOH actually more active? Previous reports contain Fe?

α/γ β/β

Shannon Boettcher – Electrochemical Energy Storage 21

Page 22: Electrochemical Energy Storage: Design Principles for Oxygen

“Crystallized” Ni(Fe)OOH

Trotochaud, L.; Young, S.L.; Ranney, J.K.; Boettcher, S.W. Submitted.

Shannon Boettcher – Electrochemical Energy Storage 22 Trotochaud, Young, Ranney, Boettcher, S.W. J. Am. Chem. Soc. 2014.

Peaks shift with crystallization of β-NiOH2 - activity increases

No significant change in OER activity with crystallization

aged in 40 °C 1M KOH, CV 10 mV s-1 every 5 min

Page 23: Electrochemical Energy Storage: Design Principles for Oxygen

Fe-Free NiOOH after crystallization

Trotochaud, L.; Young, S.L.; Ranney, J.K.; Boettcher, S.W. Submitted.

activity decreases

• New peak formation – minimal peak shift • No increase in activity • NiOOH very poor OER catalyst without Fe

Shannon Boettcher – Electrochemical Energy Storage 23

Page 24: Electrochemical Energy Storage: Design Principles for Oxygen

Aging and crystallinity

• Aging increases long-range order • Fe co-deposition gives larger inter-sheet spacing

Order and sheet spacing apparently not (strongly) related to activity.

Shannon Boettcher – Electrochemical Energy Storage 24

Page 25: Electrochemical Energy Storage: Design Principles for Oxygen

Does Fe change electronic conductivity under OER conditions?

Trotochaud, L.; Young, S.L.; Ranney, J.K.; Boettcher, S.W. Submitted.

Not important mechanism for activity enhancement

VNldwIcond

∆=σ

For 100 nm NiOOH film at 10 mA cm-2,

<1 mV drop

# electrodes electrode length

film thickness

gap spacing

bare

Shannon Boettcher – Electrochemical Energy Storage 25

2 μm

Page 26: Electrochemical Energy Storage: Design Principles for Oxygen

Other mixed metal oxyhydroxides?

Shannon Boettcher – Electrochemical Energy Storage 26 Michaela Burke

(Fe)CoOOH

Burke, Kast, Trotochaud, Boettcher, near submission to JACS 2014.

OER onset near conductivity onset for FeOOH

Fe = %

FeOOH (Fe)CoOOH

CoOOH

Page 27: Electrochemical Energy Storage: Design Principles for Oxygen

OER mechanism in (oxy)hydroxides

• NiOOH bad OER catalyst – low activity • FeOOH has low conductivity thus low apparent activity • Fe active site likely; modulated by NiOOH / CoOOH

electrically conductive “porous” framework

Shannon Boettcher – Electrochemical Energy Storage 27

O2 4OH-

O Ni or Co

Fe OH

* See also recent theory / XAS from Norskov, Bell

• Conductive NiOOH/CoOOH = strongly coupled cations; delocalized electrons

Page 28: Electrochemical Energy Storage: Design Principles for Oxygen

A revised volcano plot

Shannon Boettcher – Electrochemical Energy Storage 28

Previous Trend: Ni > Co > Fe > Mn “oxophilicity” of cation

Real Trend: NiFe > CoFe > Fe > Co > Ni Exact opposite

Subbaraman and Markovic, et. al. Nat. Mater. 2012, 11, 550.

Michaela Burke Lisa Enman

Chris Gabor Adam Batchellor Qui Hui Jacyln Kellon

- Design better catalysts - Integration with AEM

Page 29: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage

Semiconductor-catalyst interfaces

Lin, Boettcher, Nature Mater. 13 (1), 81, 2014.

light

Φb

Φb,eff

different Jo,cat

ener

gy

position Mills, Lin, Boettcher Phys. Rev. Lett. 112, 148304, 2014.

