302
Electrochemically modified carbon materials for applications in electrocatalysis and biosensors Carolina González Gaitán

Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

  • Upload
    others

  • View
    20

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemically modified carbon materials for applications in electrocatalysis and biosensors

Carolina González Gaitán

Page 2: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Departamento de Química Física Departamento de Química Inorgánica Instituto Universitario de Materiales

Facultad de Ciencias

Electrochemically modified carbon materials for applications in electrocatalysis and biosensors

Carolina González Gaitán

Tesis presentada para aspirar al grado de DOCTOR por la Universidad de Alicante con

MENCIÓN DE DOCTOR INTERNACIONAL

DOCTORADO EN CIENCIA DE MATERIALES

Dirigida por:

Ramiro Ruiz Rosas Investigador Juan de la Cierva

Diego Cazorla Amorós Catedrático de Química

Inorgánica

Page 3: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán
Page 4: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

AGRADECIMIENTOS

Quiero agradecer a todas las personas que me han apoyado durante este

proceso, en especial a los Prof. Diego Cazorla Amorós y la Prof. Emilia

Morallón Nuñez por la oportunidad de estar aquí y sus valiosos aportes.

Al Dr. Ramiro Ruiz Rosas por su paciencia, dedicación y enseñanzas

durante este largo camino.

A la Generalitat Valenciana por otorgarme la Beca del Programa Santiago

Grisolía (GRISOLIA/2013/005).

I would also like to thank Kyotani Sensei and Nishihara-san for their kind

welcoming and contribution to my experience in Japan.

También agradezco a mi familia por estar a mi lado siempre, por creer en

mí y permitirme llegar a ser lo que soy. A Andre por su incondicional

apoyo, los kilómetros recorridos y los que quedan por recorrer.

Finalmente, gracias a todos mis compañeros del Grupo de Electrocatálisis

y Electroquímica de Polímeros (GEPE) por los cafés, las charlas y hacer

más llevaderos los días difíciles.

Page 5: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán
Page 6: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

ÍNDICE

OBJETIVOS Y ESTRUCTURA GENERAL DE LA TESIS DOCTORAL

1 Introducción ............................................................................................... 1

Objetivos de la tesis doctoral ..................................................................... 1 2

3 Estructura de la tesis doctoral .................................................................... 2

CAPÍTULO 1

Introducción General

1 Materiales carbonosos nanoestructurados ............................................... 11

1.1 Nanotubos de carbono ...................................................................... 14

1.1.1 Estructura ................................................................................. 14

1.1.2 Propiedades .............................................................................. 15

1.2 Nanofibras de carbono ..................................................................... 17

1.2.1 Estructura ................................................................................. 17

1.2.2 Propiedades .............................................................................. 19

1.3 Materiales carbonosos con porosidad ordenada ............................... 19

1.3.1 Estructura ................................................................................. 20

1.3.2 Propiedades .............................................................................. 21

2 Química superficial en los materiales carbonosos ................................... 21

3 Reactividad de la superficie de los materiales carbonosos ...................... 23

4 Funcionalización química de materiales carbonosos ............................... 27

4.1 Métodos de funcionalización no covalente ...................................... 27

4.2 Métodos de funcionalización covalente ........................................... 29

4.2.1 Funcionalización con grupos oxigenados ................................. 30

4.2.2 Funcionalización con grupos nitrogenados .............................. 32

4.2.3 Incorporación de otros grupos funcionales............................... 35

Page 7: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

5 Funcionalización electroquímica de materiales carbonosos .................... 38

5.1 Funcionalización no covalente ......................................................... 39

5.2 Funcionalización covalente .............................................................. 40

5.2.1 Técnicas de reducción .............................................................. 41

5.2.2 Técnicas oxidativas ................................................................... 43

6 Aplicaciones de los materiales carbonosos .............................................. 47

6.1 Pilas de combustible ......................................................................... 47

6.1.1 Tipos de pilas de combustible................................................... 48

6.1.2 Los materiales carbonosos en las pilas de combustibles .......... 51

6.1.3 Reacción de reducción de oxígeno (ORR) ............................... 54

6.2 Biosensores electroquímicos ............................................................ 60

6.2.1 Materiales carbonosos en biosensores ...................................... 62

6.2.2 Detección de Glucosa ............................................................... 63

7 Bibliografía .............................................................................................. 66

CHAPTER 2

Experimental Techniques

1 Introduction .............................................................................................. 87

2 Materials and reagents ............................................................................. 87

2.1 Reagents ........................................................................................... 87

2.2 Carbon materials ............................................................................... 88

3 Characterization techniques ..................................................................... 89

3.1 Electrochemical techniques .............................................................. 89

3.1.1 Cyclic voltammetry (CV) ......................................................... 89

3.1.2 Chronoamperometry (CA) ........................................................ 92

3.1.3 Linear sweep voltammetry (LSV) ............................................ 93

3.1.4 Electrochemical Impedance Spectroscopy (EIS) ...................... 94

3.2 Physical adsorption of gases ............................................................. 95

Page 8: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

3.2.1 BET Theory .............................................................................. 97

3.3 X-ray photoelectron spectroscopy (XPS) ......................................... 98

3.4 Inductively coupled plasma – Optical emission spectrometry (ICP – OES) 100

3.5 X-ray diffraction (XRD) ................................................................. 100

3.6 Fourier transformed infrared spectroscopy (FTIR) ........................ 101

3.7 Temperature programmed desorption (TPD) ................................. 102

4 Functionalization methods ..................................................................... 104

4.1 Electrochemical functionalization techniques ................................ 104

4.2 Chemical functionalization............................................................. 105

4.2.1 Oxidation treatment ................................................................ 105

4.2.2 Impregnation .......................................................................... 105

5 References ............................................................................................. 106

CHAPTER 3

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the oxygen reduction reaction

1 Introduction ........................................................................................... 111

2 Materials and methods ........................................................................... 115

2.1 Reagents ......................................................................................... 115

2.2 Electrochemical modification of CNTs .......................................... 115

2.3 Heat treatment ................................................................................ 116

2.4 Chemical and electrochemical characterization ............................. 116

2.5 Electrochemical activity towards ORR .......................................... 117

3 Results and discussion ........................................................................... 119

3.1 Electrochemical functionalization of CNTs ................................... 119

3.2 Chemical and electrochemical characterization ............................. 124

3.3 N-doped CNTs from NT_4-ABA................................................... 130

3.4 Electrochemical activity towards ORR .......................................... 133

Page 9: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

3.4.1 Functionalized CNTs with aminobenzene acids ..................... 133

3.4.2 N-doped CNTs from NT_4ABA ............................................ 134

4 Conclusions ............................................................................................ 140

5 References .............................................................................................. 141

CHAPTER 4

Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods

1 Introduction ............................................................................................ 149

2 Materials and methods ........................................................................... 152

2.1 ZTC synthesis ................................................................................. 152

2.2 Electrochemical modification of ZTC ............................................ 152

2.3 Structural, chemical and electrochemical characterization ............. 153

3 Results and discussion ........................................................................... 154

3.1 Electrochemical behavior of ZTC in 0.1 M HClO4 ........................ 154

3.2 Direct potentiodynamic electrochemical functionalization of ZTC up to 1.1 V ....................................................................................................... 155

3.3

3.4

3.5

Step-wise potentiodynamic electrochemical functionalization of ZTC 156

Electrochemical behavior of the initial 4-ABA modified electrodes 157

Optimal electrochemical functionalization of ZTC with aminobenzoic acids .................................................................................... 161

3.6 Electrochemical stability of the electrodes ..................................... 166

3.7 Structural and chemical characterization ........................................ 167

4 Conclusions ............................................................................................ 175

5 References .............................................................................................. 177

Page 10: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

CHAPTER 5

Electrochemical glucose biosensors based on nanostructured carbon materials

1 Introduction ........................................................................................... 183

2 Materials and methods ........................................................................... 187

2.1 Reagents ......................................................................................... 187

2.2 Physicochemical characterization .................................................. 187

2.3 Modification of CNTs .................................................................... 188

2.3.1 Chemical oxidation with HNO3 ............................................. 188

2.3.2 Electrochemical functionalization of herringbone carbon nanotubes with 4-ABA .......................................................................... 189

2.4 Electrodes preparation and enzyme immobilization ...................... 189

2.5 Electrochemical measurements ...................................................... 190

3 Results and discussion ........................................................................... 191

3.1 Physicochemical characterization .................................................. 191

3.2 Immobilization of GOx .................................................................. 196

3.2.1 Electrochemical characterization............................................ 196

3.2.2 Catalytic activity towards glucose oxidation .......................... 199

3.3 Optimization of GOx loading during immobilization .................... 202

3.4 Use of mediators ............................................................................. 208

3.5 Mediator-less glucose determination using reduction potentials ... 210

4 Conclusions ........................................................................................... 214

5 References ............................................................................................. 216

CHAPTER 6

Nitrogen–metal containing carbon nanotubes catalysts for oxygen reduction reaction

1 Introduction ........................................................................................... 223

2 Materials and methods ........................................................................... 226

Page 11: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

2.1 Reagents ......................................................................................... 226

2.2 Electrochemical modification of CNTs with 4-ABA ..................... 227

2.3 Synthesis of N-metal modified CNTs............................................. 228

2.4 Chemical characterization .............................................................. 229

2.5 Electrochemical measurements ...................................................... 230

3 Results and discussion ........................................................................... 231

3.1 Electrochemical characterization .................................................... 231

3.2 Electroactivity towards ORR .......................................................... 233

3.3 Surface chemistry and thermogravimetric analyses ....................... 238

3.4 The role of surface chemistry in the ORR activity of FePc-based catalysts ...................................................................................................... 245

3.5 The role of Fe in the ORR activity of FePc-based catalysts ........... 249

3.6 Stability study of the FePc-based electrocatalysts .......................... 251

4 Conclusions ............................................................................................ 253

5 References .............................................................................................. 255

GENERAL CONCLUSIONS……………………………….………….… 265

SUMMARY…...…………………………………………….……..………. 281

Page 12: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán
Page 13: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán
Page 14: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Objetivos y estructura general de

la Tesis Doctoral

Page 15: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán
Page 16: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Objetivos y estructura general de la Tesis Doctoral

1

OBJETIVOS Y ESTRUCTURA GENERAL DE LA TESIS DOCTORAL

1 Introducción

La presente Tesis Doctoral se centra en la funcionalización de materiales

carbonosos nanoestructurados empleado técnicas químicas y

electroquímicas para su aplicación como catalizadores para la reacción de

reducción de oxígeno que ocurre en el cátodo de las pilas de combustible

y biosensores electroquímicos. Se presentan los diferentes métodos de

funcionalización empleados, la caracterización química y electroquímica

de los materiales preparados y finalmente el estudio para su uso en las

aplicaciones mencionadas.

2 Objetivos de la tesis doctoral

El objetivo principal de la presente Tesis Doctoral es la funcionalización

de materiales carbonosos para su aplicación como catalizadores en la

reacción de reducción de oxígeno y biosensores electroquímicos. A partir

de esto, los objetivos específicos se presentan a continuación:

- Funcionalización de materiales carbonosos nanoestructurados –

nanotubos de carbono y materiales carbonosos con porosidad

ordenada – mediante el uso de técnicas químicas, electroquímicas

y tratamientos térmicos para la introducción de grupos funcionales

con diversos heteroátomos (O, N, P, S) y especies metálicas (Co,

Fe).

- Caracterización química y electroquímica de los materiales

funcionalizados.

Page 17: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

2

- Estudio de la actividad electrocatalítica de los materiales

carbonosos funcionalizados para la reacción de reducción de

oxígeno en las condiciones de trabajo de la pila de combustible.

- Estudio de la inmovilización de enzimas en los materiales

carbonosos funcionalizados y su uso como biosensores

electroquímicos para la detección de glucosa.

3 Estructura de la tesis doctoral

La presente Tesis Doctoral ha sido realizada en los Grupos de

Electrocatálisis y Electroquímica de Polímeros (GEPE) y Materiales

Carbonosos y Medio Ambiente (MCMA) pertenecientes al Instituto

Universitario de Materiales de la Universidad de Alicante. Además, parte

de la investigación se ha realizado en el Institute of Multidisciplinary

Research for Advanced Materials (IMRAM) de la Universidad de Tohoku

(Japón), bajo la supervisión del Profesor Takashi Kyotani.

Dado que la Tesis Doctoral opta al grado de Doctor con mención de

Doctor Internacional, los capítulos correspondientes a los resultados

obtenidos y las conclusiones han sido redactados en inglés para cumplir

con la normativa.

La Tesis Doctoral se encuentra dividida en siete capítulos, a continuación

se presenta brevemente el contenido de cada uno de ellos:

- Capítulo 1. Introducción general.

En este capítulo se hace una introducción sobre los materiales carbonosos

nanoestructurados, su reactividad y aplicaciones. Inicialmente se

describen los materiales carbonosos nanoestructurados, su estructura y

Page 18: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Objetivos y estructura general de la Tesis Doctoral

3

propiedades; en particular, se detallan los nanotubos de carbono,

nanofibras de carbono y materiales carbonosos con porosidad ordenada

ya que serán los materiales empleados durante el desarrollo de la presente

Tesis Doctoral. Se hace especial hincapié en la química superficial de los

materiales carbonosos y su reactividad y los métodos empleados para la

introducción de diferentes funcionalidades empleando diversas técnicas

químicas y electroquímicas. Finalmente se detalla la aplicación de los

materiales carbonosos como catalizador en la reacción de reducción de

oxígeno en el cátodo de las pilas de combustible, así como elemento

transductor y soporte de biosensores electroquímicos.

El resultado de la revisión bibliográfica realizada para este capítulo ha

dado lugar a la siguiente publicación:

González-Gaitán C., Ruiz-Rosas R., Morallón E., Cazorla-Amorós D.

Electrochemical Methods to Functionalized Carbon Materials. Chapter 9.

Chemical Functionalization of Carbon Nanomaterials: Chemistry and

Applications. Ed. Taylor & Francis. 2016.

- Chapter 2. Experimental Techniques.

A lo largo de este capítulo se describen las diferentes técnicas

experimentales, reactivos y materiales empleados durante el desarrollo de

la presente Tesis Doctoral. Se presenta una breve explicación de los

fundamentos de cada una de las técnicas de caracterización usadas y se

detallan los métodos de funcionalización empleados: químicos (oxidación

húmeda e impregnación) y electroquímicos (voltamperometría cíclica y

cronoamperometría).

Page 19: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

4

- Chapter 3. Functionalization of carbon nanotubes using

aminobenzene acids and electrochemical methods. Electroactivity

for the oxygen reduction reaction.

Este capítulo presenta la funcionalización electroquímica de nanotubos de

carbono de pared múltiple con diferentes ácidos bencénicos: ácido 4-

aminobenzoico, ácido 4-aminobencensulfónico y ácido 4-

aminobencilfosfónico. Los materiales preparados fueron posteriormente

tratados térmicamente para generar diversos grupos funcionales

nitrogenados y oxigenados en la superficie de los nanotubos. Se determinó

la capacidad gravimétrica de los materiales funcionalizados, así como su

actividad hacia la reacción de reducción de oxígeno en medio alcalino.

Los resultados de este capítulo han dado lugar a la siguiente publicación:

González-Gaitán C., Ruiz-Rosas R., Morallón E., Cazorla-Amorós D.

Functionalization of carbon nanotubes using aminobenzene acids and

electrochemical methods. Electroactivity for the oxygen reduction

reaction. Int. J. Hydrogen Energy 40 (2015) 11242-11253.

- Chapter 4. Successful functionalization of superporous zeolite

templated carbon using aminobenzene acids and electrochemical

methods.

En este capítulo se presenta la funcionalización electroquímica de un

material carbonoso con porosidad ordenada preparado mediante la técnica

de nanomoldeo utilizando zeolita Y como plantilla (ZTC). Se estudiaron

las condiciones óptimas de funcionalización de este material con los

ácidos 2- y 4-aminobenzoico, prestando especial atención en mantener su

Page 20: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Objetivos y estructura general de la Tesis Doctoral

5

estructura inicial. Se realizó la caracterización química y electroquímica

del material que permitió determinar su grado de funcionalización en el

que observó un aumento en la capacidad comparada con el material sin

funcionalizar en medio ácido y básico, así como una mayor resistencia a

la electroxidación, siendo este un proceso difícilmente evitable y que es

causa de la degradación del material no funcionalizado.

Los resultados de este capítulo han dado lugar a la siguiente publicación:

González-Gaitán C., Ruiz-Rosas R., Morallón E., Cazorla-Amorós D.

Successful functionalization of superporous zeolite templated carbon

using aminobenzene acids and electrochemical methods. Carbon 99

(2016) 157-166.

- Chapter 5. Electrochemical glucose biosensors based on

nanostructured carbon materials.

Este capítulo presenta la preparación de biosensores electroquímicos

basados en materiales carbonosos para la detección de glucosa. Se

inmovilizó glucosa oxidasa en dos tipos de nanotubos de carbono con

diferentes estructuras los cuales fueron previamente funcionalizados

utilizando métodos químicos y electroquímicos. La detección de glucosa

se realizó por medio de diferentes enfoques: detección del peróxido de

hidrógeno formado durante la reacción empleando potenciales positivos,

introducción de un mediador redox usando potenciales intermedios y

detección de oxígeno/trasferencia directa de carga aplicando potenciales

negativos. Se encontró que la funcionalización con ácidos carboxílicos de

los nanotubos de carbono parece mejorar la sensibilidad del biosensor

Page 21: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

6

gracias a una mayor inmovilización de la enzima, mientras que no hubo

mejora en la sensibilidad cuando se favoreció la transferencia directa de

carga entre el cofactor de la enzima y el nanotubo, probablemente por una

desnaturalización o mala orientación de la misma que se ve favorecida por

la curvatura de la superficie de los nanotubos de carbono.

- Chapter 6. Nitrogen–Metal containing carbon nanotubes catalysts

for oxygen reduction reaction

En este capítulo se presenta la preparación de catalizadores para la

reacción de reducción de oxígeno basados en ftalocianinas de hierro

(FePc) y cobalto (CoPc) soportadas en nanotubos de carbono de pared

múltiple. Los catalizadores se trataron térmicamente a diferentes

temperaturas y atmósferas con el fin de cambiar la química superficial de

los nanotubos de carbono originales y se estudió el efecto de dichas

funcionalidades en su actividad y estabilidad como catalizador de la

reacción de reducción de oxígeno en medio alcalino. Se encontró que la

ftalocianina de hierro es más activa que la de cobalto, y que su actividad

es mejorada tanto cuando se soporta sobre los nanotubos de carbono como

cuando se favorece la interacción entre los anillos aromáticos de la

ftalocianina y la superficie de los nanotubos mediante un tratamiento

térmico. Se ha comprobado que la actividad del catalizador es muy

elevada, similar a la del platino, y que solo es necesario utilizar pequeñas

cantidades de ftalocianinas para conseguir una gran actividad catalítica.

Page 22: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Objetivos y estructura general de la Tesis Doctoral

7

- Chapter 7. Conclusiones generales

Este capítulo recoge las conclusiones generales extraídas de todo el

trabajo realizado en la presente Tesis Doctoral.

Page 23: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán
Page 24: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

CAPÍTULO 1

Introducción General

Page 25: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán
Page 26: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

11

CAPÍTULO 1. INTRODUCCIÓN GENERAL

1 Materiales carbonosos nanoestructurados

El carbono presenta diferentes alótropos (grafito, diamante, fullerenos,

nanotubos), distintos grados de grafitización (con estructura más o menos

desordenada), estructura espacial de diferentes número de dimensiones,

de 0 a 3D, todo ello permitiéndole encontrarse en diversas formas [1]. Por

esta razón, presenta distintas propiedades según su conformación. El

diamante y formas similares, con hibridación sp3, tienen excelentes

propiedades mecánicas, ópticas y conductividad térmica. Los materiales

carbonosos nanoestructurados como los nanotubos, fullerenos o grafeno,

de hibridación sp2, tienen adicionalmente una excelente conductividad

eléctrica, elasticidad y una relativamente elevada área superficial, entre

otras propiedades interesantes [1,2]. Por todo lo anterior, se puede

concluir que la gran variedad de propiedades mostradas por los miembros

de la familia de materiales carbonosos hace que puedan ser aprovechadas

para su uso en diversas aplicaciones relacionadas con el almacenamiento

y producción de energía [3,4], control de la contaminación [5,6], soporte

de catalizadores [7–9], biosensores [10], materiales compuestos para usos

estructurales o funcionales [11,12], entre otras.

Dentro de los materiales carbonosos con estructura espacial 0D se

encuentran los fullerenos y los nanoonions. Los fullerenos son moléculas

compuestas de átomos de carbono en estructuras tridimensionales

cerradas. La molécula más típica de fullereno, el C60, está compuesta por

60 átomos de carbono y asemeja la forma de icosaedro, con 20 hexágonos

Page 27: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

12

y 12 pentágonos enlazados entre sí [2,13]. Existe un gran número de

fullerenos con mayor número de átomos de carbono, siguiendo una

estructura poliédrica con caras hexagonales y pentagonales, siendo estos

últimos lo que generan la forma curvada de su estructura. Los nanoonions

consisten en materiales esféricos cerrados y deben su nombre a su

estructura de capas concéntricas que se asemejan a una cebolla. Este

nombre cubre a todas las estructuras esféricas cerradas de varios

fullerenos concéntricos con un diámetro de hasta 100 nm. Su estructura

está compuesta por anillos de 5 y 6 átomos de carbono para dar la forma

esférica cerrada. En este tipo de materiales no hay una porosidad interna

accesible, pero cuentan con un elevada área superficial externa [14].

Los nanotubos, nanofibras y nanohorns de carbono se encuentran dentro

de los materiales con estructura 1D. Los nanotubos de carbono están

referidos a estructuras tubulares formadas por una red hexagonal de

átomos de carbono con hibridación sp2 como en el grafeno enrollada y

unida en los extremos que puede estar formada por una o varias láminas.

Las nanofibras de carbono son materiales con estructura similar a los

nanotubos de carbono, pero pueden estar conformadas tanto cilíndrica

como cónicamente con dimensiones mayores [15]. Finalmente, los

nanohorns son un tipo de nanotubos de carbono semicerrados que

presentan una forma irregular que consiste en una lámina de grafeno

enrollada con una punta de forma cónica condicionada por la presencia de

uno o varios anillos de 5 átomos de carbono, que así mismo condiciona el

ángulo del cono [16].

Page 28: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

13

El grafeno fue descubierto en 2004 y ha atraído una gran atención

científica durante la última década, centrada principalmente en su

producción y en el desarrollo de aplicaciones en diferentes campos, tanto

en estudios fundamentales como en la industria. Esta forma de carbono es

la estructura fundamental de todas las estructuras grafíticas de carbono

que se conocen [17,18]. El grafeno es un material compuesto por láminas

de átomos de carbono ordenadas en anillos de 6 átomos, unidos entre sí

formado una red en forma de panal de abeja. Además de encontrarlo en

láminas, en una estructura 2D, en lo que hoy día consideramos grafeno,

esta estructura es el componente esencial de los nanotubos de carbono, el

grafito y otros materiales grafíticos de estructura desordenada [3,18].

La estructura ideal del grafeno está constituida por una lámina plana de

átomos de carbono. Sin embargo, en la realidad es muy difícil encontrar

una sola lámina aislada, soliendo encontrarse en pilas de dos o tres

láminas. Así mismo, la lámina no es perfectamente plana, contando con

cierta curvatura dada por la presencia de átomos con hibridación sp3 o

defectos en la lámina por inclusión de anillos de 5 o 7 átomos. Así mismo,

la elevada densidad electrónica de las láminas favorece que aparezcan

interacciones tipo Van der Waals que favorecen que se apilen las láminas

unas con otras [17].

En las últimas décadas se han desarrollado múltiples avances en el

desarrollo de materiales carbonosos nanoestructurados con estructuras

complejas en 3D. Dentro de estos materiales se encuentran los materiales

carbonosos con porosidad ordenada, aerogeles, espumas, entre otros. En

estos materiales la disposición de los átomos de carbono es tal que el

Page 29: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

14

espacio entre las láminas de grafeno está dispuesto de tal manera que se

forma una estructura porosa ordenada, determinada por la forma de su

preparación [15].

Dado que durante el desarrollo de la presente tesis doctoral se emplearon

nanotubos y nanofibras de carbono, y un material carbonoso ordenado

preparado empleando zeolitas como plantillas, a continuación se

presentará una descripción más detallada de estos materiales.

1.1 Nanotubos de carbono

Los nanotubos de carbono son una forma alotrópica del carbono de una

dimensión [3]. Tienen aspectos estructurales muy similares a los

fullerenos descritos en la sección anterior. Sin embargo, en contraste con

los fullerenos y otros alótropos, los nanotubos no existen de forma natural,

son una forma completamente artificial de carbono.

1.1.1 Estructura

Los nanotubos de carbono pueden ser considerados como un cilindro

hueco conformado por átomos de carbono que se forma al enrollar una o

varias láminas de grafeno. Los nanotubos de pared simple (SWCNTs)

están formados por una sola lámina de grafeno, mientras que los

nanotubos de pared múltiple (MWCNTs) están formados por más de una

lámina de grafeno enrolladas concéntricamente. En ambos tipos de

nanotubos es posible encontrar diversos diámetros y longitudes. Además

de las dimensiones, las propiedades de los materiales están definidas por

la forma en que la lámina de grafeno está enrollada o de si los tubos están

cerrados en sus puntas o no. La clasificación según la forma en que se

enrolle la lámina de grafeno (quiralidad), está definida por los parámetros

Page 30: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

15

(n,m), que son los índices del vector 𝑐ℎ = 𝑛𝑎1 +𝑚𝑎2 que conecta los

sitios en una lámina de grafeno bidimensional. (Fig 1.1b) [19]. Hay tres

casos básicos de enrollamiento:

- Zig-zag: La lámina de grafeno está enrollada de manera que las

puntas encuadran perfectamente y quedan en forma de zig-zag;

esto significa que el enrollado está hecho paralelo al vector ��1 de

la lámina de grafeno, que corresponde a m = 0

- Silla de montar: Se toma la lámina de grafeno girada 30º antes de

ser enrollada. En las puntas queda una fila de anillos de 6 átomos

de carbono, que corresponde a n = m

- Quiral: Cuando se utiliza cualquier otro ángulo se obtienen

nanotubos quirales, en los que n ≠ m. De acuerdo con la quiralidad,

los nanotubos pueden clasificarse en semiconductores y metálicos,

siguiendo la regla: si (n-m) es múltiplo de 3, tendrá

comportamiento metálico, si no, tendrá comportamiento de

semiconductor.

1.1.2 Propiedades

Los nanotubos de carbono presentan excelentes propiedades mecánicas,

electrónicas y térmicas derivadas de su estructura ordenada y al carácter

predominantemente sp2 de sus enlaces. Al igual que los fullerenos, los

nanotubos de carbono poseen una superficie de carácter apolar, que los

hace insolubles en agua y parcialmente solubles en disolventes orgánicos

[3].

Page 31: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

16

Fig. 1.1 (a) Distintos tipos de nanotubos de carbono, (b) Esquema de lámina de grafeno, los vectores ��1 y ��2 y el vector del enrollamiento 𝑐ℎ = 𝑛��1 +𝑚��2. Las líneas

punteadas muestran los tipo zig-zag (n,0) y silla de montar (n,n)

La química de estos materiales permite modificaciones covalentes en las

que se pueden introducir heteroátomos en la estructura de la lámina de

grafeno. Esto puede servir, por ejemplo, para modificar el carácter

semiconductor con dopados tipo p o n del nanotubo, como en el caso del

dopado con nitrógeno o boro, que puede inyectar electrones o generar

huecos, respectivamente. La introducción de heteroátomos puede generar

defectos en los nanotubos, como en el caso de los defectos generados por

la presencia de nitrógeno piridínico en la lámina de grafeno que compone

el nanotubo [20]. Así mismo, estos materiales pueden ser modificados con

Brazo de silla Zig-zag Quiral

(a)

(n,0)

(n,n)

(0,0)1

2

(b)

Ch

Page 32: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

17

funcionalizaciones no covalentes, posibilitando por ejemplo su

suspensión en agua gracias a la formación de micelas con diversos

surfactantes. Finalmente también es posible producir modificaciones

endoédricas, en las que se pueden encapsular especies atómicas dentro de

la cavidad de los nanotubos, dando lugar a la inserción de metales, útil en

aplicaciones como el almacenamiento de hidrógeno, entre otras [21].

Los nanotubos de carbono tienen un gran potencial para su aplicación en

electrónica, sensores y medicina debido a sus excelentes propiedades

eléctricas y mecánicas y de biocompatibilidad [22]. Gracias a su elevada

conductividad y resistencia química y electroquímica, son muy útiles en

aplicaciones de almacenamiento y producción de energía eléctrica, como

electrodo para la reducción de oxígeno en las pilas de combustible,

electrodo en las baterías de ion-Li, electrodo en supercondensadores y

almacenamiento de hidrógeno [23].

1.2 Nanofibras de carbono

1.2.1 Estructura

Las nanofibras de carbono presentan estructura 1D con forma cilíndrica o

cónica. Están formadas por láminas de grafeno apiladas y curvadas que

pueden estar conformadas de diferentes maneras. Tienen un diámetro que

varía entre 50 y 200 nm y cuentan con una relación de aspecto mayor a

100. De acuerdo con su estructura interna (la forma en que las láminas de

grafeno están ordenadas), existen diferentes tipos (Fig 1.2):

- Planos o plaquetas (platelet), las láminas de grafeno están apiladas

de forma perpendicular con respecto al eje de la fibra.

Page 33: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

18

- Espina de pescado (herringbone – fishbone), las láminas de

grafeno están inclinadas con respecto al eje de la fibra.

- Cinta o tubular (ribbon), las láminas de grafeno están apiladas

paralelas al eje de la fibra.

- Enrolladas o copas apiladas (stacked cup), que pueden estar

formadas por conos truncados ordenados o por una lámina de

grafeno formando una espiral de tal forma que queda un hueco en

la parte central.

Fig. 1.2 Tipos de nanofibras de carbono según su estructura [24]

Platelet Herringbone

Ribbon Stacked cup

Page 34: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

19

1.2.2 Propiedades

Las nanofibras de carbono presentan diversas propiedades según su

conformación y su método de preparación. Se ha determinado que el

catalizador, temperatura de reacción y composición del gas portador de

carbono influye en la morfología y estructura así como en sus propiedades

mecánicas y eléctricas. En general, cuentan con una elevada

conductividad eléctrica, que está dada por la orientación de las láminas de

grafeno en su estructura; el área superficial se encuentra en el intervalo de

50 a 300 m2 g-1 siendo básicamente área externa y la porosidad de estos

materiales está dada por los espacios formados entre las nanofibras.

Debido a sus propiedades, estos materiales han sido empleados en

diferentes campos de aplicación: sensores, gracias a su elevada capacidad

de transferencia electrónica; como electrodo en baterías de ion-litio y

supercondensadores, ya que son materiales que presentan una elevada

densidad de energía.

1.3 Materiales carbonosos con porosidad ordenada

Los materiales carbonosos con porosidad ordenada consisten en una

variante de los materiales carbonosos nanoestructurados donde la

disposición de los átomos de carbono (que presentan nuevamente enlaces

sp2 de forma preferencial) es tal que el espacio entre las láminas donde se

disponen los átomos puede considerarse un poro, de tal forma que la

estructura porosa resultante es muy ordenada en el espacio (a diferencia

de en el caso del carbón activado). Ejemplos de estos materiales son los

materiales carbonosos mesoporosos ordenados, los materiales de

porosidad jerárquica o los materiales nanomoldeados con zeolitas.

Page 35: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

20

Estos materiales se preparan principalmente por métodos de nanomoldeo,

empleando para tal fin distintas plantillas. El tipo de plantilla usada

determina las características del material final; las síntesis con plantillas

blandas (‘soft-templates’) suelen emplear materiales como surfactantes

como moldes y las síntesis con plantillas duras (‘hard templates’) emplean

moldes basados en sólidos inorgánicos.

1.3.1 Estructura

En particular, los ‘zeolite templated carbons’ o ZTC constituyen una

familia de materiales altamente porosos que emplean zeolitas como

plantilla. La estructura de estos materiales carbonosos está constituida por

láminas de grafeno curvadas, ya que se obtiene una réplica ‘negativa’ de

los canales del tamaño nanométrico de la plantilla empleada [25,26]. Este

tipo de materiales se caracteriza por combinar una estructura altamente

ordenada con una porosidad elevada y muy definida, lo que hace que

tengan un área superficial grande y de elevada accesibilidad. El tamaño

de la porosidad está definida por la plantilla empleada en su síntesis, como

ejemplos de esas plantillas se encuentran sílicas mesoporosas [25],

zeolitas [27], entre otros. Un ejemplo de este tipo de materiales es el

obtenido empleado zeolita Y como plantilla que cuenta con una estructura

de algunas (o incluso una) lámina de grafeno que permite el desarrollo de

una microporosidad interconectada que le confiere la elevada área

superficial (Fig 1.3).

Page 36: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

21

Fig. 1.3 Estructura del ZTC [28]

1.3.2 Propiedades

Estos materiales carbonosos presentan red porosa con baja tortuosidad,

que reduce los problemas difusionales de iones y moléculas en la misma,

una elevada área superficial, así como una elevada reactividad dada por el

gran número de sitios esquina en su estructura. Estas propiedades los

hacen materiales ideales para diversas aplicaciones: adsorción, electrodo

para supercondensadores, soporte de catalizador, almacenamiento de

energía y pilas de combustible. [28].

2 Química superficial en los materiales carbonosos

La química superficial de los materiales carbonosos juega un papel

determinante en sus propiedades físico-químicas, lo que determina en

gran medida las posibles aplicaciones de los mismos. Dicha química está

definida en gran parte por la presencia de distintos heteroátomos

formando diferentes funcionalidades en su superficie. En los materiales

Page 37: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

22

carbonosos, los heteroátomos que se encuentran más frecuentemente son

oxígeno y nitrógeno, aunque también es posible encontrar fósforo, azufre

o boro, entre otros. La presencia de estos heteroátomos puede darse de

forma natural en la superficie del material carbonoso (como en el caso del

óxido de grafeno, donde la generación de funcionalidades de oxígeno es

un requisito para su obtención, o de cualquier material carbonoso que

posea sitios reactivos, que son oxidados de forma espontánea al entrar en

contacto con el aire). Así mismo, los heteroátomos pueden ser

introducidos durante su preparación o por medio de tratamientos

posteriores. La existencia de diversas funcionalidades rige la reactividad

de los mismos, su estabilidad física y química, estructura, y por

consiguiente las aplicaciones para las cuales pueden ser usados, dentro de

las cuales se encuentran: catálisis [29], almacenamiento y producción de

energía [30], adsorción [31], sensores [32], biomedicina [33], entre otras.

Esto se ha hecho evidente sobre todo en las últimas décadas con el

descubrimiento y desarrollo de nuevos materiales nanoestructurados,

aunque los estudios realizados en los materiales carbonosos clásicos como

el grafito, los negros de carbón y los carbones activados han sido

esenciales para poder comprender la influencia e importancia de la

química superficial en aquellos materiales, sirviendo estos estudios como

base para el desarrollo de técnicas de funcionalización para los mismos.

El desarrollo de tecnologías comerciales y la introducción de dispositivos

donde se usan materiales carbonosos nanoestructurados y sus

implicaciones prácticas es cada vez mayor. En este sentido, el control y

caracterización de la química superficial de estos materiales es un tema de

Page 38: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

23

gran interés, al que el mundo científico dedica un notable esfuerzo. Esta

dedicación se centra en el desarrollo y/o mejora de los métodos de

modificación de los grupos funcionales superficiales, así como su

posterior caracterización cualitativa y cuantitativa. En relación a la

caracterización de la química superficial, en las últimas décadas se han

desarrollado numerosos métodos y técnicas de caracterización, sobre todo

para el caso de las funcionalidades más frecuentes, de nitrógeno y oxígeno

[34,35]. Diversos ejemplos están disponibles en la literatura sobre este

tema hoy en día: Román-Martínez et al. [36], Boehm [37], Pels et al. [38],

Biniak et al. [39], De la Puente et al. [40], Figueiredo et al. [41],

Kuznetsova et al. [42], Boehm [43], Raymundo-Piñero et al. [44], Zhou

et al. [45], Gorgulho et al. [46], Karousis et al. [47], y Kundu et al. [48].

La presente tesis doctoral está enfocada a la modificación superficial de

materiales carbonosos nanoestructurados, en particular empleando

técnicas electroquímicas para dicho propósito. Actualmente existen gran

cantidad de técnicas disponibles para la funcionalización de materiales

carbonosos, químicas y electroquímicas; las primeras se describirán

brevemente y las segundas se detallarán en mayor profundidad al ser uno

de los motivos del presente trabajo.

3 Reactividad de la superficie de los materiales carbonosos

Los materiales carbonosos nanoestructurados han atraído la atención

debido a sus excelentes propiedades: elevada conductividad eléctrica,

elevada área superficial, elevada resistencia mecánica y química

superficial modificable, que los hacen excelentes candidatos parar su uso

en diversas aplicaciones [49].

Page 39: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

24

Como se detalló en el apartado 1.1 de la presente tesis, los materiales

carbonosos nanoestructurados con hibridación sp2 están compuestos

principalmente por una o varias láminas de grafeno apiladas.

Independientemente de la disposición y curvatura de estas láminas, todos

los materiales carbonosos tienen sitios activos donde pueden formarse

enlaces covalentes entre moléculas externas y la superficie del material

carbonoso, formando un nuevo grupo funcional o una nueva molécula

anclados a la superficie.

La reactividad de los materiales carbonosos ha sido objeto de discusión

desde hace décadas, y aún hay diversas teorías sobre su reactividad. Desde

hace tiempo se ha considerado que existen diferencias marcadas entre la

reactividad de átomos de carbono con enlaces covalentes carbono-

carbono ubicados dentro de la lámina de grafeno, es decir, los sitios del

plano basal, y la de los que se encuentran en los bordes de la lámina

grafénica, del tipo zig-zag o tipo silla de montar [50–52]. Actualmente

todavía existe cierta controversia sobre la naturaleza de los sitios activos,

aunque estudios recientes confirman que los sitios tipo carbino de los

bordes del plano basal en posiciones tipo silla de montar y los sitios

carbeno en posiciones zig-zag, son los responsables de la reactividad del

grafeno y de los nanotubos de carbono [53–55]. Estos átomos de carbono

están en un estado de valencia insaturado y son más reactivos que los que

están en el plano basal. Por lo tanto, la relación entre el número de átomos

del plano basal y el de los bordes, que está directamente relacionado con

el tamaño de la lámina grafénica, es un buen indicador de la reactividad

Page 40: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

25

del material carbonoso, y en consecuencia, de las posibilidades de formar

funcionalidades covalentemente ancladas a la superficie.

No obstante, el plano basal no es inactivo. El plano basal tiene una alta

densidad electrónica π, que contiene electrones deslocalizados, lo que

incrementa el potencial de adsorción del grafeno [56], y permite la

funcionalización no-covalente y da cierta basicidad a la superficie del

material carbonoso [57]. Otro ejemplo de su reactividad, es la posibilidad

de formar grupos epóxido en el plano basal por el spillover del dioxígeno

adsorbido en sitios tipo carbeno de los sitios del borde [58], abriendo la

posibilidad para la funcionalización en las paredes de los nanotubos de

carbono.

La tensión inducida en los enlaces C-C por la curvatura de las láminas

grafénicas también puede afectar en gran medida a la reactividad del plano

basal, especialmente en los nanotubos de carbono [59,60]. Esto puede

estar relacionado también con la presencia de pentágonos o heptágonos en

la red hexagonal, que llevan a una alteración de la curvatura en el plano

basal y que actúan como sitios reactivos para la oxidación de los

nanotubos y grafeno, por ejemplo [61].

Los materiales preparados por métodos de nanomoldeo empleando

plantillas inorgánicas, como en el caso de los ZTC, presentan una mayor

reactividad ya que cuentan con láminas de grafeno con cierta curvatura.

Como se detalló con anterioridad, estos materiales están compuestos por

láminas de grafeno muy curvadas y con un gran número de defectos y

átomos con hibridación sp3 que hace que estos materiales sean

especialmente reactivos ante la presencia de oxígeno, pudiendo también

Page 41: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

26

ser electrooxidados con mayor facilidad que otros tipos de materiales

carbonosos obtenidos a partir de los mismos precursores y en condiciones

similares, pero sin hacer uso de una plantilla [26,62].

Es importante señalar que las diferencias de reactividad entre los átomos

del plano basal y los sitios del borde de las láminas se pueden ver

reducidas por la selección del tipo de material y de la técnica para la

funcionalización. Por ejemplo, Dongil et al. [63] estudiaron la generación

de grupos funcionales oxigenados en un grafito de alta área superficial y

en nanofibras de carbono, que tienen diferente relación de átomos borde

– plano basal. Se llevó a cabo la funcionalización usando el método

tradicional de oxidación con HNO3 concentrado y oxidación por plasma.

El primer tratamiento oxida principalmente sitios esquinas en el borde de

la lámina; en cambio, por el segundo tratamiento es posible la oxidación

tanto de los sitios esquina como del plano basal [64]. En términos de

eficiencia, la oxidación para el grafito de alta área superficial fue más

efectiva que para las nanofibras, siendo más alta cuando se combina con

la funcionalización con HNO3. Este ejemplo demuestra que es posible

emparejar técnicas de funcionalización y materiales de distintas estructura

para conseguir una funcionalización eficiente.

En general, una gran cantidad de sitios borde puede verse como una

ventaja para llevar a cabo la funcionalización covalente de materiales

carbonosos. Los materiales con estructuras desordenadas y porosas como

los carbones activados suelen contar con una mayor cantidad de este tipo

de sitios, sin embargo ya se han mencionado materiales carbonosos

nanoestructurados de elevada porosidad que poseen esta característica

Page 42: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

27

[62]. En este tipo de materiales porosos la limitación para poder

aprovechar los sitios activos está dada por problemas difusionales que

hacen que muchos de dichos sitios activos sean inaccesibles para el

anclaje de grupos funcionales. En el caso de materiales carbonosos

altamente ordenados y de mayor superficie expuesta, como el grafeno o

los nanotubos, los sitios esquina pueden encontrarse como defectos

generados durante su síntesis [65] o pueden ser generados a propósito

mediante tratamientos de oxidación, que en el caso concreto de los

nanotubos de carbono, suele suceder en sus puntas, que presentan una

elevada curvatura, donde las tensiones debilitan los enlaces C-C [59]. Sin

embargo, un exceso de generación de sitios activos para su posterior

funcionalización puede modificar notablemente las propiedades que

hacen valiosos a estos materiales carbonosos nanoestructurados, como

son la conductividad eléctrica o la resistencia mecánica, entre otras

[66,67]. Esta degradación del material debe por tanto evitarse. Toda esta

casuística explica la necesidad de desarrollar nuevas técnicas de

funcionalización que permitan un mayor control sobre el avance de la

misma.

4 Funcionalización química de materiales carbonosos

4.1 Métodos de funcionalización no covalente

La funcionalización no covalente es una alternativa de modificación que

permite preservar la conjugación π de los materiales carbonosos

nanoestructurados, lo cual es un requerimiento de numerosas aplicaciones

[68,69]. Para este tipo de funcionalización se emplean polímeros [70,71],

surfactantes [72], enzimas, proteínas [73] y moléculas con grupos amino

Page 43: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

28

en su estructura [74]. Las interacciones entre la molécula y la superficie

del material carbonoso se dan entre el sistema π de su estructura y ligandos

que contienen hidrógeno, cationes, y aniones o electrones π en la

estructura de la molécula, lo que lleva a implicaciones energéticas y

geométricas que han sido estudiadas con detalle [69]. Es posible encontrar

un amplio número de estudios de moléculas con grandes sistemas π que

son fuertemente adsorbidas en la superficie del material carbonoso

[69,75].

La fortaleza de la funcionalización no covalente está dada por la

combinación de distintos efectos: electrostáticos, dispersivos, inductivos,

y fuerzas de repulsión; y está basada en gran medida en el sistema de

electrones π deslocalizados en la estructura del material carbonoso.

Consecuentemente, esta funcionalización es muy adecuada para

materiales con una estructura ordenada y con una gran superficie

aromática expuesta, como los nanotubos de carbono [68,73] y el grafeno

[76,77]. Además de preservar las propiedades de estos materiales

carbonosos, la funcionalización no covalente facilita su procesabilidad,

permitiendo preparar tintas y suspensiones de los mismos de elevada

concentración, incluso empleando agua como disolvente [78]. En el caso

de materiales porosos existen algunos ejemplos [79], pero en este tipo de

materiales la adsorción de moléculas grandes conlleva el bloqueo de la

porosidad, lo que impone una severa limitación al uso de esta

funcionalización.