T.J. Mills Fuding Lin

29

Page 30: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 30

Part II: Redox-enhanced electrochemical double layer

capacitors

Sangeun Chun

Galen Stucky Brian Evanko David Ji

Xingfeng Wang

Page 31: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 31

Traditional electrochemical double-layer capacitors

Pros: power, cycle-ability Cons: carbon cost, flammable electrolyte, low specific/volumetric energy

Simon, Gogotsi, Nat Mater 2008, 7, 845.

www.maxwell.com

+ − + −

+ − + − + − + − + − + − − +

target

electrolyte

energy = 1/2CV2

Page 32: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 32

• Merits (vs. EDLC) − electrolyte weight as active component − increased capacity / specific energy − use of aqueous electrolytes with high solubility (limited by low V) • Challenges − self-discharge − maintain cycleability and high power

separator

current collector

+ −

Lu, Beguin, Frackowiak, Supercapacitor: Materials, Systems and Applications, Wiley, 2013

Concept: Redox-enhanced supercapacitor

Page 33: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 33

Redox electrolyte “design principles”

• use aqueous electrolyte (safety, cost) • need different redox processes at negative and positive electrodes • formal potentials near solvent window (energy) • high solubility (energy) • fast kinetics (power) • stable (cyclability) • design for slow self discharge??

separator

current collector

+ −

Lu, Beguin, Frackowiak, Supercapacitor: Materials, Systems and Applications, Wiley, 2013

Page 34: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 34

Potential redox couple species

MV = methyl viologen

Need: - high solubility - large ΔV btw. couples - fast kinetics - slow self discharge

Page 35: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 35

Three electrode cell design

Epoxy insulating layer

Glassy carbon (current collector)

Ni bar N2 purge

10 mg per electrode, ~220 um thick - Activated carbon prepared by standard

CO2 activation process - Electrode pellet - AC (85 %) : PTFE (10 %) : Acetylene black (5 wt.%)

Page 36: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 36

Control inert electrolyte

C = Q/V energy = 1/2CV2

Charging 1 A/g

Discharging −1 A/g

Page 37: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 37

Halogen electrolytes for positive electrode

Three electrode Swage-lock cell used to monitor both electrode processes simultaneously.

capacitive

faradaic

3I- → I3- + 2e- 3Br- → Br3- + 2e-

charging at 1 A/g

Page 38: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 38

Self-discharge dynamics

• I- and Br- show slow self-discharge rate (specific absorption) • Fe(CN)6

4-/Fe(CN)63- redox couple shows fast self-discharge

• Co(bpy)32+/Co(bpy)3

3+ extremely fast self-discharge (electrostatics)

3Br- → Br3

- + 2e-

* 1 M K2SO4

Weber et. al. J Appl Electrochem 41, 1137-1164 (2011).

Page 39: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 39

Redox electrolytes for positive electrode

MV = methyl viologen

• MV+ specific absorption slowing self-discharge?

Page 40: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 40

Combined redox electrolytes 1 M KBr/0.1 M MVCl2

• capacitive and faradaic responses evident on both electrodes • potentials separated by ~1.4 V – ideal in aq. electrolyte

Page 41: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 41

Combined redox electrolytes

• competitive over short times with non-aqueous cells

• replace methyl with heptyl – decreases self discharge dramatically

N+ N+2Br

-

HV2+

Page 42: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 42

Power – energy – stability

N+ N+

OO

OO

2Br-

enhanced stability and solubility:

Chun, S.; Evanko, B.; Wang, X.; Ji, X.; Stucky, G.D.; Boettcher, S.W. In prep for Nature Communications. 2014.

Page 43: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 43

Nernstian electrochemical model

Brian Evanko

• symmetric electrodes, no separator • agreement with experimental data • improved performance possible

*

Page 44: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 44

Summary: Redox Supercapactiors

Brian Evanko

Sangeun Chun

• redox-active electrolyte = additional capacity

• electrostatics and specific absorption critical to prevent internal shunting

• record performance of ~15 Wh kg-1 for aq. redox capacitor

• >2000 cycles with heptyl-viologen • useful niche between capacitor and

battery?

Page 45: Electrochemical Energy Storage: Design Principles for Oxygen

Shannon Boettcher – Electrochemical Energy Storage 45

Acknowledgements

Dr. Fuding Lin T.J. Mills

Theory and Simulation Interfaces

Basic Energy Sciences Solar Photochemistry

OER Catalysis:

Young Professor Program

CSVT GaAs PV: Redox Capacitors:

Thin Films:

Interfaces:

(Dr.) Lena Trotochaud

Oxygen Catalysis

Michaela Burke