Page 44: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

29

4.2 Métodos de funcionalización covalente

La funcionalización covalente por medio de métodos químicos genera la

adición de heteroátomos o moléculas al material carbonoso. La

incorporación de átomos como oxígeno, nitrógeno, azufre y fósforo

[65,80–83], ha sido estudiada con profusión y ofrece un mayor

rendimiento que el anclaje de otras moléculas de carácter orgánico y

mayor tamaño, en las que los rendimientos del proceso son generalmente

bajos. La funcionalización covalente es aplicable a cualquier tipo de

material carbonoso incluyendo materiales carbonosos nanoestructurados

como nanotubos de carbono, nanofibras de carbono y grafeno [77,84–87].

Por este motivo, existe un gran número de publicaciones sobre la

modificación de la química superficial por introducción de heteroátomos,

ya que las funcionalidades que se generan son útiles en diferentes

aplicaciones. Por ejemplo, dichos heteroátomos pueden actuar como sitios

activos o como promotores de actividad en un catalizador, pueden

proporcionar funciones redox útiles para almacenamiento de energía

eléctrica o como catalizador, pueden incrementar la hidrofilicidad y

modificar la carga y polaridad de la superficie, pueden ser puntos de

anclaje para subsiguientes funcionalizaciones del material carbonoso o

pueden mejorar la resistencia a la oxidación y electro-oxidación del

material.

Existe una gran disponibilidad de literatura científica sobre la

funcionalización de materiales carbonosos clásicos como grafito, negros

de carbón y carbones activados, la cual sirvió de base para aplicar estos

métodos de funcionalización a nuevas formas de carbono. Así, es posible

Page 45: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

30

encontrar estudios de oxidación de negros de carbón, carbones activados,

fibras de carbón activadas y grafitos [88–90]; modificación química de

electrodos de carbón [91]; generación de grupos nitrogenados en la

superficie de carbones activados [92,93] y nanofibras de carbón activadas

[94]; inmovilización de enzimas [95] o porfirinas sobre carbón vítreo [96]

y carbones activados [97]; funcionalización de negros de carbón por

polímeros anclados [98]; etc. Estos son algunos ejemplos de la gran

cantidad de bibliografía que existe al respecto que se ha recogido

parcialmente en revisiones recientes [99–101]. En particular, se han

realizado extensas revisiones sobre funcionalización de nanotubos de

carbono [47,59,87,102–105] y grafeno [65,69,77,106–114]. Como

conclusión general de lo recogido en estos estudios, se puede deducir que,

con el empleo de métodos químicos para la funcionalización de materiales

carbonosos con heteroátomos, se consigue una baja selectividad en la

funcionalización.

En las siguientes secciones se presentará un breve resumen de los métodos

usualmente empleados para la modificación covalente con diferentes

grupos funcionales de oxígeno, nitrógeno, azufre y fósforo.

4.2.1 Funcionalización con grupos oxigenados

Los grupos funcionales oxigenados son inherentes a cualquier superficie

carbonosa expuesta a la atmósfera. Tradicionalmente, los grupos

superficiales oxigenados (SOGs) están divididos en dos grupos

dependiendo la naturaleza ácida y básica (o neutra) de los mismos

[35,37,88]. En esta clasificación, los grupos carboxílicos, anhídridos y

lactonas corresponden a grupos ácidos, mientras que los fenoles,

Page 46: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

31

quinonas, carbonilos y éteres son considerados grupos ligeramente

básicos. En la Fig 1.4 se presenta un esquema de una lámina de grafeno

con los grupos superficiales oxigenados más frecuentes, además se

incluyen sitios activos, como radicales en borde o centro de lámina o

enlaces tipo carbino en borde de lámina, que son también de notable

importancia cuando se analiza la química superficial de los materiales

carbonosos [30,115].

Fig. 1.4 Sitios activos y grupos funcionales oxigenados más frecuentes en la superficie del material carbonoso [30,115]

Existen dos rutas tradicionales para la generación de grupos superficiales

oxigenados: i) la oxidación húmeda [90,116–118], donde el material

carbonoso está en contacto con una disolución de un agente oxidante, y ii)

oxidación seca, donde la superficie del material carbonoso está expuesta

Page 47: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

32

a un gas oxidante, usualmente aire, a temperaturas moderadas [118,119].

La oxidación por plasma es otro método disponible para este propósito,

sin embargo su uso es menos frecuente [64,118].

La ruta de oxidación húmeda se usa preferentemente para la formación de

grupos ácidos, mientras que la oxidación en aire genera mayores

cantidades de grupos básicos o neutros. De cualquier manera, la

selectividad de estos métodos es baja. Todos los tipos de grupos pueden

descomponer como CO y CO2 cuando se calientan [36], haciendo que los

sitios activos estén disponibles y puedan ser reoxidados al poner en

contacto de nuevo el material carbonoso con la atmósfera de oxígeno.

Estos grupos descomponen en diferentes intervalos de temperatura [41] y

se pueden emplear tratamientos térmicos subsecuentes en atmósferas

inerte o reductora para modular en algún grado la naturaleza de los SOGs

[36].

4.2.2 Funcionalización con grupos nitrogenados

El nitrógeno es uno de los heteroátomos que se encuentra más

frecuentemente en la superficie de los materiales carbonosos. En general,

el nitrógeno puede encontrarse enlazado a uno (grupo amino) o dos

(grupos piridínicos y pirrólicos) átomos de carbono y pueden también

sustituir un átomo de carbono del centro de la lámina grafénica (nitrógeno

cuaternario) [39,44]. La posición del heteroátomo de nitrógeno en la

lámina grafénica rige las propiedades de esos grupos y puede producir

cambios estructurales locales en la lámina grafénica. Por ejemplo, los

grupos piridínicos y pirrólicos en el interior de la lámina involucran la

aparición de una vacante, y el nitrógeno cuaternario en una posición

Page 48: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

33

cercana al borde de la lámina de grafeno es más estable que en una

posición central [120]. También existen grupos funcionales nitrogenados

que involucran funcionalidades oxigenadas (i.e. grupos piridonas). En la

Fig 1.5 se presentan los diferentes grupos funcionales nitrogenados que se

pueden generar en la superficie de los materiales carbonosos.

Fig. 1.5 Grupos funcionales nitrogenados encontrados en la superficie del material carbonoso

Cada una de estas funcionalidades modifica las propiedades

fisicoquímicas de los materiales carbonosos: la basicidad de la superficie

que puede mejorar las interacciones entre la superficie del material

carbonoso y moléculas ácidas, su hidrofilicidad, su reactividad química y

estabilidad electroquímica o su conductividad eléctrica, entre otras [121].

Esto es favorable para su uso en diferentes aplicaciones como la captura

de CO2 [122], remediación ambiental [123], almacenamiento de energía

[124], reemplazo del uso de metales nobles como catalizadores en las pilas

Page 49: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

34

de combustible [125] y otros sistemas catalizados, o aplicaciones

biomédicas [126].

Las funcionalidades nitrogenadas pueden generarse en la superficie de los

materiales carbonosos mediante el uso de diversos métodos, siendo los

más frecuentes los que se listan a continuación [37,81,86,127–129]:

- Reacción con reactivos que contienen nitrógeno, ya sea en fase gas

o fase líquida, habitualmente amoniaco, urea y NO

- Conversión de los grupos funcionales carboxilos en grupos amida

por activación del grupo carboxilo con cloruro de acilo

- Descomposición térmica de un precursor o polímero (melanina,

poliacrilonitrilo, polipirrol, polianilina, etc.) que contiene

nitrógeno en presencia de un material carbonoso

- Carbonización o depósito químico en fase vapor usando

precursores que contengan nitrógeno, y en algunos casos seguido

de una activación química o física para el desarrollo de porosidad

- Carbonización hidrotermal de precursores biomásicos con

contenido en nitrógeno

La temperatura es un efecto crítico en la selectividad de la reacción. En

general, el tratamiento a alta temperatura promueve la formación de

nitrógeno cuaternario, piridinas y pirroles, y la descomposición de

especies menos estables como las lactamas, aminas e iminas. La mayoría

de estos tratamientos se pueden usar para la funcionalización de los

nanotubos de carbono [83,86] o grafeno [69], y para ambos materiales la

posibilidad de formar amidas juega un papel importante en su posterior

funcionalización con polímeros, enzimas y proteínas.

Page 50: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

35

4.2.3 Incorporación de otros grupos funcionales

La funcionalización de materiales carbonosos con otros grupos

funcionales ha sido estudiada en menor medida, sin embargo existen

diferentes ejemplos de funcionalización con azufre, fósforo, boro, entre

otros.

El azufre puede encontrarse naturalmente en el carbón mineral, sin

embargo la mayor parte no está enlazada químicamente a la superficie del

material carbonoso. No obstante, diferentes tipos de funcionalidades de

azufre pueden estar ancladas al material carbonoso, que se clasifican

según el número de átomos de carbono enlazados a los átomos de azufre,

en sulfuros o sulfóxidos (dos átomos de carbono, siendo los más

frecuentes de encontrar) y en tioles o tioquinonas (un átomo de carbono).

Cada uno de ellos revisten a los materiales carbonosos con propiedades

diferentes [130]. En general, la presencia del azufre proporciona una

mayor estabilidad química, y funcionan como centro catalítico en

reacciones de transesterificación en conversión de biomasa [131],

reacciones de esterificación [132,133], reacciones de hidrogenación

[134], tratamientos para descontaminación de aguas [135–137] y

aplicaciones energéticas [138], lo que hace que estos materiales sean

apropiados para su aplicación en catálisis heterogénea y procesos de

adsorción y almacenamiento y conversión de energía [82].

En cuanto a las vías para generar grupos funcionales de azufre, a

diferencia del caso del nitrógeno no es frecuente que se utilice un

precursor rico en azufre como método para preparar un material que

contenga al mismo. Lo más habitual es emplear técnicas de post-

Page 51: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

36

modificación. Por ejemplo, se han realizado estudios de funcionalización

de carbones activados con azufre por reacción con reactivos que

contengan azufre como H2S, CS2 o SO2 [119]. Otros estudios han

mostrado el uso de métodos químicos para la modificación de nanotubos

de carbono [139,140], nanoesferas de carbón [130], grafeno [80,141,142],

carbones porosos [82], areogeles de carbón [143], entre otros.

El fósforo es otro heteroátomo que puede encontrarse en forma de grupos

funcionales en la superficie de los materiales carbonosos. El dopado de

éstos con fósforo se ha estudiado por largo tiempo para inhibir la reacción

C-O2 [144] debido a su capacidad de reducir la velocidad de oxidación

[145,146], y de servir como agente retardante de llama [29].

Los grupos funcionales de fósforo pueden anclarse directamente al

material carbonoso formando enlaces C-P o por medio de átomos de

oxígeno formando enlaces C-O-P. Se encuentra presente en forma de

fosfinas, fosfonatos, fosfatos y polifosfatos [147].

El método más frecuente para la funcionalización con fósforo es la

activación con ácido fosfórico de un precursor de carbono, usualmente

lignocelulósico. La polimerización de un precursor carbonoso en

presencia de oxoácidos de fósforo genera una estructura porosa altamente

desarrollada gracias a la formación de puentes fosfato y polifosfato en la

matriz carbonosa [147–149]. Otro método efectivo para anclar átomos de

fósforo en la superficie del material carbonoso es la impregnación con

compuestos organofosforados, H3PO4, POCl3, fosfatos ácidos o fosfatos

metálicos, seguido de un tratamiento térmico a temperaturas moderadas;

los materiales resultantes de estos tratamiento presentan una resistencia

Page 52: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

37

importante a la corrosión, gracias a las especies de fósforo que quedan

ancladas en la superficie del material carbonoso [145]. En los últimos

años, se han empleado con éxito tratamientos hidrotermales para la

introducción de grupos funcionales de fósforo en la superficie del material

carbonoso [150].

Además de su efecto inhibidor de la oxidación, los grupos funcionales de

fósforo modifican la acidez, las propiedades electroquímicas y la

reactividad de los materiales carbonosos. Estas propiedades son útiles en

diversas aplicaciones, destacando las catalíticas, donde actúan debido a

sus propiedades ácidas [146,149]. En el ámbito del almacenamiento de

energía, el fósforo ha sido propuesto como un agente dopante con un

efecto potencialmente parecido al del nitrógeno debido a que su

configuración electrónica es similar. También actúa como un agente

protector frente a la electrooxidación [151]. En el caso de nanotubos de

carbono, se ha conseguido la funcionalización para aplicaciones

catalíticas por oxidación, impregnación con (NH4)3PO4 como precursor

de fósforo, y calcinación hasta 550ºC [152]. También se han empleado

estrategias como la termólisis para la preparación de grafito y nanotubos

de carbono dopados con fósforo mostrando una aplicación potencial para

la reducción de oxígeno como un catalizador libre de metales [153].

En el caso de la funcionalización con boro, esta produce una modificación

importante en las propiedades electrónicas del material carbonoso sin

causar notables cambios estructurales, incluso cuando se introduce una

cantidad muy pequeña. Las especies de boro han sido usadas para proteger

los materiales compuestos de carbono a la oxidación [154] y para mejorar

Page 53: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

38

la fisisorción del hidrógeno [155]. También es un elemento dopante tipo

p con actividad electrocatalítica cuando se inserta en nanotubos de

carbono y grafeno [156]. Se ha encontrado que cataliza la grafitización

[157] y mejora del rendimiento de los electrodos en las baterías de ion-Li

[158].

5 Funcionalización electroquímica de materiales

carbonosos

El uso de técnicas electroquímicas presenta diversas ventajas comparadas

con las rutas químicas tradicionales: i) los procedimientos son sencillos

de aplicar y controlar, pudiendo ser inmediatamente interrumpidos, ii)

pueden realizarse a temperatura ambiente, presión atmosférica y usando

volúmenes y cantidades de reactivos muy pequeñas, iii) las condiciones

de reacción pueden ser reproducidas con gran precisión, y iv) los métodos

son altamente sensibles y selectivos [159,160].

Por norma general se suelen emplear tres métodos electroquímicos en la

funcionalización de materiales carbonosos:

- Métodos potenciostáticos, donde al electrodo se le aplica un

potencial constante.

- Métodos potenciodinámicos, que están basados en un barrido de

potencial en el tiempo.

- Métodos galvanostáticos donde la corriente se mantiene constante

durante el proceso.

Estas técnicas pueden aplicarse para conseguir funcionalización covalente

y no covalente de materiales carbonosos [161,162], lo cual depende

Page 54: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

39

principalmente del tipo de reactivos que son empleados durante la

modificación.

5.1 Funcionalización no covalente

Las técnicas electroquímicas han sido utilizadas con profusión con el

propósito de crecer controladamente películas delgadas de un polímero

sobre la superficie del material carbonoso. Estas síntesis se llevan a cabo

en electrolitos donde se añaden los monómeros necesarios para la síntesis.

El polímero se forma habitualmente mediante la formación de radicales

del monómero presente en disolución, frecuentemente mediante la

oxidación electroquímica del mismo formando un radical-catión, sobre la

superficie del electrodo. Este radical causa la nucleación y crecimiento del

polímero, el cual puede interaccionar con la superficie del electrodo,

formando una película que lo recubre. También es posible generar

electropolimerizaciones indirectas o con la coparticipación del electrolito.

De acuerdo con las condiciones requeridas para la funcionalización, se

emplea polarización positiva o negativa de la superficie utilizando las

técnicas anteriormente nombradas (galvanostáticas, potenciostáticas,

potenciodinámicas) [73]. Aunque otras reacciones no deseadas (la

descomposición del disolvente, la oxidación del polímero o la

degradación del material electródico, entre otras) pueden ocurrir a la vez

que la polimerización, por lo que una adecuada selección de los

parámetros y del método electroquímico es necesaria para evitar que

ocurran la mayor parte de las mismas.

Las películas poliméricas así formadas suelen interaccionar con el

material carbonoso mediante funcionalización no covalente, aunque no se

Page 55: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

40

puede descartar que ocurra el anclaje de monómeros directamente a la

superficie del material carbonoso o a través de funcionalidades ya

existentes [163]. El principal ejemplo de este tipo de funcionalización es

el depósito de películas de polianilina (PANI). Éstas han sido depositadas

por ejemplo sobre la superficie de carbones activados y fibras de carbón

activadas por medio de métodos químicos y electroquímicos,

obteniéndose materiales con mayor capacidad en medio acuoso que el

material original cuando son caracterizados como electrodos de

supercondensadores [164]. Según las condiciones empleadas, es posible

crecer una película delgada de PANI sobre la microporosidad de las fibras,

que permite una fuerte interacción entre la PANI y la superficie del

material carbonoso, evitando que ésta se desorba o se degrade cuando el

electrodo es cargado y descargado de forma cíclica. Además, el desarrollo

de películas delgadas en el interior de poros o sobre la superficie de los

materiales carbonosos reduce los problemas generados por el cambio de

volumen de los polímeros cuando se someten a ciclos continuos de carga-

descarga [164,165].

5.2 Funcionalización covalente

Es posible emplear un tratamiento electroquímico, implicando por tanto

una transferencia de electrones o una reacción faradaica, para

funcionalizar un material carbonoso empleado como electrodo, en el cual

se formarán enlaces covalentes entre la superficie del mismo y una

molécula disuelta, un ion del electrolito o incluso moléculas del disolvente

[166]. Esta estrategia puede emplearse para incorporar una variedad de

grupos funcionales a la estructura del material carbonoso. Estas funciones

Page 56: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

41

pueden estar compuestas por grupos funcionales simples o moléculas

orgánicas con distintas formas, tamaños y grados y tipos de

funcionalidades, lo que provee al material resultante de diferentes

propiedades superficiales. El anclaje electroquímico se puede llevar a

cabo por reacciones de oxidación o de reducción; ambos tienen diferentes

ventajas que deben ser consideradas dependiendo del tipo de

funcionalización que se requiera; por ejemplo, en algunos casos es

necesario evitar condiciones oxidativas porque pueden resultar en una

oxidación indeseada del material carbonoso. Sin embargo, esta oxidación

puede ser aceptable e incluso deseable en otros casos [167].

La funcionalización covalente en materiales carbonosos

nanoestructurados está definida por la presencia de pentágonos y

heptágonos en la lámina de grafeno (defectos Stone-Wales), existencia de

vacantes, sitios puntas, así como la curvatura de la lámina en el caso

particular de los nanotubos de carbono. La presencia de defectos genera

una reactividad localizada que permite el anclaje de distintas moléculas,

que afecta, entre otras, a las propiedades electrónicas [168].

5.2.1 Técnicas de reducción

Estos métodos emplean la polarización negativa del electrodo de trabajo

para conseguir la funcionalización electroquímica de la superficie del

material carbonoso. Existen diferentes estudios utilizando este enfoque,

en los que se destacan la reducción de sales de diazonio y compuestos

vinílicos, entre otros [166].

La reducción de sales de diazonio es la técnica de reducción más

representativa y ampliamente estudiada. El procedimiento se inicia con la

Page 57: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

42

formación de un radical arilo, que se produce por la reducción de una sal

de diazonio aromática. Este radical reacciona con la superficie del

material carbonoso produciendo un enlace covalente entre un átomo de

carbono y el grupo arilo [94]. Como la sal de diazonio no es estable, es

necesario prepararla en el momento en que se hace la reacción; así, la sal

de diazonio se sintetiza a partir de una amina aromática en la misma celda

electroquímica donde se realiza el tratamiento electroquímico, con la

ventaja de ser generada en la cercanía de la superficie del electrodo, que

es donde ocurre luego la reducción, generando una capa delgada en la

superficie del electrodo [32]. Este tipo de modificación puede ser hecha

en diferentes disolventes y electrolitos: medio orgánico, comúnmente

acetonitrilo [167]; medio ácido acuoso [166] y líquidos iónicos [169].

Esta vía para la funcionalización mediante reducción de sales de diazonio

se ha empleado con diferentes materiales carbonosos: carbón vítreo

[94,167], nanotubos de carbono [169–171], grafito pirolítico altamente

orientado (HOPG) [172] o fibras de carbón [173], entre otros.

En este tipo de técnica se puede usar una gran variedad de sales de

diazonio aromáticas con diferentes heteroátomos o grupos funcionales

(Br, Cl, NO2, COOH, SO3H). El disolvente usado en este tipo de

funcionalización no tiene un efecto significativo ya que las sales de

diazonio en acetonitrilo y la preparación in situ de los radicales en

disoluciones acuosas llevan a el anclaje de moléculas con resultados

reproducibles; como consecuencia, la generación in situ del radical en

disolución acuosa es una buena alternativa para anclar moléculas que son

insolubles en disolventes orgánicos [167]. Para el caso de los materiales

Page 58: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

43

carbonosos nanoestructurados, la funcionalización de nanotubos de

carbono de pared simple empleando sales de diazonio produce diferentes

grados de funcionalización dependiendo de la reactividad de la sal y de la

superficie del nanotubo de carbono, ya que la presencia de defectos y el

tamaño de los tubos tienen una gran implicación en la modificación de

estos materiales [84].

Otro ejemplo de funcionalización de nanotubos de carbono de pared

múltiple mediante estas vías es la funcionalización con poliacrilonitrilo

empleando técnicas de polarización negativa. Como resultado se encontró

que los nanotubos de carbono modificados presentaban una solubilidad

mejorada a la de los nanotubos de carbono originales en algunos

disolventes. Por otro lado, este proceso requiere unas condiciones muy

restrictivas en medio orgánico, lo que se presenta como una desventaja

comparada con otras técnicas que permiten el uso de disolventes acuosos

[174].

5.2.2 Técnicas oxidativas

La segunda alternativa para el anclaje de diferentes funcionalidades y de

moléculas orgánicas en la superficie del material carbonoso son las

técnicas oxidativas. Con este objetivo, se ha estudiado el anclaje oxidativo

de aminas, carboxilatos y alcoholes, lo que proporciona una amplia

variedad de funcionalidades disponibles que dependerán del precursor

empleado [166].

La oxidación de aminas, ya sean aromáticas o alifáticas, para el anclaje de

funcionalidades a la superficie el del material carbonoso puede realizarse

por técnicas electroquímicas como la voltamperometría cíclica y la

Page 59: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

44

cronoamperometría. El proceso involucra la oxidación del grupo amino

que genera un radical, que posteriormente es anclado a la superficie

mediante un enlace C-N, lo que proporciona diferentes propiedades según

la naturaleza de la amina empleada. Las aminas primarias, secundarias y

terciarias tienen diferente reactividad; las aminas primarias son las más

reactivas y las terciarias las de menos reactividad; en algunos casos puede

ser que éstas no reaccionen debido a efectos estéricos [175].

Un ejemplo del uso de este tipo de técnicas es la modificación de la

superficie de carbón vítreo con diferentes ácidos aminobezoicos, el cual

ha servido de base para parte de la investigación realizada en esta tesis

doctoral: ácido 4-aminobenzoico [176], ácido 4-aminobencensulfónico

[177] y ácido 4-aminobencilfosfónico [178]. Este ejemplo muestra la

posibilidad de realizar la funcionalización en medio acuoso, siendo

posible anclar sobre la superficie del material carbonoso empleado como

electrodo, moléculas orgánicas dotadas con grupos funcionales distintos

carboxílico, sulfónico y fosfónico, respectivamente. En este proceso se da

la oxidación irreversible del grupo amino, pudiéndose generar

funcionalización covalente e incluso una película delgada sobre la

superficie del electrodo que bloqueará oxidaciones posteriores. Estos

electrodos modificados pueden ser empleados en aplicaciones de sensores

debido a que tienen un carácter ácido [176,177,179]. En el caso del ácido

4-aminobencilfosfónico, pueden darse dos reacciones: la oxidación del

grupo amino donde se ancla al material carbonoso por un enlace C-N y la

reacción Kolbe donde se forma HPO3 y se da un enlace C-C entre la

molécula orgánica y la superficie. La posibilidad de que se favorezca una

Page 60: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

45

u otra reacción vendrá dictada por el valor de potencial empleado durante

la funcionalización. Para conseguir el enlace C-N, es necesario un

potencial de 0.75 V (vs. Ag/AgCl), mientras que para el enlace C-C se

requiere un potencial de 0.9 V (vs. Ag/AgCl). Este ejemplo muestra la

gran versatilidad que poseen las técnicas electroquímicas a la hora de

controlar la selectividad del proceso, permitiendo favorecer la

funcionalización requerida [178].

Existen diferentes ejemplos sobre la funcionalización de telas de grafito

por oxidación de aminas, empleando diferentes disoluciones acuosas a

diferentes pH. En todos los casos se ha encontrado que se generan enlaces

químicos tipo puente amida entre los grupos carboxilo generados en la

superficie del grafito y los grupos amino de las moléculas ancladas. Estos

materiales han sido ampliamente estudiados como catalizadores para la

oxidación de alcoholes y cetonas en los que las moléculas ancladas son la

fase activa del catalizador [180].

5.2.2.1 Oxidación electroquímica de materiales carbonosos

Como oxidación electroquímica de materiales carbonosos se entiende la

generación de SOGs en la superficie del electrodo de trabajo cuando se

aplica una polarización positiva al mismo. Este tipo de funcionalización

se conoce desde hace décadas, siendo aplicable potenciostática y

potenciodinámicamente para conseguir el mismo fin [181,182]. Sin

embargo, dichos estudios fueron orientados inicialmente para entender el

proceso de oxidación de materiales carbonosos con el propósito de

extender el tiempo de vida de los electrodos de carbón comerciales [183]

más que con el fin de modificar la química superficial por formación de

Page 61: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

46

funcionalidades oxigenadas. Los primeros trabajos que desarrollan el

empleo de estas condiciones teniendo por objetivo producir

funcionalidades oxigenadas buscaron mejorar las prestaciones de los

materiales carbonosos para aplicaciones específicas: mejora de materiales

compuestos basados en fibras de carbón [89,184]; mejora de la capacidad

de adsorción por generación de microporosidad en nanofibras de carbón

[185]; mejora en la accesibilidad de la superficie de nanotubos de carbono

que se puede emplear como soporte de nanopartículas de platino

depositadas por electroreducción para aplicaciones de catálisis [186]. En

el caso del grafeno, los tratamientos electroquímicos están más enfocados

a la electroreducción del óxido de grafeno para obtener grafeno reducido;

por lo que en este caso en particular lo que se busca es una reducción

selectiva de los grupos oxigenados para adaptar el material a una

aplicación [187,188].

La electrooxidación de la superficie de un material carbonoso puede darse

por dos mecanismos: (i) la oxidación directa en la que se da una

polarización directa del material dando paso a la formación de grupos tipo

fenol y oxidación a quinonas y subsecuentemente formación de carboxilos

por la oxidación de especies tipo CO, y (ii) la oxidación indirecta que

ocurre por la formación de agentes oxidantes sobre los electrodos de

óxidos metálicos así como en la superficie misma del material carbonoso.

La naturaleza de estas especies es diferente y depende del electrolito y

electrodo empleados. En medio libre de cloro, la reacción de

desprendimiento de oxígeno por la oxidación del agua produce especies

oxidadas intermedias como radicales hidroxilo. En el caso de electrolitos

Page 62: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

47

clorados, la reacción de desprendimiento de cloro puede ocurrir junto con

la formación de oxígeno, que forma especies altamente oxidantes, como

cloro, ácido hipocloroso e iones hipoclorito, que participan en el proceso

de electrooxidación [62].

6 Aplicaciones de los materiales carbonosos

En las secciones anteriores se han destacado las propiedades físico-

químicas de los materiales carbonosos que los hacen apropiados para un

gran número de aplicaciones en el ámbito de la electroquímica. Dado que

en el presente trabajo se dará uso a los materiales preparados en

aplicaciones de almacenamiento y producción de energía, en particular

como electrodo en las pilas de combustibles, y así mismo su amplio uso

en los sensores electroquímicos, se presentará una breve descripción de

dichas aplicaciones.

6.1 Pilas de combustible

Las pilas de combustible son dispositivos energéticos compuestos por

múltiples células electroquímicas individuales, en las cuales se lleva a

cabo una reacción de combustión. La reacción global de combustión que

ocurre en la pila es consecuencia de la suma de las reacciones individuales

que suceden en las semi-células que la componen, a saber: (i) la oxidación

del combustible, que ocurre en la semi-célula denominada ánodo, (ii) la

reducción del comburente, que ocurre en la semi-célula denominada

cátodo. Ambas semi-células están separadas por una membrana de

permeabilidad selectiva a iones. En estos dispositivos, a diferencia de las

baterías, el combustible es alimentado continuamente por una fuente

externa. El combustible es alimentado al ánodo, donde se suele emplear

Page 63: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

48

como fase activa un metal noble, como el platino, o una aleación donde

participen metales de menor costo. El comburente es alimentado al

cátodo, cuya formulación es más variable, aunque actualmente suele

contar con platino como fase activa. Las reacciones que ocurren en ambos

electrodos producen un flujo de corriente eléctrica donde los electrones se

desplazan del ánodo al cátodo, estableciéndose un voltaje en la celda que

dependerá de los potenciales de cada una de las semi-células.

Estos dispositivos son por tanto empleados para la producción eficiente

de energía eléctrica, donde cuentan con diferentes aplicaciones como la

locomoción, la generación de energía estacionaría, portátil y el

abastecimiento de sistemas de emergencia. Estos dispositivos poseen

grandes ventajas frente a las tecnologías convencionalmente usadas para

la producción de energía: (i) pueden operar con eficiencias mejores que

los motores de combustión, (ii) pueden convertir la energía química de un

combustible en energía eléctrica con eficiencias cercanas a un 60%; (iii)

tienen menores emisiones que los motores de combustión convencionales;

en el caso de la pila de combustible de hidrógeno, ésta solo emite agua, lo

que se traduce en que no hay emisiones al aire de dióxido de carbono y

otros contaminantes como el SO2, partículas o los NOx [189].

6.1.1 Tipos de pilas de combustible

Las pilas de combustible convierten energía química de un combustible

en energía eléctrica. Por ello, se pueden clasificar en función del

combustible elegido, así como del electrolito empleado, que determina las

temperaturas de operación y las reacciones que ocurrirán en los electrodos

[190]. Cada tipo de pila de combustible tiene procesos y reacciones

Page 64: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

49

diferentes en sus electrodos, que determinan su operación [190]. En la Fig.

1.6 se presenta de manera esquemática el funcionamiento con las

reacciones correspondientes para los distintos tipos de pilas de

combustibles.

Fig. 1.6 Esquema de los distintos tipos de pilas de combustible [190]

En la actualidad la mayoría de estudios emplea el hidrógeno como

combustible ya que el único producto es agua. Sin embargo, es posible

emplear otros combustibles, principalmente alcoholes y otros

hidrocarburos, destacando entre ellos el metanol, y también otros como el

ácido fórmico, el formaldehído, el etanol, el etilenglicol o incluso gases

que sirvan de fuente de hidrógeno, como el metano, bajo condiciones muy

específicas.

H2

H2OAFC (60-90°C)

PEMFC (60-90°C)

DMFC (60-90°C)

PAFC (180-220°C)

MCFC (550-650°C)

SOFC (800-1000°C)CO, H2

H2O, CO2

CO, H2

H2O, CO2

H2

H2

CH3OHCO2

H+

H+

H+

OH-

CO32-

O2-

Carga

O2

H2O

O2

H2O

O2

H2O

O2

CO2

O2

O2

ÁNODO CÁTODO

ELECTROLITOCombustible

Gases sin reaccionar (H2, CO, etc.)

Aire, O2

Gases sin reaccionar (O2, N2)

Page 65: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

50

Los dos prototipos más empleados son aquellos que usan el hidrógeno

molecular y el metanol como combustibles, denominándose pila de

combustible de membrana polimérica (PEMFC, por sus siglas en inglés)

y pila de metanol directa (DMFC). La Fig. 1.7 muestra los componentes

esenciales de estos tipos de pilas. La PEMFC está compuesta por varios

elementos y componentes: el ensamblaje membrana-electrodo (MEA, por

sus siglas en inglés), los repartidores de flujo (platos bipolares, que

también aseguran el contacto eléctrico con la siguiente celda), juntas para

prevenir las fugas y las placas que aseguran el cierre. La MEA está

constituida por una capa delgada (10 – 200 µm) de la membrana

polimérica, pegada a ambos lados de los electrodos (ánodo y cátodo). Los

electrodos poseen varias capas: la primera hecha de papel o tela de carbón

para dar rigidez a la estructura, que se recubre con el difusor de gas y

posteriormente la capa de catalizador directamente en contacto con la

membrana protónica.

En ambos tipos de pilas la difusión del protón del ánodo hacia el cátodo

es fundamental para conseguir que la reacción se produzca de forma

eficiente. Esta función es completada por la membrana de separación, la

cual suele consistir en una membrana ionomérica selectiva construida con

politetrafluoroetileno sulfonado (Nafion ®). Además, en los sistemas de

generación de energía portátiles es de notable importancia conseguir que

la pila opere eficientemente a temperaturas razonables (<80 ºC), lo cual

puede conducir a la combustión incompleta del metanol en las DMFC,

produciéndose CO que causa problemas de envenenamiento de la fase

activa, especialmente si el CO alcanza el cátodo.

Page 66: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

51

Fig. 1.7 Esquema de los componentes de una PEMFC

6.1.2 Los materiales carbonosos en las pilas de combustibles

Los materiales carbonosos han sido ampliamente utilizados en las pilas de

combustible por sus diversas propiedades, tales como: elevada

conductividad eléctrica, estabilidad en las condiciones de operación de la

pila (medio ácido/básico, ambiente oxidante/reductor, temperaturas

relativamente altas, etc.) y bajo costo. En las pilas de combustible de baja

temperatura (AFC, PEMFC y DAFC) los materiales carbonosos son

Placabipolar

Placa bipolar

Difusor de gas

Difusor de gas

Ánodo Cátodo

MEA

Difusor de gas

Capa de catalizador

Membrana polimérica (~100µm)

0.5 – 0.9 V

Page 67: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

52

principalmente usados como material en las placas bipolares, componente

en los difusores de gas y como soporte del catalizador.

Los difusores de gases están posteriormente a la capa de catalizador para

mejorar la distribución de los gases y el flujo del agua en la celda. Estas

placas tiene que ser porosas para dar paso a los gases de reacción, deben

tener una buena conductividad eléctrica, una elevada resistencia mecánica

y química, y tener carácter hidrofóbico para que el agua producida no

sature la MEA y reduzca la permeabilidad de los gases. La estructura de

los difusores de gases está determinada por el tipo de material carbonoso

y por el polímero hidrofóbico empleado. Los materiales más comúnmente

empleados en las PEMFC son fibras de carbón, papel o telas de carbón,

con un espesor de 0.2 - 0.5 mm. El soporte macroporoso se cubre con una

capa delgada de negro de carbón (Vulcan, negro de acetileno) mezclado

con un polímero hidrofóbico, como PTFE. Sin embargo, este último puede

reducir la conductividad eléctrica y limitar el acceso.

Las placas bipolares tienen que cumplir distintos requerimientos: buena

conductividad eléctrica, canales bien sellados para evitar fugas,

disposición para la distribución del combustible y gases oxidantes y la

remoción de agua y productos de reacción, buena conductividad térmica,

resistencia a la corrosión, buena estabilidad mecánica con espesores bajos,

bajo peso (especialmente para aplicaciones de transporte), y bajo costo.

Los materiales carbonosos cumplen la mayoría de estos requerimientos y

han sido empleados para este uso durante varias décadas. No obstante, el

desarrollo de materiales de menor costo, sin porosidad, sigue siendo un

desafío ya que las placas bipolares constituyen uno de los componentes

Page 68: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

53

de mayor costo en las pilas de combustible. Tradicionalmente, en las

PEMFC, las placas bipolares se fabrican a partir de placas de grafito que

han sido impregnadas con un relleno de resina polimérica para prevenir la

fuga de gases, pero es un proceso muy costoso. Para reducir costos, la

industria ha empleado metales o materiales compuestos de carbono. Los

metales tiene la ventaja de que pueden conformarse en láminas de

espesores muy delgados. Los materiales compuestos de carbono suelen

prepararse con fibras de carbón y polímeros orgánicos, comúnmente

polietileno, cloruro de polivinilo o resinas epoxi. Para cumplir con la

conductividad eléctrica requerida, es necesario emplear altas cargas de

material carbonoso en el material compuesto, entre 60 y 90%, lo que

genera problemas a la hora de la fabricación de placas muy delgadas.

Las PEMFC y las DAFC trabajan a temperaturas relativamente bajas en

medio ácido, por lo que el uso de catalizadores es esencial para aumentar

la velocidad de reacción en los electrodos (oxidación de hidrógeno,

metanol, etc. en el ánodo y la reducción de oxígeno en el cátodo). El

catalizador más eficiente es el platino u otros basados en este metal noble,

que debe estar altamente dispersado en un soporte conductor, para

maximizar la eficiencia. Los negros de carbón y grafitos son los materiales

más utilizados en la industria como soporte de catalizador por su elevada

conductividad eléctrica y alta estabilidad en medios ácido y básico. Las

capas de catalizador (<10 µm) se preparan con elevadas cargas de metal

(>40%) para minimizar el espesor de la capa y así su resistencia eléctrica.

Además de soporte de catalizador, estudios recientes han encontrado que

el dopado de materiales carbonosos con distintos heteroátomos (N, S, P,

Page 69: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

54

B, etc.) es una alternativa para el desarrollo de catalizadores libres de

metal que llevaría a una disminución considerable del costo en la

fabricación de las pilas de combustible.

Actualmente existen numerosas investigaciones centradas en el desarrollo

de nuevos electrocatalizadores, y especialmente de nuevas fases activas

para los mismos. Los desafíos en el desarrollo de estos catalizadores están

relacionados con el costo, rendimiento y durabilidad de sus componentes

[189]. Estos desafíos se derivan en gran parte del hasta ahora necesario

uso del platino en su formulación. Los electrocatalizadores, basados en

platino, que como se ha mencionado son normalmente soportados en

materiales carbonosos, son costosos y son susceptibles de sufrir

envenenamiento y desactivación electroquímica lo cual hace que su

eficiencia y vida útil se vean considerablemente mermadas. Es por ello

que se estudian nuevos materiales electrocatalíticos de bajo costo,

haciéndose especial hincapié en los catalizadores de metales no preciosos

o libres de metal, al ser más económicos, robustos ante la desactivación o

envenenamiento, y encontrarse disponibles en mucha mayor abundancia.

Es de especial relevancia tecnológica el desarrollo de nuevos catalizadores

para la reacción de reducción de oxígeno, la cual, además de ser común

para todas las pilas de combustible, se encuentra también en otros

dispositivos energéticos, como las baterías metal/aire y aplicaciones

industriales, como la generación de peróxido de hidrógeno.

6.1.3 Reacción de reducción de oxígeno (ORR)

La reacción de reducción del oxígeno (ORR) se da en el cátodo de la pila

de combustible. Normalmente, la ORR es una reacción muy lenta y es

Page 70: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

55

necesario el uso de catalizadores si se quiere llegar a un uso práctico en

las pilas de combustibles. En disolución acuosa, esta reacción puede darse

principalmente por dos mecanismos [191]:

Medio ácido Medio básico

𝑂2 + 4𝐻+ + 4𝑒− →2𝐻2𝑂 𝑂2 + 2𝐻2𝑂 + 4𝑒

− →4𝑂𝐻− Eq. 1.1

𝑂2 + 2𝐻+ + 2𝑒− →𝐻2𝑂2 𝑂2 +𝐻2𝑂 + 2𝑒

−→𝐻𝑂2− + 𝑂𝐻− Eq. 1.2

𝐻2𝑂2 + 2𝐻+ + 2𝑒− → 2𝐻2𝑂 𝐻𝑂2

− +𝐻2𝑂 + 2𝑒−→ 3𝑂𝐻− Eq. 1.3

2𝐻2𝑂2→ 2𝐻2𝑂 +𝑂2 2𝐻𝑂2− → 2𝑂𝐻− + 𝑂2 Eq. 1.4

La reducción de oxígeno vía 4 electrones (Eq. 1.1) es la reacción deseada

en las pilas de combustible ya que además de producir una mayor cantidad

de energía, previene la formación de subproductos perjudiciales para los

componentes de la pila. La reacción vía 2 electrones (Eq. 1.2), produce

solo la mitad de la energía comparada con la vía de reducción de 4

electrones. El H2O2 formado puede ser reducido de nuevo a H2O u OH-

(Eq. 1.3) o bajo la desproporción regeneraría una de las dos moléculas de

O2 puesta en juego en esta vía (Eq. 1.4). Las reacciones de reducción del

H2O2 ocurren en paralelo dependiendo de la naturaleza del catalizador, su

composición y propiedades. Parte del O2 regenerado por desproporción

puede ser recirculado y nuevamente reducido hasta la completa reducción

a H2O u OH- y otra parte se pierde [191,192].

El potencial de equilibrio teórico para la ORR es 1.229 V (vs. RHE) en

condiciones estándar. Sin embargo, en la práctica la reacción ocurre con

un sobrepotencial considerable, haciendo que el proceso sea ineficiente,

Page 71: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

56

lo que evidencia la necesidad de un catalizador para mejorar este

inconveniente. El electrocatalizador más utilizado en esta reacción es el

platino soportado sobre materiales carbonosos [193–195]. A día de hoy

todavía se realiza un notable esfuerzo investigador en mejorar diversos

aspectos de los catalizadores basados en platino, teniendo por objetivo

aumentar la eficiencia del platino mediante el uso de aleaciones [195,196]

o mediante estructuras corteza-núcleo con otros metales más baratos [197]

o mediante el facetado de las superficies de platino [198,199]. Se ha

demostrado que la actividad del catalizador depende fuertemente de

numerosos factores, como el tamaño de partícula, distribución de las

mismas, su morfología y composición en superficie, o el estado de

oxidación del platino. Como consecuencia, el desarrollo de catalizadores

basados en nanopartículas de platino [199] o de otros metales como la

plata [200], el paladio [201] o el oro [200,202], donde se controla tanto el

tamaño como la estructura de las nanopartículas, ha dado lugar a mejoras

de actividad respecto a nanopartículas donde no se controlan estos

aspectos.

La búsqueda de la sustitución del platino en los catalizadores de ORR se

produce principalmente mediante dos enfoques: el uso de otros metales de

mayor abundancia en la naturaleza y menor costo, o el desarrollo de

materiales carbonosos nanoestructurados y funcionalizados donde no hay

ningún contenido en metales.

En la primera de estas vías, una de las alternativas más prometedoras para

reemplazar al platino es el uso de otros metales de mayor abundancia en

la naturaleza y por consiguiente menor costo (Fe, Co, Cu, Mn, entre otros).

Page 72: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

57

El uso de estos y otros metales como nanopartículas soportadas en

distintos materiales carbonosos ha sido ampliamente estudiado. Se ha

encontrado que la fuerte interacción entre las partículas metálicas y el

soporte mejoran la eficiencia del catalizador, reduce la pérdida de los

sitios activos y controla la transferencia de carga. El rendimiento de este

tipo de catalizadores se ve afectado directamente por el tamaño de las

nanopartículas, su distribución y dispersión en el soporte. Diversos

ejemplos de estos electrocatalizadores se han desarrollado en las últimas

décadas: nanopartículas de cobalto soportadas en nanotubos de carbono y

grafeno [203], nanopartículas de hierro soportado en grafeno dopado con

nitrógeno [204], o una combinación de hierro y cobalto sobre nanotubos

de carbono [205] han mostrado mejoras en la actividad hacía la ORR.

Adicionalmente, el desarrollo de electrocatalizadores con estos metales

empleando también materiales dopados con nitrógeno mejora la actividad

y selectividad de la reacción. Se ha encontrado que el uso de compuestos

macrocíclicos como las porfirinas y ftalocianinas de estos y otros metales

con propiedades similares tienen una actividad comparable a la del platino

[206,207]. Sin embargo, estos materiales presentan una baja estabilidad

en las condiciones de operación de la pila de combustible. Esta

desactivación del catalizador ha sido atribuida principalmente a la

desactivación de los centros catalíticos causada por el ataque del peróxido

de hidrógeno formado durante la reducción de oxígeno. Este

inconveniente se ha visto mejorado soportando estos compuestos en

materiales carbonosos como nanotubos de carbono y grafeno, y

principalmente con tratamientos térmicos posteriores que llevan a que la

Page 73: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

58

reducción de oxígeno sea por la vía de 4 electrones mayoritariamente con

lo que la cantidad de peróxido de hidrógeno producido es menor. Sin

embargo, estas mejoras no son suficientes para su uso en aplicaciones

prácticas [208]. Además del uso de estos compuestos, se ha encontrado

que es posible la preparación de electrocatalizadores a partir de

precursores de nitrógeno y metales en compuestos diferentes a las

porfirinas y ftalocianinas. Se presenta la posibilidad de sintetizar

materiales empleando NH3 como precursor de nitrógeno. Los

catalizadores se preparan por impregnación de negros de carbón con un

precursor de hierro (por ejemplo, acetato de hierro) seguido de un

tratamiento térmico en NH3. Durante la pirólisis, a temperaturas

superiores a 800 ºC, el NH3 gasifica parcialmente el soporte carbonoso,

generando porosidad, y además se generan sitios activos en los cuales el

catión hierro está coordinado por cuatro nitrógenos tipo piridina ancladas

en las puntas de las láminas grafénicas. En estos materiales, el contenido

de material dispersado en el precursor, el hierro, el nitrógeno superficial

y la microporosidad de los materiales son los factores que determinan su

actividad hacia la ORR [209]

Los materiales carbonosos nanoestructurados dopados con nitrógeno son

uno de los materiales más prometedores para su empleo como

catalizadores sin metales en su estructura [210]. La inclusión de diversas

funcionalidades nitrogenadas –nitrógeno piridínico, pirrólico, cuaternario

y oxidado– se ha mostrado como un aspecto importante en la actividad

hacia la ORR. Sin embargo, el papel del nitrógeno y las especies con

mayor actividad catalítica no ha sido esclarecido por completo siendo un

Page 74: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

59

tema que genera controversia; algunos autores sugieren que los materiales

carbonosos dopados con nitrógeno tienen sitios activos N-C-N y cambios

inherentes en la geometría que los hacen activos para la ORR [211]; otros

estudios proponen que el carácter electrón-dador de las funcionalidades

nitrogenadas incrementan la basicidad del material carbonoso, y la

redistribución de la densidad electrónica en los alrededores del átomo de

nitrógeno parecen ser los responsables de la actividad catalítica

[210,212,213]. Así mismo, la carga positiva en el átomo de carbono en las

vecindades de las especies nitrogenadas promueve la quimisorción del

oxígeno y debilita los enlaces O-O [210]. Además del papel del nitrógeno

como sitio activo, los cambios estructurales en la lámina grafénica por la

presencia de este heteroátomo parecen ser un aspecto adicional en la

electroactividad final del material. La mayoría de los estudios realizados

coinciden en que la mejor actividad la presentan los materiales con mayor

proporción de sitios nitrogenados tipo piridina [214–216]; sin embargo,

existen otros estudios donde muestran que es necesaria la presencia de una

mezcla de diferentes tipos de grupos nitrogenados: pirroles, cuaternarios

[217] y oxidados [218]. Otro aspecto importante en este tipo de materiales

es la selectividad de la reacción, donde el dopado con nitrógeno también

tiene un efecto importante. Estudios recientes reportan que el nitrógeno

tipo piridina promueve la ORR vía 4 electrones para formación de agua

mientras que especies de nitrógeno cuaternario lo hacen vía 2 electrones

dando paso a la formación de peróxido de hidrógeno [219].

Page 75: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

60

6.2 Biosensores electroquímicos

Los sensores electroquímicos son dispositivos analíticos que convierten

la energía química de un determinado analito en una señal eléctrica,

proporcional y medible, sobre la superficie de un electrodo de trabajo. Por

medio de estos sensores es posible detectar y cuantificar la presencia de

un analito con alta sensibilidad y precisión. Sin embrago, estos

dispositivos presentan el inconveniente de que las muestras a analizar

están compuestas de una mezcla de diferentes analitos (fluidos

biológicos), y esto afecta a la cuantificación de los mismos por separado

debido a que la interacción electroquímica entre el electrodo y los distintos

analitos se produce a potenciales muy próximos, interfiriendo sus señales.

Los biosensores electroquímicos han surgido para superar dicho

inconveniente. Los sensores, consisten en dos elementos: un receptor y un

transductor. El receptor puede ser cualquier material orgánico o

inorgánico con una interacción específica a un analito o grupo de ellos.

En el caso de los biosensores, el elemento de reconocimiento es una

biomolécula, como pueden ser enzimas, proteínas, anticuerpos, entre

otros. La especificidad de las interacciones entre la enzima y el sustrato

permite un reconocimiento selectivo del analito. El segundo elemento

principal es el transductor, que convierte dicha información química en

una señal medible [220].

El principal problema de los biosensores electroquímicos es el tamaño de

los materiales bioactivos, que dificulta la transferencia de carga entre éstos

y la superficie del electrodo o hace que ésta sea muy baja y, por lo tanto,

su respuesta no sea todo lo sensible que pudiera llegar a ser. Para mejorar

Page 76: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

61

esto, se han utilizado diferentes materiales electródicos buscando mejorar

la eficiencia de la transferencia electrónica cuando el material bioactivo

está libre en disolución y es inducido con una orientación adecuada hacia

la superficie del electrodo. Otra alternativa es la inmovilización de la

biomolécula en la superficie del electrodo evitando su desnaturalización

y haciéndola accesible. Dicha inmovilización es posible mediante una

adsorción química o física o mediante la encapsulación en polímeros

orgánicos o matrices inorgánicas.

Los biosensores más extendidos hoy en día son los de glucosa. Inventados

en los años 60 [221], constituyen un extenso mercado que da servicio a

las necesidades de los enfermos de diabetes. Gracias a la notable mejoría

que producen en sus prestaciones – tiempo de respuesta, sensibilidad,

especificidad y posibilidad de miniaturización –, es posible encontrar

numerosos ejemplos en la bibliografía del uso de materiales carbonosos

nanoestructurados como elemento transductor en la construcción de

biosensores empleando glucosa oxidasa. Otros ejemplos de enzimas

utilizadas para este fin son la colesterol oxidasa y esterasa, que pueden ser

usadas para determinar el colesterol total en la sangre, con ejemplos

exitosos empleando estos materiales [222]. El mismo esquema de

biosensor puede ser utilizado también en la detección de biomarcadores

tumorales en el principio de la enfermedad, proporcionando una mayor

tasa de supervivencia, o incluso facilitar el seguimiento tras los diferentes

tratamientos oncológicos.

Page 77: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

62

6.2.1 Materiales carbonosos en biosensores

El auge de la nanotecnología ha facilitado el desarrollo de biosensores

nanoestructurados con altas prestaciones, para los cuales los dos

materiales carbonosos nanoestructurados de mayor difusión y aceptación

son el grafeno y los nanotubos de carbono, ya sean de pared sencilla o

múltiple. Diversos estudios han demostrado que el uso de estos materiales

como elemento transductor mejora la reactividad electroquímica (y, por

tanto, su sensibilidad) de las biomoléculas, ya que promueven las

reacciones de transferencia electrónica entre la biomolécula y el analito,

haciéndolos altamente selectivos en escalas nanométricas [10,223]. Con

objeto de facilitar la inmovilización, es habitual acudir a estrategias de

funcionalización en estos materiales, ya que una elección acertada en los

grupos introducidos puede favorecer su anclaje mediante enlaces

covalentes u otro tipo de interacciones [224].

En el caso de los nanotubos de carbono, su elevada capacidad transductora

de señal es debida a su elevada conductividad eléctrica, que les confiere

una elevada cinética de transferencia de carga; a su reducido tamaño,

similar al de las enzimas y proteínas usados en los sensores; a su

interesante comportamiento electroquímico, que es extraordinariamente

sensible gracias a su elevada área expuesta y a la presencia de sitios de

elevada actividad en los bordes y extremos de los nanotubos; y a la gran

disponibilidad de técnicas para introducir grupos funcionales y anclar

moléculas tanto en los planos basales como en las puntas de los mismos

[225]. La literatura científica presenta numerosos trabajos en los últimos

diez años sobre el desarrollo de sensores electroquímicos donde los

Page 78: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

63

nanotubos de carbono son empleados como el elemento transductor,

siendo nanopartículas metálicas (principalmente de oro) y especialmente

las enzimas los elementos receptores más usados [226].

6.2.2 Detección de Glucosa

La detección de glucosa ha sido ampliamente estudiada por su importante

aplicación en áreas de la salud, para la prevención y control de

enfermedades como la diabetes o la hipoglucemia [227]. En la Tabla 1.1

se presentan los niveles de glucosa en sangre para personas sanas y

personas con este tipo de enfermedades [228], en las que se incluyen los

valores pre y post prandial, que corresponden a los valores sin consumir

alimentos y después de comer, respectivamente.

Tabla 1.1 Niveles de glucosa en sangre

Tipo Pre prandial / mM Post prandial / mM

No diabético 4.0 – 5.9 <7.8

Diabetes Tipo 2 4.0 – 7.0 <8.5

Diabetes Tipo 1 4.0 – 7.0 <9

Niños diabetes Tipo 1 4.0 – 8.0 -

Hipoglucemia <3-9 -

La detección de glucosa mediante un biosensor se basa en el uso de la

glucosa oxidasa (GOx). Esta enzima (β-D-glucose: oxygen 1-reductase,

EC 1.1.3.4*), es una flavoproteína que cataliza la reacción de oxidación

* El número EC (Enzyme Commission numbers) corresponde al esquema de clasificación numérica para las enzimas, basado en las reacciones químicas que catalizan.

Page 79: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

64

de la β-D-glucosa en su grupo hidroxilo, que a través del oxígeno como

aceptor de electrones produce D-glucono-δ-lactona y peróxido de

hidrógeno [227,229]:

𝐺𝑙𝑢𝑐𝑜𝑠𝑎 + 𝑂2𝐺𝑂𝑥→ 𝐷–𝑔𝑙𝑢𝑐𝑜𝑛𝑜– 𝛿– 𝑙𝑎𝑐𝑡𝑜𝑛𝑎 + 𝐻2𝑂2 Eq. 1.5

La glucosa oxidasa es una proteína dimérica compuesta por dos

subunidades idénticas. Cada subunidad se pliega en dos dominios: uno

para enlazar el substrato (la β-D-glucosa), y el otro en el que se encuentra

enlazado no covalentemente el cofactor flavin adenin dinucleotido (FAD),

el cual es el centro activo donde tiene lugar la reacción de oxidación de

glucosa (Fig 1.8). El FAD está formado por grupos amino que juegan un

papel importante en la actividad catalítica de la oxidación de glucosa. La

enzima está formada por diferente cadenas de proteínas y carbohidratos

cubriendo la molécula [229–231].

Fig. 1.8 Estructura de la glucosa oxidasa de Aspergillus Niger [232]

Carbohydrates

FAD

Page 80: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

65

De acuerdo al tipo detección, los biosensores de glucosa se han catalogado

en tres generaciones [227]. Los biosensores de primera generación están

basados en el uso del oxígeno como co-sustrato y la generación y

detección del peróxido de hidrógeno.

La segunda generación de biosensores se desarrolló en búsqueda de

mejores respuestas, el factor limitante en los biosensores es la

transferencia electrónica entre los sitios activos de la GOx (FAD) y la

superficie del electrodo, la GOx no trasfiere electrones directamente a los

materiales electródicos convencionales debido a su gran tamaño y

diversas cadenas de su estructura que actúan de barrera; por esta razón se

ha estudiado el uso de distintos cofactores que hagan la labor de

intermediarios para dicha transferencia. El ferroceno, ferricianuro y otras

sales conductoras orgánicas han sido empleados en este tipo de sensores.

En el caso de los biosensores de tercera generación se pretende eliminar

el uso de mediadores y desarrollar materiales sin ningún cofactor

adicional que pueda operar a bajos potenciales, cercanos al potencial

redox de la enzima. En estos sistemas se busca conseguir que se produzca

la transferencia electrónica directa entre la glucosa oxidasa y el electrodo

por medio del FAD. Esta mejora llevaría a una alta selectividad, ya que se

emplearía potenciales mucho menores, en los cuales los problemas de

interferencia por la presencia de otros analitos deja de ser un obstáculo.

Sin embargo, aún se trabaja profusamente en el desarrollo de nuevas

estrategias de funcionalización e inmovilización que buscan evitar las

dificultades en la transferencia electrónica por los impedimentos

espaciales para llegar al FAD de la GOx.

Page 81: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

66

7 Bibliografía [1] H.O. Pierson, Handbook of Carbon, Graphite, Diamond, and Fullerenes:

Properties, Processing, and Applications, Noyes Publications, New Jersey, 1993.

[2] A. Krueger, Fullerenes – Cages Made from Carbon, in: Carbon Mater. Nanotechnol., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010: pp. 33–122.

[3] Z. Yang, J. Ren, Z. Zhang, X. Chen, G. Guan, L. Qiu, Y. Zhang, H. Peng, Recent Advancement of Nanostructured Carbon for Energy Applications, Chem. Rev. 115 (2015) 5159–5223.

[4] M.S. Mauter, M. Elimelech, Environmental Applications of Carbon-Based Nanomaterials, Environ. Sci. Technol. 42 (2008) 5843–5859.

[5] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage. 92 (2011) 407–418.

[6] D. Mohan, C.U. Pittman Jr., Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water, J. Hazard. Mater. 137 (2006) 762–811.

[7] F. Rodríguez-Reinoso, The role of carbon materials in heterogeneous catalysis, Carbon. 36 (1998) 159–175.

[8] P. Serp, B. Machado, Nanostructured Carbon Materials for Catalysis, Royal Society of Chemistry, Cambridge, 2015.

[9] P. Serp, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers in catalysis, Appl. Catal. A Gen. 253 (2003) 337–358.

[10] J. Wang, Carbon-Nanotube Based Electrochemical Biosensors: A Review, Electroanalysis. 17 (2005) 7–14.

[11] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797–828.

[12] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature. 442 (2006) 282–286.

[13] L. Dai, D.W. Chang, J.-B. Baek, W. Lu, Carbon Nanomaterials for Advanced Energy Conversion and Storage, Small. 8 (2012) 1130–1166.

[14] J.K. McDonough, Y. Gogotsi, Carbon Onions: Synthesis and Electrochemical Applications, Electrochem. Soc. Interface. 22 (2013) 61–66.

[15] V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes,

Page 82: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

67

Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures, Chem. Rev. 115 (2015) 4744–4822.

[16] S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, K. Takahashi, Nano-aggregates of single-walled graphitic carbon nano-horns, Chem. Phys. Lett. 309 (1999) 165–170.

[17] C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: The New Two-Dimensional Nanomaterial, Angew. Chemie Int. Ed. 48 (2009) 7752–7777.

[18] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183–191.

[19] A. Krueger, Carbon Nanotubes, in: Carbon Mater. Nanotechnol., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010: pp. 123–281.

[20] M. Terrones, P.M. Ajayan, F. Banhart, X. Blase, D.L. Carroll, J.C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Rühle, T. Seeger, H. Terrones, N-doping and coalescence of carbon nanotubes: synthesis and electronic properties, Appl. Phys. A Mater. Sci. Process. 74 (2002) 355–361.

[21] C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nath, Nanotubes, ChemPhysChem. 2 (2001) 78–105.

[22] A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, S. Joo, Carbon nanotubes: properties, synthesis, purification, and medical applications, Nanoscale Res. Lett. 9 (2014) 393–406.

[23] F. Béguin, E. Frackowiak, Carbons for Electrochemical Energy Storage and Conversion Systems, CRC Press Taylor & Francis Group, Boca Raton, 2009.

[24] I. Martin-Gullon, J. Vera, J.A. Conesa, J.L. González, C. Merino, Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor, Carbon. 44 (2006) 1572–1580.

[25] R. Ryoo, S.H. Joo, S. Jun, Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation, J. Phys. Chem. B. 103 (1999) 7743–7746.

[26] H. Nishihara, Q.-H. Yang, P.-X. Hou, M. Unno, S. Yamauchi, R. Saito, J.I. Paredes, A. Martínez-Alonso, J.M.D. Tascón, Y. Sato, M. Terauchi, T. Kyotani, A possible buckybowl-like structure of zeolite templated carbon, Carbon. 47 (2009) 1220–1230.

[27] T. Kyotani, Z. Ma, A. Tomita, Template synthesis of novel porous carbons using various types of zeolites, Carbon. 41 (2003) 1451–1459.

Page 83: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

68

[28] H. Nishihara, T. Kyotani, Templated nanocarbons for energy storage, Adv. Mater. 24 (2012) 4473–4498.

[29] T.J. Bandosz, Surface Chemistry of Carbon Materials, in: P. Serp, J.L. Figueiredo (Eds.), Carbon Mater. Catal., John Wiley & Sons, Inc., 2008: pp. 45–92.

[30] L.R. Radovic, Surface Chemical and Electrochemical Properties of Carbons, in: F. Beguin, E. Frackowiak (Eds.), Carbons Electrochem. Energy Storage Convers. Syst., Taylor & Francis (CRC Press), 2010: pp. 163–219.

[31] H.-P. Boehm, Surface Chemical Characterization of Carbons from Adsorption Studies, in: E.J. Bottani, J.M.D. Tascón (Eds.), Adsorpt. by Carbons, Elsevier, 2008: pp. 301–327.

[32] R.L. McCreery, Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chem. Rev. 108 (2008) 2646–2687.

[33] A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug delivery, Curr. Opin. Chem. Biol. 9 (2005) 674–679.

[34] F.J. Vastola, P.J. Hart, P.. Walker, A study of carbon-oxygen surface complexes using O18 as a tracer, Carbon. 2 (1964) 65–71.

[35] H.-P. Boehm, Chemical Identification of Surface Groups, Adv. Catal. 16 (1966) 179–274.

[36] M.C.C. Román-Martínez, D. Cazorla-Amorós, A. Linares-Solano, C.S.-M. de Lecea, TPD and TPR characterization of carbonaceous supports and Pt/C catalysts, Carbon. 31 (1993) 895–902.

[37] H.-P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon. 32 (1994) 759–769.

[38] J.R. Pels, F. Kapteijn, J.A. Moulijn, Q. Zhu, K.M. Thomas, Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis, Carbon. 33 (1995) 1641–1653.

[39] S. Biniak, G. Szymański, J. Siedlewski, a. ŚwiaTkowski, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon. 35 (1997) 1799–1810.

[40] G. de la Puente, J.J. Pis, J.A. Menéndez, P. Grange, Thermal stability of oxygenated functions in activated carbons, J. Anal. Appl. Pyrolysis. 43 (1997) 125–138.

[41] J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Orfao, Modification of the surface chemistry of activated carbons, Carbon. 37 (1999) 1379–1389.

[42] A. Kuznetsova, I. Popova, J.T. Yates, M.J. Bronikowski, C.B. Huffman, J. Liu, R.E. Smalley, H.H. Hwu, J.G. Chen, Oxygen-Containing Functional Groups on

Page 84: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

69

Single-Wall Carbon Nanotubes: NEXAFS and Vibrational Spectroscopic Studies, J. Am. Chem. Soc. 123 (2001) 10699–10704.

[43] H.-P. Boehm, Surface oxides on carbon and their analysis: a critical assessment, Carbon. 40 (2002) 145–149.

[44] E. Raymundo-Piñero, D. Cazorla-Amorós, A. Linares-Solano, J. Find, U. Wild, R. Schlögl, Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin, Carbon. 40 (2002) 597–608.

[45] J.-H. Zhou, Z.-J. Sui, J. Zhu, P. Li, D. Chen, Y.-C. Dai, W.-K. Yuan, Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR, Carbon. 45 (2007) 785–796.

[46] H.F. Gorgulho, J.P. Mesquita, F. Gonçalves, M.F.R. Pereira, J.L. Figueiredo, Characterization of the surface chemistry of carbon materials by potentiometric titrations and temperature-programmed desorption, Carbon. 46 (2008) 1544–1555.

[47] N. Karousis, N. Tagmatarchis, D. Tasis, Current Progress on the Chemical Modification of Carbon Nanotubes, Chem. Rev. 110 (2010) 5366–5397.

[48] S. Kundu, W. Xia, W. Busser, M. Becker, D.A. Schmidt, M. Havenith, M. Muhler, The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study, Phys. Chem. Chem. Phys. 12 (2010) 4351–4359.

[49] W. Gu, G. Yushin, Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene, Wiley Interdiscip. Rev. Energy Environ. 3 (2014) 424–473.

[50] J. Abrahamson, The surface energies of graphite, Carbon. 11 (1973) 337–362.

[51] K. Kinoshita, Carbon, Electrochemical and Physicochemical properties, 1st ed., John Wiley & Sons, New York, 1988.

[52] P.. Walker, R.L. Taylor, J.M. Ranish, An update on the carbon-oxygen reaction, Carbon. 29 (1991) 411–421.

[53] L.R. Radovic, B. Bockrath, On the Chemical Nature of Graphene Edges: Origin of Stability and Potential for Magnetism in Carbon Materials, J. Am. Chem. Soc. 127 (2005) 5917–5927.

[54] L.R. Radovic, Active Sites in Graphene and the Mechanism of CO 2 Formation in Carbon Oxidation, J. Am. Chem. Soc. 131 (2009) 17166–17175.

[55] A.B. Silva-Tapia, X. García-Carmona, L.R. Radovic, Similarities and

Page 85: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

70

differences in O2 chemisorption on graphene nanoribbon vs. carbon nanotube, Carbon. 50 (2012) 1152–1162.

[56] L.R. Radovic, I.F. Silva, J.I. Ume, J.A. Menéndez, C.A. Leon y Leon, A.W. Scaroni, An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electron-donating functional groups by chemically modified activated carbons, Carbon. 35 (1997) 1339–1348.

[57] C.A. Leon y Leon, J.. Solar, V. Calemma, L.R. Radovic, Evidence for the protonation of basal plane sites on carbon, Carbon. 30 (1992) 797–811.

[58] L.R. Radovic, A.B. Silva-Tapia, F. Vallejos-Burgos, Oxygen migration on the graphene surface. 1. Origin of epoxide groups, Carbon. 49 (2011) 4218–4225.

[59] A. Hirsch, Functionalization of Single-Walled Carbon Nanotubes, Angew. Chemie Int. Ed. 41 (2002) 1853–1859.

[60] J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes, Carbon. 49 (2011) 2581–2602.

[61] N. Yao, V. Lordi, S.X.C. Ma, E. Dujardin, A. Krishnan, M.M.J. Treacy, T.W. Ebbesen, Structure and Oxidation Patterns of Carbon Nanotubes, J. Mater. Res. 13 (2011) 2432–2437.

[62] R. Berenguer, H. Nishihara, H. Itoi, T. Ishii, E. Morallón, D. Cazorla-Amorós, T. Kyotani, Electrochemical generation of oxygen-containing groups in an ordered microporous zeolite-templated carbon, Carbon. 54 (2013) 94–104.

[63] A.B. Dongil, B. Bachiller-Baeza, A. Guerrero-Ruiz, I. Rodríguez-Ramos, A. Martínez-Alonso, J.M.D. Tascón, Surface chemical modifications induced on high surface area graphite and carbon nanofibers using different oxidation and functionalization treatments., J. Colloid Interface Sci. 355 (2011) 179–89.

[64] J.I. Paredes, A. Martínez-Alonso, J.M.D. Tascón, Comparative study of the air and oxygen plasma oxidation of highly oriented pyrolytic graphite: a scanning tunneling and atomic force microscopy investigation, Carbon. 38 (2000) 1183–1197.

[65] A. Hirsch, J.M. Englert, F. Hauke, Wet chemical functionalization of graphene., Acc. Chem. Res. 46 (2013) 87–96.

[66] S. Niyogi, M.A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M.E. Itkis, R.C. Haddon, Chemistry of Single-Walled Carbon Nanotubes, Acc. Chem. Res. 35 (2002) 1105–1113.

[67] J. Zhao, H. Park, J. Han, J.P. Lu, Electronic Properties of Carbon Nanotubes with Covalent Sidewall Functionalization, J. Phys. Chem. B. 108 (2004) 4227–4230.

Page 86: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

71

[68] T.J. Simmons, J. Bult, D.P. Hashim, R.J. Linhardt, P.M. Ajayan, Noncovalent Functionalization as an Alternative to Oxidative Acid Treatment of Single Wall Carbon Nanotubes with Applications for Polymer Composites, ACS Nano. 3 (2009) 865–870.

[69] V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications, Chem. Rev. 112 (2012) 6156–6214.

[70] J. Chen, H. Liu, W.A. Weimer, M.D. Halls, D.H. Waldeck, G.C. Walker, Noncovalent Engineering of Carbon Nanotube Surfaces by Rigid, Functional Conjugated Polymers, J. Am. Chem. Soc. 124 (2002) 9034–9035.

[71] D. Baskaran, J.W. Mays, M.S. Bratcher, Noncovalent and Nonspecific Molecular Interactions of Polymers with Multiwalled Carbon Nanotubes, Chem. Mater. 17 (2005) 3389–3397.

[72] M. Shim, N.W. Shi Kam, R.J. Chen, Y. Li, H. Dai, Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition, Nano Lett. 2 (2002) 285–288.

[73] J.H. Chen, Z.P. Huang, D.Z. Wang, S.X. Yang, W.Z. Li, J.G. Wen, Z.F. Ren, Electrochemical synthesis of polypyrrole films over each of well-aligned carbon nanotubes, Synth. Met. 125 (2001) 289–294.

[74] R.J. Chen, S. Bangsaruntip, K. a Drouvalakis, N. Wong Shi Kam, M. Shim, Y. Li, W. Kim, P.J. Utz, H. Dai, Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors, Proc. Natl. Acad. Sci. 100 (2003) 4984–4989.

[75] C.Y. Hu, Y.J. Xu, S. Duo, R.F. Zhang, M.S. Li, Non Covalent Functionalization of Carbon Nanotubes with Surfactants and Polymers, J. Chinese Chem. Soc. 56 (2009) 234–239.

[76] H. Bai, Y. Xu, L. Zhao, C. Li, G. Shi, Non-covalent functionalization of graphene sheets by sulfonated polyaniline, Chem. Commun. (2009) 1667–1669.

[77] T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Chemical functionalization of graphene and its applications, Prog. Mater. Sci. 57 (2012) 1061–1105.

[78] E.E. Tkalya, M. Ghislandi, G. de With, C.E. Koning, The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites, Curr. Opin. Colloid Interface Sci. 17 (2012) 225–232.

[79] M.L. Godino-Salido, R. López-Garzón, M.D. Gutiérrez-Valero, P. Arranz-Mascarós, M. Melguizo-Guijarro, M.D. López de la Torre, V. Gómez-Serrano, M. Alexandre-Franco, D. Lozano-Castelló, D. Cazorla-Amorós, M. Domingo-

Page 87: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

72

García, Effect of the surface chemical groups of activated carbons on their surface adsorptivity to aromatic adsorbates based on π-π interactions, Mater. Chem. Phys. 143 (2014) 1489–1499.

[80] Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, S. Huang, Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction, ACS Nano. 6 (2012) 205–211.

[81] W. Shen, W. Fan, Nitrogen-containing porous carbons: synthesis and application, J. Mater. Chem. A. 1 (2013) 999–1013.

[82] W. Kiciński, M. Szala, M. Bystrzejewski, Sulfur-doped porous carbons: Synthesis and applications, Carbon. 68 (2014) 1–32.

[83] P. Ayala, R. Arenal, M. Rümmeli, A. Rubio, T. Pichler, The doping of carbon nanotubes with nitrogen and their potential applications, Carbon. 48 (2010) 575–586.

[84] J.L. Bahr, J.M. Tour, Highly Functionalized Carbon Nanotubes Using in Situ Generated Diazonium Compounds, Chem. Mater. 13 (2001) 3823–3824.

[85] J. Li, M.J. Vergne, E.D. Mowles, W.-H. Zhong, D.M. Hercules, C.M. Lukehart, Surface functionalization and characterization of graphitic carbon nanofibers (GCNFs), Carbon. 43 (2005) 2883–2893.

[86] Y. Wang, Z. Iqbal, S. V. Malhotra, Functionalization of carbon nanotubes with amines and enzymes, Chem. Phys. Lett. 402 (2005) 96–101.

[87] X. Peng, S.S. Wong, Functional Covalent Chemistry of Carbon Nanotube Surfaces, Adv. Mater. 21 (2009) 625–642.

[88] J.B. Donnet, The chemical reactivity of carbons, Carbon. 6 (1968) 161–176.

[89] E. Fitzer, R. Weiss, Effect of surface treatment and sizing of c-fibres on the mechanical properties of cfr thermosetting and thermoplastic polymers, Carbon. 25 (1987) 455–467.

[90] C. Moreno-Castilla, M.. López-Ramón, F. Carrasco-Marın, Changes in surface chemistry of activated carbons by wet oxidation, Carbon. 38 (2000) 1995–2001.

[91] C.M. Elliott, R.W. Murray, Chemically modified carbon electrodes, Anal. Chem. 48 (1976) 1247–1254.

[92] B. Stöhr, H.-P. Boehm, R. Schlögl, Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate, Carbon. 29 (1991) 707–720.

[93] R.J.J. Jansen, H. van Bekkum, Amination and ammoxidation of activated carbons, Carbon. 32 (1994) 1507–1516.

Page 88: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

73

[94] M. Delamar, R. Hitmi, J. Pinson, J. Savéant, Covalent Modification of Carbon Surfaces by Grafting of Functionalized Aryl Radicals Produced from Electrochemical Reduction of Diazonium Salts, J. Am. Chem. Soc. (1992) 5883–5884.

[95] J.A. Osborn, R.M. Ianniello, H.J. Wieck, T.F. Decker, S.L. Gordan, A.M. Yacynych, Use of chemically modified activated carbon as a support for immobilized enzymes, Biotechnol. Bioeng. 24 (1982) 1653–1669.

[96] K.W. Willman, R.D. Rocklin, R. Nowak, K.N. Kuo, F.A. Schultz, R.W. Murray, Electronic and photoelectron spectral studies of electroactive species attached to silanized carbon and platinum electrodes, J. Am. Chem. Soc. 102 (1980) 7629–7634.

[97] A.. Silva, M. Martins, M.M.. Freitas, A. Valente, C. Freire, B. de Castro, J.L. Figueiredo, Immobilisation of amine-functionalised nickel(II) Schiff base complexes onto activated carbon treated with thionyl chloride, Microporous Mesoporous Mater. 55 (2002) 275–284.

[98] N. Tsubokawa, Functionalization of carbon black by surface grafting of polymers, Prog. Polym. Sci. 17 (1992) 417–470.

[99] A. Stein, Z. Wang, M.A. Fierke, Functionalization of Porous Carbon Materials with Designed Pore Architecture, Adv. Mater. 21 (2009) 265–293.

[100] A. Bhatnagar, W. Hogland, M. Marques, M. Sillanpää, An overview of the modification methods of activated carbon for its water treatment applications, Chem. Eng. J. 219 (2013) 499–511.

[101] J.L. Figueiredo, Functionalization of porous carbons for catalytic applications, J. Mater. Chem. A. 1 (2013) 9351–9364.

[102] J.L. Bahr, J.M. Tour, Covalent chemistry of single-wall carbon nanotubes, J. Mater. Chem. 12 (2002) 1952–1958.

[103] S. Banerjee, S.S. Wong, Functionalization of Carbon Nanotubes with a Metal-Containing Molecular Complex, Nano Lett. 2 (2002) 49–53.

[104] H. Kuzmany, A. Kukovecz, F. Simon, M. Holzweber, C. Kramberger, T. Pichler, Functionalization of carbon nanotubes, Synth. Met. 141 (2004) 113–122.

[105] K. Balasubramanian, M. Burghard, Chemically Functionalized Carbon Nanotubes, Small. 1 (2005) 180–192.

[106] D.W. Boukhvalov, M.I. Katsnelson, Chemical Functionalization of Graphene with Defects, Nano Lett. 8 (2008) 4373–4379.

[107] J.M. Englert, C. Dotzer, G. Yang, M. Schmid, C. Papp, J.M. Gottfried, H.-P. Steinrück, E. Spiecker, F. Hauke, A. Hirsch, Covalent bulk functionalization of

Page 89: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

74

graphene, Nat. Chem. 3 (2011) 279–286.

[108] H.J. Salavagione, G. Martínez, G. Ellis, Recent Advances in the Covalent Modification of Graphene With Polymers, Macromol. Rapid Commun. 32 (2011) 1771–1789.

[109] D. Chen, H. Feng, J. Li, Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications, Chem. Rev. 112 (2012) 6027–6053.

[110] W. Lu, P. Soukiassian, J. Boeckl, Graphene: Fundamentals and functionalities, MRS Bull. 37 (2012) 1119–1124.

[111] S.T. Pantelides, Y. Puzyrev, L. Tsetseris, B. Wang, Defects and doping and their role in functionalizing graphene, MRS Bull. 37 (2012) 1187–1194.

[112] L. Dai, Functionalization of graphene for efficient energy conversion and storage., Acc. Chem. Res. 46 (2013) 31–42.

[113] J.E. Johns, M.C. Hersam, Atomic covalent functionalization of graphene., Acc. Chem. Res. 46 (2013) 77–86.

[114] M. Quintana, E. Vazquez, M. Prato, Organic Functionalization of Graphene in Dispersions, Acc. Chem. Res. 46 (2013) 138–148.

[115] P.E. Fanning, M.A. Vannice, A DRIFTS study of the formation of surface groups on carbon by oxidation, Carbon. 31 (1993) 721–730.

[116] A. Linares-Solano, C. Salinas-Martinez de Lecea, D. Cazorla-Amoros, J.P. Joly, H. Charcosset, Nature and structure of calcium dispersed on carbon, Energy & Fuels. 4 (1990) 467–474.

[117] Y. Otake, R.G. Jenkins, Characterization of oxygen-containing surface complexes created on a microporous carbon by air and nitric acid treatment, Carbon. 31 (1993) 109–121.

[118] H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windle, R.H. Friend, Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes, J. Phys. Chem. B. 103 (1999) 8116–8121.

[119] T.J. Bandosz, C.O. Ania, Surface chemistry of activated carbons and its characterization, in: Interface Sci. Technol., Elsevier, 2006: pp. 159–229.

[120] Y. Yamada, J. Kim, S. Matsuo, S. Sato, Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy, Carbon. 70 (2014) 59–74.

[121] S. van Dommele, A. Romero-Izquierdo, R. Brydson, K.P. de Jong, J.H. Bitter, Tuning nitrogen functionalities in catalytically grown nitrogen-containing carbon nanotubes, Carbon. 46 (2008) 138–148.

[122] G.-P. Hao, W.-C. Li, D. Qian, A.-H. Lu, Rapid Synthesis of Nitrogen-Doped Porous Carbon Monolith for CO2 Capture, Adv. Mater. 22 (2010) 853–857.

Page 90: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

75

[123] S. Tanada, N. Kawasaki, T. Nakamura, M. Araki, M. Isomura, Removal of Formaldehyde by Activated Carbons Containing Amino Groups., J. Colloid Interface Sci. 214 (1999) 106–108.

[124] K.N. Wood, R. O’Hayre, S. Pylypenko, Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications, Energy Environ. Sci. 7 (2014) 1212–1249.

[125] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt, Science. 332 (2011) 443–447.

[126] T. Ramanathan, F.T. Fisher, R.S. Ruoff, L.C. Brinson, Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems, Chem. Mater. 17 (2005) 1290–1295.

[127] E. Raymundo-Pinero, D. Cazorla-Amorós, A. Linares-Solano, S. Delpeux, E. Frackowiak, K. Szostak, F. Béguin, High surface area carbon nanotubes prepared by chemical activation, Carbon. 40 (2002) 1614–1617.

[128] E. Raymundo-Piñero, D. Cazorla-Amorós, A. Linares-Solano, The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres, Carbon. 41 (2003) 1925–1932.

[129] M.J. Mostazo-López, R. Ruiz-Rosas, E. Morallón, D. Cazorla-Amorós, Generation of nitrogen functionalities on activated carbons by amidation reactions and Hofmann rearrangement: Chemical and electrochemical characterization, Carbon. 91 (2015) 252–265.

[130] C. You, S. Liao, H. Li, S. Hou, H. Peng, X. Zeng, F. Liu, R. Zheng, Z. Fu, Y. Li, Uniform nitrogen and sulfur co-doped carbon nanospheres as catalysts for the oxygen reduction reaction, Carbon. 69 (2014) 294–301.

[131] Q. Shu, Z. Nawaz, J. Gao, Y. Liao, Q. Zhang, D. Wang, J. Wang, Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: Reaction and separation, Bioresour. Technol. 101 (2010) 5374–5384.

[132] J.A. Maciá-Agulló, M. Sevilla, M.A. Diez, A.B. Fuertes, Synthesis of Carbon-based Solid Acid Microspheres and Their Application to the Production of Biodiesel, ChemSusChem. 3 (2010) 1352–1354.

[133] M. Toda, A. Takagaki, M. Okamura, J.N. Kondo, S. Hayashi, K. Domen, M. Hara, Green chemistry: Biodiesel made with sugar catalyst, Nature. 438 (2005) 178–178.

[134] J. Barbier, E. Lamy-Pitara, P. Marecot, J.P. Boitiaux, J. Cosyns, F. Verna, Role of Sulfur in Catalytic Hydrogenation Reactions, Adv. Catal. 37 (1990) 279–318.

[135] H.T. Gomes, S.M. Miranda, M.J. Sampaio, A.M.T. Silva, J.L. Faria, Activated

Page 91: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

76

carbons treated with sulphuric acid: Catalysts for catalytic wet peroxide oxidation, Catal. Today. 151 (2010) 153–158.

[136] A. Macías-García, C. Valenzuela-Calahorro, V. Gómez-Serrano, A. Espínosa-Mansilla, Adsorption of Pb2+ by heat-treated and sulfurized activated carbon, Carbon. 31 (1993) 1249–1255.

[137] J. Rivera-Utrilla, M. Sánchez-Polo, V. Gómez-Serrano, P.M. Alvarez, M.C.M. Alvim-Ferraz, J.M. Dias, Activated carbon modifications to enhance its water treatment applications. An overview., J. Hazard. Mater. 187 (2011) 1–23.

[138] J.P. Paraknowitsch, A. Thomas, Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications, Energy Environ. Sci. 6 (2013) 2839–2855.

[139] Q. Shi, F. Peng, S. Liao, H. Wang, H. Yu, Z. Liu, B. Zhang, D. Su, Sulfur and nitrogen co-doped carbon nanotubes for enhancing electrochemical oxygen reduction activity in acidic and alkaline media, J. Mater. Chem. A. 1 (2013) 14853–14857.

[140] Y. Zhou, Y. Zhu, S. Lin, K. Li, D. Xue, Synthesis of Sulfur-Doped Carbon Nanotubes by Liquid Precursor, Mater. Focus. 2 (2013) 44–47.

[141] Y. Su, Y. Zhang, X. Zhuang, S. Li, D. Wu, F. Zhang, X. Feng, Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction, Carbon. 62 (2013) 296–301.

[142] R. Wang, D.C. Higgins, M.A. Hoque, D. Lee, F. Hassan, Z. Chen, Controlled Growth of Platinum Nanowire Arrays on Sulfur Doped Graphene as High Performance Electrocatalyst, Sci. Rep. 3 (2013) 2431.

[143] S.-A. Wohlgemuth, R.J. White, M.-G. Willinger, M.-M. Titirici, M. Antonietti, A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction, Green Chem. 14 (2012) 1515–1523.

[144] D.W. McKee, C.L. Spiro, E.J. Lamby, The inhibition of graphite oxidation by phosphorus additives, Carbon. 22 (1984) 285–290.

[145] X. Wu, L.R. Radovic, Inhibition of catalytic oxidation of carbon/carbon composites by phosphorus, Carbon. 44 (2006) 141–151.

[146] J.M. Rosas, R. Ruiz-Rosas, J. Rodríguez-Mirasol, T. Cordero, Kinetic study of the oxidation resistance of phosphorus-containing activated carbons, Carbon. 50 (2012) 1523–1537.

[147] J.M. Rosas, J. Bedia, J. Rodríguez-Mirasol, T. Cordero, HEMP-derived activated carbon fibers by chemical activation with phosphoric acid, Fuel. 88 (2009) 19–26.

Page 92: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

77

[148] V. Strelko Jr, M. Streat, O. Kozynchenko, Preparation, characterisation and sorptive properties of polymer based phosphorus-containing carbon, React. Funct. Polym. 41 (1999) 245–253.

[149] J.M. Rosas, J. Bedia, J. Rodríguez-Mirasol, T. Cordero, On the preparation and characterization of chars and activated carbons from orange skin, Fuel Process. Technol. 91 (2010) 1345–1354.

[150] M. Wu, Y. Ren, N. Guo, S. Li, X. Sun, M. Tan, D. Wang, J. Zheng, N. Tsubaki, Hydrothermal co-doping of boron and phosphorus into porous carbons prepared from petroleum coke to improve oxidation resistance, Mater. Lett. 82 (2012) 124–126.

[151] R. Berenguer, R. Ruiz-Rosas, A. Gallardo, D. Cazorla-Amorós, E. Morallón, H. Nishihara, T. Kyotani, J. Rodríguez-Mirasol, T. Cordero, Enhanced electro-oxidation resistance of carbon electrodes induced by phosphorus surface groups, Carbon. 95 (2015) 681–689.

[152] J. Zhang, X. Liu, R. Blume, A. Zhang, R. Schlogl, D.S. Su, Surface-Modified Carbon Nanotubes Catalyze Oxidative Dehydrogenation of n-Butane, Science. 322 (2008) 73–77.

[153] Z. Liu, F. Peng, H. Wang, H. Yu, J. Tan, L. Zhu, Novel phosphorus-doped multiwalled nanotubes with high electrocatalytic activity for O2 reduction in alkaline medium, Catal. Commun. 16 (2011) 35–38.

[154] D.W. McKee, C.L. Spiro, E.J. Lamby, The effects of boron additives on the oxidation behavior of carbons, Carbon. 22 (1984) 507–511.

[155] T.C.M. Chung, Y. Jeong, Q. Chen, A. Kleinhammes, Y. Wu, Synthesis of Microporous Boron-Substituted Carbon (B/C) Materials Using Polymeric Precursors for Hydrogen Physisorption, J. Am. Chem. Soc. 130 (2008) 6668–6669.

[156] L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U. V. Waghmare, C.N.R. Rao, Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene, Adv. Mater. 21 (2009) 4726–4730.

[157] W. Han, Y. Bando, K. Kurashima, T. Sato, Boron-doped carbon nanotubes prepared through a substitution reaction, Chem. Phys. Lett. 299 (1999) 368–373.

[158] J.R. Dahn, J.N. Reimers, A.K. Sleigh, T. Tiedje, Density of states in graphite from electrochemical measurements on Lix(C1-zBz)6, Phys. Rev. B. 45 (1992) 3773–3777.

[159] V.S. Bagotsky, Fundamentals of Electrochemistry, 2nd ed., John Wiley and Sons, New Jersey, 2006.

Page 93: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

78

[160] R. Berenguer, J.P. Marco-Lozar, C. Quijada, D. Cazorla-Amorós, E. Morallón, A comparison between oxidation of activated carbon by electrochemical and chemical treatments, Carbon. 50 (2012) 1123–1134.

[161] A.J. Bard, L.R. Faulkner, E. Swain, C. Robey, Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley and Sons Inc., New York, 2001.

[162] D. Pletcher, R. Greff, R. Peat, L.M. Peter, J. Robinson, Instrumental methods in electrochemistry, 1st ed., Woodhead Publishing Limited, Oxford, 2001.

[163] M.J. Bleda-Martínez, E. Morallón, D. Cazorla-Amorós, Polyaniline/porous carbon electrodes by chemical polymerisation: Effect of carbon surface chemistry, Electrochim. Acta. 52 (2007) 4962–4968.

[164] D. Salinas-Torres, J.M. Sieben, D. Lozano-Castelló, D. Cazorla-Amorós, E. Morallón, Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre–PANI electrodes, Electrochim. Acta. 89 (2013) 326–333.

[165] D. Salinas-Torres, J.M. Sieben, D. Lozano-Castello, E. Morallón, M. Burghammer, C. Riekel, D. Cazorla-Amorós, Characterization of activated carbon fiber/polyaniline materials by position-resolved microbeam small-angle X-ray scattering, Carbon. 50 (2012) 1051–1056.

[166] D. Bélanger, J. Pinson, Electrografting: a powerful method for surface modification., Chem. Soc. Rev. 40 (2011) 3995–4048.

[167] S. Baranton, D. Bélanger, Electrochemical derivatization of carbon surface by reduction of in situ generated diazonium cations., J. Phys. Chem. B. 109 (2005) 24401–24410.

[168] K. Balasubramanian, M. Burghard, Electrochemically functionalized carbon nanotubes for device applications, J. Mater. Chem. 18 (2008) 3071–3083.

[169] T. Fukushima, T. Aida, Ionic Liquids for Soft Functional Materials with Carbon Nanotubes, Chem. - A Eur. J. 13 (2007) 5048–5058.

[170] J.L. Bahr, J. Yang, D. V Kosynkin, M.J. Bronikowski, R.E. Smalley, J.M. Tour, Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts: A Bucky Paper Electrode, J. Am. Chem. Soc. 123 (2001) 6536–6542.

[171] B.K. Price, J.M. Tour, Functionalization of single-walled carbon nanotubes “on water”., J. Am. Chem. Soc. 128 (2006) 12899–12904.

[172] P. Allongue, M. Delamar, B. Desbat, O. Fagebaume, R. Hitmi, J. Pinson, J. Savéant, Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts, J. Am. Chem. Soc. 7863 (1997) 201–207.

Page 94: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

79

[173] D. Matcriaux, M. Delamar, G. Désarmot, O. Fagebaume, R. Hitmi, J. Pinson, J. Savéant, Modification of Carbon Fiber Surfaces by Electrochemical Reduction of Aryl Diazonium Salts: Application to Carbon Epoxy Composites, Carbon. 35 (1997) 801–807.

[174] P. Petrov, X. Lou, C. Pagnoulle, C. Jérôme, C. Calberg, R. Jérôme, Functionalization of Multi-Walled Carbon Nanotubes by Electrografting of Polyacrylonitrile, Macromol. Rapid Commun. 25 (2004) 987–990.

[175] R.S. Deinhammer, M. Ho, J.W. Anderegg, M.D. Porter, Electrochemical Oxidation of Amine-Containing Compounds: A Route to the Surface Modification of Glassy Carbon Electrodes, Langmuir. 10 (1994) 1306–1313.

[176] G. Yang, Y. Shen, M. Wang, H. Chen, B. Liu, S. Dong, Copper hexacyanoferrate multilayer films on glassy carbon electrode modified with 4-aminobenzoic acid in aqueous solution, Talanta. 68 (2006) 741–747.

[177] X. Li, Y. Wan, C. Sun, Covalent modification of a glassy carbon surface by electrochemical oxidation of r-aminobenzene sulfonic acid in aqueous solution, J. Electroanal. Chem. 569 (2004) 79–87.

[178] G. Yang, B. Liu, S. Dong, Covalent modification of glassy carbon electrode during electrochemical oxidation process of 4-aminobenzylphosphonic acid in aqueous solution, J. Electroanal. Chem. 585 (2005) 301–305.

[179] J. Liu, L. Cheng, B. Liu, S. Dong, Covalent Modification of a Glassy Carbon Surface by 4-Aminobenzoic Acid and Its Application in Fabrication of a Polyoxometalates-Consisting Monolayer and Multilayer Films, Langmuir. 16 (2000) 7471–7476.

[180] F. Geneste, C. Moinet, Electrochemically linking TEMPO to carbon via amine bridges, New J. Chem. 29 (2005) 269–271.

[181] K. Kinoshita, J. Bett, Electrochemical oxidation of carbon black in concentrated phosphoric acid at 135°C, Carbon. 11 (1973) 237–247.

[182] K. Kinoshita, J. Bett, Potentiodynamic analysis of surface oxides on carbon blacks, Carbon. 11 (1973) 403–411.

[183] J. McBreen, H. Olender, S. Srinivasan, K. V. Kordesch, Carbon supports for phosphoric acid fuel cell electrocatalysts: alternative materials and methods of evaluation, J. Appl. Electrochem. 11 (1981) 787–796.

[184] J.B. Donnet, P. Ehrburger, Carbon fibre in polymer reinforcement, Carbon. 15 (1977) 143–152.

[185] Z.R. Yue, W. Jiang, L. Wang, S.D. Gardner, C.U. Pittman, Surface characterization of electrochemically oxidized carbon fibers, Carbon. 37 (1999) 1785–1796.

Page 95: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

80

[186] X.R. Ye, L.H. Chen, C. Wang, J.F. Aubuchon, I.C. Chen, A.I. Gapin, J.B. Talbot, S. Jin, Electrochemical Modification of Vertically Aligned Carbon Nanotube Arrays, J. Phys. Chem. B. 110 (2006) 12938–12942.

[187] Y. Shao, J. Wang, M. Engelhard, C. Wang, Y. Lin, Facile and controllable electrochemical reduction of graphene oxide and its applications, J. Mater. Chem. 20 (2010) 743–748.

[188] M. Pumera, Electrochemistry of graphene, graphene oxide and other graphenoids: Review, Electrochem. Commun. 36 (2013) 14–18.

[189] U.S. Department of Energy, Fuel Cells, Available: [Http://energy.gov/eere/fuelcells/fuel-Cells]. (2016) Accessed: 2016–03–05.

[190] M. Winter, R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev. 104 (2004) 4245–4270.

[191] J. Masa, W. Xia, M. Muhler, W. Schuhmann, On the Role of Metals in Nitrogen-Doped Carbon Electrocatalysts for Oxygen Reduction, Angew. Chemie Int. Ed. 54 (2015) 10102–10120.

[192] H.-H. Yang, R.L. McCreery, Elucidation of the Mechanism of Dioxygen Reduction on Metal-Free Carbon Electrodes, J. Electrochem. Soc. 147 (2000) 3420–3428.

[193] J.N. Tiwari, R.N. Tiwari, G. Singh, K.S. Kim, Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells, Nano Energy. 2 (2013) 553–578.

[194] G. Wu, P. Zelenay, Nanostructured Nonprecious Metal Catalysts for Oxygen Reduction Reaction, Acc. Chem. Res. 46 (2013) 1878–1889.

[195] V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, N.M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nat. Mater. 6 (2007) 241–247.

[196] S. Jiang, Y. Ma, G. Jian, H. Tao, X. Wang, Y. Fan, Y. Lu, Z. Hu, Y. Chen, Electrocatalysts: Facile Construction of Pt-Co/CNx Nanotube Electrocatalysts and Their Application to the Oxygen Reduction Reaction (Adv. Mater. 48/2009), Adv. Mater. 21 (2009) 4953–4956.

[197] D. Wang, H.L. Xin, H. Wang, Y. Yu, E. Rus, D.A. Muller, F.J. DiSalvo, H.D. Abruña, Facile Synthesis of Carbon-Supported Pd–Co Core–Shell Nanoparticles as Oxygen Reduction Electrocatalysts and Their Enhanced Activity and Stability with Monolayer Pt Decoration, Chem. Mater. 24 (2012) 2274–2281.

[198] N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding, Z.L. Wang, Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity, Science. 316 (2007) 732–735.

Page 96: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

81

[199] C. Wang, H. Daimon, T. Onodera, T. Koda, S. Sun, A General Approach to the Size- and Shape-Controlled Synthesis of Platinum Nanoparticles and Their Catalytic Reduction of Oxygen, Angew. Chemie. 120 (2008) 3644–3647.

[200] L. Kuai, B. Geng, S. Wang, Y. Zhao, Y. Luo, H. Jiang, Silver and Gold Icosahedra: One-Pot Water-Based Synthesis and Their Superior Performance in the Electrocatalysis for Oxygen Reduction Reactions in Alkaline Media, Chem. - A Eur. J. 17 (2011) 3482–3489.

[201] H. Li, Q. Xin, W. Li, Z. Zhou, L. Jiang, S. Yang, G. Sun, An improved palladium-based DMFCs cathode catalyst, Chem. Commun. (2004) 2776–2777.

[202] C. Jeyabharathi, S. Senthil Kumar, G.V.M. Kiruthika, K.L.N. Phani, Aqueous CTAB-Assisted Electrodeposition of Gold Atomic Clusters and Their Oxygen Reduction Electrocatalytic Activity in Acid Solutions, Angew. Chemie. 122 (2010) 2987–2990.

[203] Y. Liang, H. Wang, P. Diao, W. Chang, G. Hong, Y. Li, M. Gong, L. Xie, J. Zhou, J. Wang, T.Z. Regier, F. Wei, H. Dai, Oxygen Reduction Electrocatalyst Based on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes, J. Am. Chem. Soc. 134 (2012) 15849–15857.

[204] Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Müllen, 3D Nitrogen-Doped Graphene Aerogel-Supported Fe 3 O 4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction, J. Am. Chem. Soc. 134 (2012) 9082–9085.

[205] R. Zhang, S. He, Y. Lu, W. Chen, Fe, Co, N-functionalized carbon nanotubes in situ grown on 3D porous N-doped carbon foams as a noble metal-free catalyst for oxygen reduction, J. Mater. Chem. A. 3 (2015) 3559–3567.

[206] J.H. Zagal, S. Griveau, J.F. Silva, T. Nyokong, F. Bedioui, Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions, Coord. Chem. Rev. 254 (2010) 2755–2791.

[207] J. Ozaki, S. Tanifuji, A. Furuichi, K. Yabutsuka, Enhancement of oxygen reduction activity of nanoshell carbons by introducing nitrogen atoms from metal phthalocyanines, Electrochim. Acta. 55 (2010) 1864–1871.

[208] C.W.B. Bezerra, L. Zhang, K. Lee, H. Liu, A.L.B. Marques, E.P. Marques, H. Wang, J. Zhang, A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction, Electrochim. Acta. 53 (2008) 4937–4951.

[209] M. Lefevre, E. Proietti, F. Jaouen, J.-P. Dodelet, Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells, Science. 324 (2009) 71–74.

[210] S. Maldonado, K.J. Stevenson, Influence of Nitrogen Doping on Oxygen Reduction Electrocatalysis at Carbon Nanofiber Electrodes, J. Phys. Chem. B.

Page 97: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Capítulo 1

82

109 (2005) 4707–4716.

[211] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction, Science. 323 (2009) 760–764.

[212] V.V. Strelko, V.S. Kuts, P.A. Thrower, On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions, Carbon. 38 (2000) 1499–1503.

[213] Q. Wei, X. Tong, G. Zhang, J. Qiao, Q. Gong, S. Sun, Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions, Catalysts. 5 (2015) 1574–1602.

[214] Y. Wang, X. Cui, Y. Li, L. Chen, H. Chen, L. Zhang, J. Shi, A co-pyrolysis route to synthesize nitrogen doped multiwall carbon nanotubes for oxygen reduction reaction, Carbon. 68 (2014) 232–239.

[215] P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun, D. Cao, ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction, Energy Environ. Sci. 7 (2014) 442–450.

[216] J.D. Wiggins-Camacho, K.J. Stevenson, Mechanistic Discussion of the Oxygen Reduction Reaction at Nitrogen-Doped Carbon Nanotubes, J. Phys. Chem. C. 115 (2011) 20002–20010.

[217] W. Xia, J. Masa, M. Bron, W. Schuhmann, M. Muhler, Highly active metal-free nitrogen-containing carbon catalysts for oxygen reduction synthesized by thermal treatment of polypyridine-carbon black mixtures, Electrochem. Commun. 13 (2011) 593–596.

[218] C. González-Gaitán, R. Ruiz-Rosas, E. Morallón, D. Cazorla-Amorós, Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the oxygen reduction reaction, Int. J. Hydrogen Energy. 40 (2015) 11242–11253.

[219] S. Yasuda, L. Yu, J. Kim, K. Murakoshi, Selective nitrogen doping in graphene for oxygen reduction reactions, Chem. Commun. 49 (2013) 9627–9629.

[220] D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, Electrochemical Biosensors - Sensor Principles and Architectures, Sensors. 8 (2008) 1400–1458.

[221] L.C. Clark, C. Lyons, Electrode systems for continuous moniroting in cardiovascular surgery, Ann. N. Y. Acad. Sci. 102 (1962) 29–45.

[222] M. Guo, J. Chen, J. Li, L. Nie, S. Yao, Carbon Nanotubes-Based Amperometric Cholesterol Biosensor Fabricated Through Layer-by-Layer Technique, Electroanalysis. 16 (2004) 1992–1998.

Page 98: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Introducción general

83

[223] Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene Based Electrochemical Sensors and Biosensors: A Review, Electroanalysis. 22 (2010) 1027–1036.

[224] M. Feng, H. Han, J. Zhang, H. Tachikawa, Electrochemical sensors based on carbon nanotubes, in: Electrochem. Sensors, Biosens. Their Biomed. Appl., Elsevier, 2008: pp. 459–501.

[225] P. Yáñez-Sedeño, J.M. Pingarrón, J. Riu, F.X. Rius, Electrochemical sensing based on carbon nanotubes, TrAC Trends Anal. Chem. 29 (2010) 939–953.

[226] V.K. Thakur, M.K. Thakur, eds., Chemical Functionalization of Carbon Nanomaterials: Structure and Chemistry, CRC Press, Boca Raton, 2015.

[227] J. Wang, Electrochemical Glucose Biosensors, Chem. Rev. 108 (2008) 814–825.

[228] National Diabetes Data Group, Classification and Diagnosis of Diabetes Mellitus and Other Categories of Glucose Intolerance, Diabetes. 28 (1979) 1039–1057.

[229] S. Ferri, K. Kojima, K. Sode, Review of glucose oxidases and glucose dehydrogenases: a bird’s eye view of glucose sensing enzymes., J. Diabetes Sci. Technol. 5 (2011) 1068–1076.

[230] D.S. Goodsell, Glucose Oxidase, RCSB Protein Data Bank. (2006).

[231] J. Raba, H.A. Mottola, Glucose Oxidase as an Analytical Reagent, Crit. Rev. Anal. Chem. 25 (1995) 1–42.

[232] G. Wohlfahrt, S. Witt, J. Hendle, D. Schomburg, H.. Kalisz, H.J. Hecht, 1.8 and 1.9 A resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes., Acta Crystallogr.,Sect.D. 55 (1999) 969–977.

Page 99: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán
Page 100: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

CHAPTER 2

Experimental Techniques

Page 101: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán
Page 102: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Experimental techniques

87

CHAPTER 2. EXPERIMENTAL TECHNIQUES

1 Introduction

This chapter presents the different techniques, reagents and materials used

during this PhD thesis work. It also describes the functionalization

techniques used for the preparation of the new materials. Nevertheless,

the specific experimental conditions will be explained in detail in each

chapter.

2 Materials and reagents

2.1 Reagents

For the functionalization processes, several reagents were used: 2-

aminobenzoic acid (2-ABA), 4-aminobenzoic acid (4-ABA), 4-

aminobencensulfonic acid (4-ABSA), 4-aminobenzylphosphonic acid (4-

ABPA), which were purchased from Merck and used as received. HClO4

(60%), H2SO4 (98%), HCl (37%) were purchased from VWR Chemicals.

Potassium hydroxide (KOH), potassium dihydrogen phosphate

(KH2PO4), dipotassium hydrogen phosphate (K2HPO4), glucose oxidase

from Aspergillus Niger (50KU), bovine serum albumin (BSA), cobalt and

iron phthalocyanines were purchased from Sigma-Aldrich. All the

solutions were prepared using ultrapure water (18 MOhms Millipore ®

Milli-Q® water). The gases N2 (99.999%), O2 (99.995%), and H2

(99.999%) were purchased from Air Liquide and were used without any

further purification or treatment.

Page 103: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 2

88

2.2 Carbon materials

Three different carbon nanostructured materials were used during this

PhD thesis. The first two of them consist in two different commercially

available 2-D nanostructured materials, which were used as received

without any further purification: multiwall carbon nanotubes with 95%

purity (Cheap Tubes Inc.) and carbon nanofibers. Likewise, a 3-D

nanostructured carbon material, a zeolite templated carbon (ZTC), was

synthetized following the conditions shown below. This synthesis was

performed in the Kyotani’s Lab in University of Tohoku, Japan as a result

of a collaboration research.

ZTC was prepared using zeolite Y (Na-form, SiO2/Al2O3 = 5.6, obtained

from Tosoh Co. Ltd.) as a template, by the method reported in detail

elsewhere [1–3]. Briefly, powdery zeolite Y is first dried at 150 °C under

vacuum and then impregnated with furfuryl alcohol at room temperature

under reduced pressure. After washing with mesitylene to remove furfuryl

alcohol from the external surface of the zeolite powder, the furfuryl

alcohol inside the zeolite channels was polymerized by heating the

powder at 150°C for 8 h under N2 flow. The resulting composite was then

heated at 5°C min−1 under a flow of N2 up to a temperature of 700 °C.

When the temperature was reached, chemical vapor deposition (CVD) of

propylene (7% in N2) was performed for 2 h. After this treatment, the

zeolite/carbon composite was heat-treated at 900 °C for 3 h under a N2

flow. Finally, the zeolite Y template was dissolved by HF treatment

(47%), and the resulting carbon was washed with copious amounts of

Page 104: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Experimental techniques

89

water and air-dried at 120 °C overnight. The final carbon material is

referred to as ZTC.

3 Characterization techniques

3.1 Electrochemical techniques

There exists a large number of electrochemical techniques which are

available for materials characterization. In the present work, three very

useful techniques were used: cyclic voltammetry (CV),

chronoamperometry (CA) and electrochemical impedance spectroscopy

(EIS). Further sections will show that each technique provides different

information and has different experimental conditions.

In order to perform the electrochemical measurements that are shown in

this work, a standard three electrode cell was used. The cell is filled with

an electrolyte in order to ensure sufficient conductivity, it consists of a

reference electrode (RE); working electrode (WE), which corresponds to

the material to be measured; and a counter electrode (CE) which is an inert

material with high surface area. A scheme of the system is shown in Fig

2.1.

3.1.1 Cyclic voltammetry (CV)

Cyclic voltammetry is a very useful technique for assessing the

electrochemical behavior of an electrode. It is possible to get information

about electrochemical reactions, thermodynamics of redox processes,

kinetics of electron-transfer reactions, capacitive currents, and adsorption

processes, among others.

Page 105: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 2

90

Fig 2.1 Scheme of a three electrochemical cell

Cyclic voltammetry experiments consist in a linear scanning of the

potential of a working electrode. In the experiment, the current flowing

through the WE is measured during a potential change with time using a

constant potential scan rate [4]. The applied potential to the WE is

measured against the RE and the CE closes the electrical circuit for the

current to flow. At the beginning, the WE is held at an initial potential Ei,

where no reaction occurs, usually at the open circuit potential. During the

measurement, the potential of the WE is changed linearly at a specific

scan rate ν between two potential limits (E1 and E2) and in reverse order

using the same conditions. The current passing from the WE to the CE is

recorded as function of the potential. Fig 2.2 shows the theoretical cyclic

voltammetry measurements of potential vs. time and current vs. potential

(cyclic voltammogram).

Page 106: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Experimental techniques

91

Fig 2.2.Cyclic potential sweep (left) and the resulting cyclic voltammogram (right)

The response of each material is different and depends on the combined

action of capacitive currents delivered during the formation of the

electrical double layer over the surface of the electrode and possible redox

reactions (it can also imply the modification of the electroactivity of the

electrode) that can occur on the electrode surface. In the case of carbon

materials without any modification, thanks to their high surface area, they

have a capacitive behavior corresponding to the formation of the electrical

double layer which does not involve any chemical reaction (Fig 2.3a). On

the other hand, carbon materials with functional groups of electroactive

character can show redox processes, which are seen as current peaks (Fig

2.3b). Redox reactions involving reagents that have been added to the

electrolyte can also be detected as current peaks, while the stability of the

electrode and the electrolyte (the respective degradation reactions will be

seen as current peaks at the positive and negative potential limits) can also

be easily detected using this technique.

E1

Ei

E2

t

I

E1E2

Page 107: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 2

92

Fig 2.3 Cyclic voltammograms: (a) Capacitive behavior and (b) Pseudocapacitive

behavior

3.1.2 Chronoamperometry (CA)

Chronoamperometry is very useful for the quantitative analysis of

different capacitive and redox processes. Fig 2.4 shows a schematic

chronoamperometric experiment of potential vs. time and current vs. time.

Chronoamperometry usually involves stepping the potential of the

working electrode from the initial potential Ei to a potential E1 at which

usually a faradic reaction is occurring. Then, the response of current with

time reflects the change in the reaction rate occurring at the surface of the

working electrode. It is important to note that capacitive currents related

to the formation or modification of the double layer will appear at the

beginning of the potential step, being the main contribution at short times.

After such time, the faradic current will be the most important

contribution to current.

Chronoamperometry is widely used in sensors application in order to

correlate the measured current and the amount of an analyte dissolved in

the electrolyte when a potential is applied to the electrode [5]. If a steady

I

E

(a) I

E

(b)

Page 108: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Experimental techniques

93

state can be established, the final current will correspond to a specific

concentration. When a known amount of analyte is added to the

electrolyte, it will be possible to make a calibration curve where steady

state currents are plotted versus different concentrations of the analyte.

Fig 2.4 Chronoamperometry experiment. Potential- time profile (left) and the resulting

response of the current as a function of time (right)

3.1.3 Linear sweep voltammetry (LSV)

Linear sweep voltammetry is a technique very similar to the cyclic

voltammetry. It involves the sweeping of the electrode potential between

limits E1 and E2 (see Fig 2.2) at a constant scan rate, without a subsequent

reverse scan. As in cyclic voltammetry, the current is measured as a

function of the potential [6]. In some instances, when there is a process

that involves an irreversible reaction, cyclic voltammetry does not give

any additional information compared to the linear sweep voltammetry; in

these cases this technique is quite useful [4].

E1

Ei

t0

I

t0

Page 109: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 2

94

3.1.4 Electrochemical Impedance Spectroscopy (EIS)

The electrochemical impedance spectroscopy is a useful technique that

finds many applications in corrosion, batteries, fuel cell development,

sensors and physical electrochemistry. It can be used to gain information

in reaction parameters, corrosion rates, electrode surface porosity,

coating, mass transport or capacitance measurements, between others. For

instance, it can be applied to stablish the electrokinetic responses of

combined slow, medium and even extremely fast processes, due to the

possibility to work with very small time constants, which have magnitudes

of microseconds, thus allowing to clarify the kinetic regimes and limiting

processes under different working conditions [7].

This technique is based on a perturbation applied to the electrodes using

an oscillatory signal of small magnitude. It is normally measured using a

small excitation signal. This is done to ensure that the response of the cell

is pseudo-linear. In a linear system, the current response to a sinusoidal

potential will be a sinusoid at the same frequency but shifted in phase with

a θ angle. The impedance of the system can be then described as:

𝑍 =𝐸𝑡

𝐼𝑡=

𝐸0 𝑠𝑖𝑛(𝜔𝑡)

𝐼0 𝑠𝑖𝑛(𝜔𝑡+𝜃)= 𝑍0

𝑠𝑖𝑛(𝜔𝑡)

𝑠𝑖𝑛(𝜔𝑡+𝜃) Eq. 2.1

If the Euler relationship is applied to this relationship, it will be possible

to express the impedance as a complex number:

𝑍(𝑤) = 𝑍0(𝑐𝑜𝑠 𝜃 + 𝑗 𝑠𝑖𝑛 𝜃) Eq. 2.2

The measured values are commonly recorded in a Nyquist plot, which

represents the complex part of the impedance as a function of the real part.

The data treatment can be done by fitting the impedance spectrum

Page 110: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Experimental techniques

95

obtained during the experiment to an equivalent electrical circuit where

the impedance and capacitance of the components are the fitting variables.

The circuits are formed by electrical elements such as resistances,

capacitors, etc., which reproduce the behavior or the real process. As an

example, the electrolyte resistance, the formed double layer in the

electrode-electrolyte interface or the charge transfer occurring during a

faradaic process can be obtained by this procedure [8].

3.2 Physical adsorption of gases

The adsorption is a phenomenon which takes place in the interface of a

solid-fluid (usually gas or vapor) system. It is governed by the specific

interactions between the atoms at the solid surface and the molecules in

the fluid which are close to the surface. Thus, when a porous solid (the

adsorbent) is contacted with a vapor or gas (the adsorbate), the surface of

the porous solid is enriched with the adsorbate, delivering a larger density

of the fluid on that surface. Depending on the strength of the interaction

between the adsorbent and the adsorbate, two types of adsorption

processes can be described: physical adsorption, where the interaction is

relatively weak (-20 to -40 kJ mol-1) and is due to van der Waals forces;

and chemisorption, where there is a chemical bond between the adsorbate

and the substrate, which is much stronger than in the previous case (-100

to -400 kJ mol-1).

The physical adsorption of gases is the preferred technique for the

characterization of porous solids through adsorption isotherms. It consists

in dosing a known amount of the adsorbate at a controlled temperature

(typically at the boiling temperature of the adsorbate) and pressure (from

Page 111: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 2

96

10-2 -10-3 mbar up to atmospheric pressure in conventional systems) into

a recipient (usually consisting in a glass cell, bulb or cylinder) of known

volume that has been loaded with an adsorbent. As the gas is adsorbed on

the surface of the adsorbent, the pressure inside the cell decreases, a

phenomenon that will be accompanied by an increase in the weight of the

solid phase. The equilibrium will be stablished when constant pressure or

weight is attained in the cell, making possible to calculate the amount of

adsorbed gas either by gravimetric (increase of weight), or by volumetric

(manometric) means (difference of pressure between the beginning and

the end of the experiment) [9]. If this procedure is repeated several times

at the same temperature and at different equilibrium pressures, the

adsorption isotherm will be obtained. In it, the adsorbed amount is

represented versus the relative pressure. From this plot is it possible to

obtain information about the porosity of the material, including

parameters such as specific surface area, pore volume and pore size

distribution, among others.

The most commonly used adsorbates are N2 and CO2. However,

adsorption isotherms can be measured for other gases such as CH4, Ar,

He, etc. In the case of N2, it is not appropriate for the study of adsorbents

with narrow porosity (i.e., pores of size close to 0.4 nm), due sieving

effects and to diffusional problems of the molecule at low temperatures (-

196ºC). To overcome this drawback, the use of CO2 at 0ºC and

subatmospheric pressures allows the characterization of the narrow

microporosity (i.e., pores of below around 0.7 nm).

Page 112: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Experimental techniques

97

The characterization of the samples was performed by a volumetric

adsorption equipment Autosorb-6B from Quantachrome. The system has

an independent degasification unit which has been employed to clean the

surface from adsorbed impurities before the analyses. After the

degasification process, the N2 adsorption desorption isotherm at -196ºC is

determined with a relative pressure ranging from 0 to 1. The equipment

registers the adsorbed volume at selected P/P0 values.

3.2.1 BET Theory

One of the most used method to determine the specific surface area in

porous material follows the model proposed by Brunnauer, Emmet and

Teller (BET) [10].

The theory is a semi-empirical approximation, which aims to propose a

model assuming the multilayer gas molecules adsorption without

limitations in the number of layers that can be adsorbed. The BET theory

is based in Langmuir model including several assumptions: the adsorption

sites are equivalents and independent, there are no lateral interactions

between adsorbed molecules, in all layers –except the first one– the

adsorbate condensation is produced (Eads = Eliq) and the number of layers

becomes infinite at saturation pressure (P/P0 = 1). The BET adsorption

isotherm is expressed as:

𝑃𝑃0

𝑛 (1−𝑃𝑃0

⁄ )=

1

𝑛𝑚𝐶+

(𝐶−1)

𝑛𝑚𝐶(

𝑃

𝑃0) Eq.2 3

Where P and P0 are the equilibrium and the saturation pressure of the

adsorbates, n is the adsorbed amount at a relative pressure (P/P0), nm is

Page 113: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 2

98

the adsorbed amount when a monolayer is formed and C is a parameter

related with the heat of adsorption.

The Eq. 2.3 is an adsorption isotherm and the experimental results can be

plotted as a straight line if the first term in that equation is represented in

front of P/P0. This plot is called BET plot. The linear relationship of this

equation is valid only in the range of 0.05 < P/P0 < 0.35 [9]. The value of

the slope and the intercept of the line are used to calculate the monolayer

adsorbed quantity nm and the BET constant C. From these values, the BET

surface area is calculated using the following equation:

𝑆 = 𝑛𝑚 ∙ 𝑎𝑚 ∙ 𝑁𝐴 ∙ 10−18 (𝑚2𝑔−1) Eq. 2.4

Where, S is the BET surface area, am is the cross-sectional area of one

adsorbate molecule (nm2 molecule-1) which in the case of N2 at -196 ºC is

0.162 nm2 and NA is Avogadro’s number (6.022 · 1023 molecules mol-1).

3.3 X-ray photoelectron spectroscopy (XPS)

The X-ray photoelectron spectroscopy is a quantitative detection

technique useful for determining the elemental composition, the chemical

species and their oxidation states on the surface of a material. This

technique is considered as a surface characterization technique due to its

low penetration power (1-3 nm) [11].

The technique consists in the determination of the kinetic energy of the

emitted electrons when the samples are irradiated with a monochromatic

X-ray beam. The irradiation can produce the emission of valence or inner

layers electrons from the sample atoms. The electron emission has a

specific kinetic energy which is related to the electron configuration of the

Page 114: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Experimental techniques

99

elements and consequently to the binding energy of the ejected electron.

The binding energy can be calculated from the energy of the X-ray source

by subtracting to the energy of the incident radiation, the kinetic energy

of the emitted electron and the work function, which is a characteristic of

the apparatus and the sample [12]. The obtained spectrum shows the

number of counts or intensity recorded in a range of binding energies.

Generally, the binding energy increases for the higher oxidation states of

the elements, and these changes can be seen as a shift of the binding

energy of the intensity peak.

The experimental setup has an X-ray source, an electron detector and the

energy analyzer. All the experiments are performed at ultrahigh vacuum

(5 x 10-7 Pa) in order to avoid the collision between the ejected electrons

and residual molecules, which can affect the signal quality.

The surface composition and oxidation states of the species in the

materials were studied using a VG-Microtech Mutilab 3000 spectrometer

and Mg Ka radiation (1253.6 eV). The C1s peak position was set at 284.6

eV and used as reference to shift the position of the whole spectrum.

Deconvolution of the XPS N1s spectra was done by least squares fitting,

using Gaussian-Lorentzian curves, while a Shirley line was used for the

background determination. The deconvoluted N1s peaks were assigned to

different surface groups and the oxidation states of nitrogen according to

those described in previous works [13].

Page 115: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 2

100

3.4 Inductively coupled plasma – Optical emission

spectrometry (ICP – OES)

The ICP-OES is a powerful technique for the quantification of a variety

of a large number of elements which are present at very low

concentrations in an acid aqueous solution. The technique is based in the

vaporization, dissociation, ionization and excitation of the chemical

elements in a sample by induced plasma energy [11].

It is a quantitative technique with high accuracy. It is based in the analysis

of the emitted UV-vis radiation from a specific chemical element when is

excited with a plasma (high energetic ionized gas). The radiation is

separated according to the wavelength (characteristic of each element) and

the intensity is registered. The wavelength allow to identify the specific

element and the intensity of the emitted radiation allow the quantification

of the element using a calibration pattern for the specific element [14].

The quantification of the metal content in the oxygen reduction reaction

catalysts based on iron and cobalt were studied by ICP – OES. A Perkin

Elmer (Optima 4300DV) spectrometer was used for the analysis of all

samples. The catalyst samples were treated in acid aqueous solutions

(HNO3 and HCl in a molar ratio of 1:3) in an ultrasound bath for 15 mins.

After this treatment, the solutions were diluted in order to have a

concentration within the appropriate range for the ICP - OES analysis.

3.5 X-ray diffraction (XRD)

The X-ray diffraction is a powerful technique for the determination of

crystallinity, crystal structures and lattice constants of solids [15]. XRD

Page 116: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Experimental techniques

101

measurement is a non-destructive technique and does not require a

specific sample preparation, which is useful for in situ studies.

The technique is based in the radiation scattering phenomenon, in which

the incident radiation is deviated from its original direction because of the

interaction with the sample. In XRD, a beam of X-ray, with a wavelength

typically ranging from 0.7 to 2 Å, strikes on a material and is diffracted

by the crystalline phases according to Bragg’s law. The intensity of the

diffracted X-ray is measured as a function of the diffraction angle 2θ and

the material orientation. The diffraction pattern is used to identify the

crystalline phases and to measure their structural properties [15].

The structure of the prepared materials was studied by XRD, using an X-

ray diffractometer (XRD-6100 Shimadzu Co., Kyoto, Japan,) with Cu-Kα

radiation at 30 kV and 20 mA. The diffraction patterns were register at 2θ

from 2º - 50º, with a measurement step of 0.05 º and an integration time

of 5 s.

3.6 Fourier transformed infrared spectroscopy (FTIR)

In infrared spectroscopy the vibrational spectrum of a compound is

obtained by exposing the sample to infrared radiation and recording the

variation of absorption with frequency. FTIR spectroscopy uses a

Michelson Interferometer that produces an interferogram from the splitted

beam, which contains information about the whole range of IR

frequencies coming from the source. The analysis of the interferogram

resulting from the interaction with the sample permits to obtain the IR

spectrum. To do this, the interferograms in the time domain are

Page 117: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 2

102

mathematically treated using the Fourier Transform in order to determine

the absorption of the sample at each wavelength [16].

In the experiment, after the signal is processed, the spectrum of the

absorbed/transmitted IR radiation fraction as a function of the frequency

or wavenumber is obtained. Bands will appear at certain wavelengths

where the sample has absorbed IR radiation. This absorption of IR

radiation is related to the excitation of the different vibrational modes of

a molecule and different bands will appear depending on the specific

chemical bonds in the sample, which allows to identify the species in the

material.

In this work, an Infrared Spectrometer (JASCO-FT/IR-4100) with a

mercuric cadmium telluride (MCT) detector was used. The samples were

dried at 100ºC for 12 h prior the measurements and the spectra were

recorded in transmittance mode between 4000 and 600 cm-1.

3.7 Temperature programmed desorption (TPD)

Temperature programmed desorption is a powerful technique for the

determination of the different functional groups present in the surface of

carbon materials. It consists in the analysis of the released gases from a

solid when it is heated using a constant heating rate in inert atmosphere.

The nature and amount of gases evolved during the experiment can be

followed by using several detectors such as mass spectrometer or gas

chromatograph. The analysis provides information about the chemical

composition and stability of the functionalities, by following the gases

emission as a function of the temperature.

Page 118: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Experimental techniques

103

The decomposition of surface oxygen functionalities of a carbon material

upon heating in inert atmosphere is a well-known process that has been

extensively used for characterizing the surface functionalities of porous

carbon materials [17,18]. Oxygen functional groups lying on their

surfaces show different thermal stabilities, and the gases released during

their thermal decomposition (CO, CO2 and H2O) are different depending

on the functional group. It is known that CO evolution is related to the

decomposition of neutral and basic groups such as carbonyl, quinones,

phenols, ethers and some others. They can be identified thanks to their

different decomposition temperatures [19,20]. Similarly, CO2 desorption

is mainly related to the decomposition of carboxylic, anhydride and

lactone moieties; in the case of anhydrides, their decomposition delivers

the release of a CO molecule for each formed CO2 molecule. Likewise,

the presence of N-functionalities can be also assessed by following the

possible evolution of nitrogen-containing gases that are known to be

formed during their thermal decomposition [21].

Temperature programmed desorption experiments were carried out in a

DSC-TGA equipment (TA Instruments, SDT 2960 Simultaneous)

coupled to a mass spectrometer (Thermostar, Balzers, GSD 300 T3). In

the experiments, the thermobalance was purged for 2 h under a helium

atmosphere at 100 ml min-1 and then heated up from 120 ºC to 950 °C

using a heating rate of 20 °C min-1.

Page 119: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 2

104

4 Functionalization methods

The carbon materials were functionalized in order to provide them with

different properties compared to the pristine ones. For this purpose,

several techniques were used: chemical and electrochemical routes.

4.1 Electrochemical functionalization techniques

The electrochemical functionalization of the carbon materials employed

in this thesis has been achieved using cyclic voltammetry. As it was

explained in a previous section, cyclic voltammetry is a technique widely

used for characterization. However, it can also be used for

functionalization purposes. The functionalization processes that will be

shown in the next chapters involve the electrochemical generation, at

positive polarization of the carbon surface, of both covalent

functionalization with differently substituted aminobenzene acids (ABAs)

and non-covalent functionalization with thin films consisting in oligomers

or short polymer chains formed with those ABA monomers.

The procedure was performed in a standard three-electrode cell

configuration, using a platinum wire as a CE, and Ag/AgCl or reversible

hydrogen electrode (RHE) as RE. The preparation of the WE differs for

each material and the necessary amount to synthesize. For the starting

electrochemical functionalization studies, a glassy carbon electrode (3

mm Ø) as a current collector coated with a small amount of sample (which

was deposited by drop casting from a suspension of the desired sample)

was used as the WE. In the case of those functionalized materials that were

later submitted to a heat treatment for their modification, bulk electrodes

were made with a paste of the carbon material consisting of the sample,

Page 120: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Experimental techniques

105

acetylene black as a conductive promoter, and PTFE as binder in a

proportion of 90:5:5, respectively. For carbon nanotubes and nanofibers,

the addition of conductive promoter was not necessary due to the high

conductivity of these materials.

The conditions of the potentiodymanic functionalization – electrolyte,

monomer concentration, voltage window, scan rate – can affect the

amount and nature of the functional groups introduced on the surface of

the carbon materials, and they were set in each case according to the

purpose of functionalization and the chemistry of the material. This will

be specified in each chapter.

4.2 Chemical functionalization

4.2.1 Oxidation treatment

The generation of oxygen functionalities can be performed by using wet

oxidation methods. Several studies of oxidation of carbon materials have

been performed using different oxidizing agents: HNO3, H2O2,

(NH4)2S2O8, among others [22–25].

In this work, chemical oxidation with HNO3 of carbon nanotubes was

performed in order to generate SOGs on the surface of these materials,

which are useful for enhancing their processability in aqueous solutions

and for using them as the linking point in subsequent functionalization or

enzyme immobilization processes.

4.2.2 Impregnation

The preparation of catalysts towards ORR has been done using the

impregnation method of a carbon support. This method is used for low

Page 121: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 2

106

loading catalysts. It consists in putting the support (typically a porous

solid) in contact with a solution that contains the components of the active

phase (usually metals). The ions diffuse in the support porosity and are

adsorbed on its inner surface. The activity of the catalyst can be modified

depending on how strong is the interaction between the active phase and

the support.

The purpose of this method is to obtain a high dispersion of the active

phase on the support surface. It is common to carry out a post heat

treatment to stabilize the active phase, and also to change its structure or

oxidation state in order to enhance its activity.

Two different approaches can be followed in the impregnation method:

wet impregnation, or incipient wetness impregnation. In the first one, the

excess of liquid is eliminated by evaporation or draining. The second one

uses the volume corresponding to the pore volume of the support

(empirically determined) [26].

5 References [1] Z. Ma, T. Kyotani, Z. Liu, O. Terasaki, A. Tomita, Very High Surface Area

Microporous Carbon with a Three-Dimensional Nano-Array Structure: Synthesis and Its Molecular Structure, Chem. Mater. 13 (2001) 4413–4415.

[2] R. Berenguer, H. Nishihara, H. Itoi, T. Ishii, E. Morallón, D. Cazorla-Amorós, T. Kyotani, Electrochemical generation of oxygen-containing groups in an ordered microporous zeolite-templated carbon, Carbon. 54 (2013) 94–104.

[3] H. Itoi, H. Nishihara, T. Ishii, K. Nueangnoraj, R. Berenguer, T. Kyotani, Large Pseudocapacitance in Quinone-Functionalized Zeolite-Templated Carbon, Bull. Chem. Soc. Jpn. 87 (2014) 250–257.

[4] A.J. Bard, L.R. Faulkner, E. Swain, C. Robey, Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley and Sons Inc., New York, 2001.

Page 122: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Experimental techniques

107

[5] J. Wang, Analytical electrochemistry, 3rd ed., John Wiley & Sons, Inc., New York, 2001.

[6] D. Pletcher, R. Greff, R. Peat, L.M. Peter, J. Robinson, Instrumental methods in electrochemistry, 1st ed., Woodhead Publishing Limited, Oxford, 2001.

[7] S. Krause, Encyclopedia of Electrochemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007.

[8] E. Barsoukov, J.R. MacDonald, Impedance Spectroscopy, 1st ed., John Wiley & Sons, Inc., Hoboken, 2005.

[9] J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, K.S.W. Sing, Adsorption by Powders and Porous Solids, 2nd ed., Elsevier, Oxford, 2014.

[10] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc. 60 (1938) 309–319.

[11] D.A. Skoog, F.J. Holler, S.R. Crouch, Principles of Instrumental Analysis, 6th ed., Cengage Learning, Inc, California, 2007.

[12] C.R. Brundle, C.A. Evans, S. Wilson, Encyclopedia of Materials Characterization: Surfaces, Interfaces, Thin Film, Butterworth-Heinemann, Stoneham, 1992.

[13] E. Raymundo-Piñero, D. Cazorla-Amorós, A. Linares-Solano, J. Find, U. Wild, R. Schlögl, Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin, Carbon. 40 (2002) 597–608.

[14] A. Montaser, D.W. Golightly, Inductively Coupled Plasmas in Analytical Atomic Spectrometry, 2nd ed., Wiley VCH Verlag GmbH, New York, 1992.

[15] G. Cao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, 2nd ed., World Scientific Publishing Co.Pte. Ltd., Toh Tuck Link, 2004.

[16] B.C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, 2nd ed., CRC Press Taylor & Francis Group, Boca Raton, 2011.

[17] Y. Otake, R.G. Jenkins, Characterization of oxygen-containing surface complexes created on a microporous carbon by air and nitric acid treatment, Carbon. 31 (1993) 109–121.

[18] M.C.C. Román-Martínez, D. Cazorla-Amorós, A. Linares-Solano, C.S.-M. de Lecea, TPD and TPR characterization of carbonaceous supports and Pt/C catalysts, Carbon. 31 (1993) 895–902.

[19] H.-P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon. 32 (1994) 759–769.

Page 123: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 2

108

[20] H.-P. Boehm, Surface oxides on carbon and their analysis: a critical assessment, Carbon. 40 (2002) 145–149.

[21] H.F. Gorgulho, J.P. Mesquita, F. Gonçalves, M.F.R. Pereira, J.L. Figueiredo, Characterization of the surface chemistry of carbon materials by potentiometric titrations and temperature-programmed desorption, Carbon. 46 (2008) 1544–1555.

[22] R. Berenguer, J.P. Marco-Lozar, C. Quijada, D. Cazorla-Amorós, E. Morallón, A comparison between oxidation of activated carbon by electrochemical and chemical treatments, Carbon. 50 (2012) 1123–1134.

[23] P.-Z. Cheng, H. Teng, Electrochemical responses from surface oxides present on HNO3-treated carbons, Carbon. 41 (2003) 2057–2063.

[24] C. Moreno-Castilla, M.A. Ferro-Garcia, J.P. Joly, I. Bautista-Toledo, F. Carrasco-Marin, J. Rivera-Utrilla, Activated Carbon Surface Modifications by Nitric Acid, Hydrogen Peroxide, and Ammonium Peroxydisulfate Treatments, Langmuir. 11 (1995) 4386–4392.

[25] C. Moreno-Castilla, M.. López-Ramón, F. Carrasco-Marın, Changes in surface chemistry of activated carbons by wet oxidation, Carbon. 38 (2000) 1995–2001.

[26] J. Haber, J.H. Block, B. Delmon, Manual of methods and procedures for catalyst characterization, Pure Appl. Chem. 67 (1995) 1267–1306.

Page 124: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

CHAPTER 3

Functionalization of carbon

nanotubes using aminobenzene

acids and electrochemical

methods. Electroactivity for the

ORR

Page 125: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán
Page 126: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the ORR

111

CHAPTER 3. FUNCTIONALIZATION OF CARBON NANOTUBES

USING AMINOBENZENE ACIDS AND ELECTROCHEMICAL

METHODS. ELECTROACTIVITY FOR THE OXYGEN REDUCTION

REACTION

1 Introduction

One of the main challenges for the development of fuel cells is the design

of new catalysts for the cathode. The most evident disadvantage of the

current state-of-the-art catalysts, i.e. platinum and other noble metals, is,

among others, the price of the material, which renders economically and

sustainably inviable a widespread production of fuel cells. Thus, a huge

effort is currently underway in the replacement of platinum by new

electrocatalyts based in non-noble metals or carbon materials for the

oxygen reduction reaction (ORR). This reaction can proceed through a

two or a four-electron reaction pathway that leads either to hydrogen

peroxide or water formation as the final product. Given the lower

efficiency of the 2-electron reaction and the undesirable side effect of

producing large amounts of highly oxidizing peroxide, selectivity to the

water formation via the 4-electron process along with a high stability and

a kinetic rate comparable to that of platinum are also required features of

materials that could potentially reduce and even replace the use of

platinum as catalyst [1,2].

Nitrogen-containing nanostructured carbon materials are one of the most

promising candidates for non-precious metal catalysts. These materials

Page 127: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 3

112

have noteworthy ORR activities, selectivity to water and stability as well

as their excellent properties and tunable surface chemistry [3].

The role of nitrogen functionalities is not still well understood. The

electron donor character of N functionalities together with the

redistribution of electron density in the surroundings of the N-atom, seem

to be the main reasons for the catalytic activity [4–6]. The positively

charged carbon atom in the vicinity of nitrogen species promote O2

chemisorption what weakens the O-O bond [7–9]. Apart from the role of

nitrogen atoms as the possible catalyst by themselves, the structural

changes that induces in the carbon lattice are also mentioned as an

additional boost for the electroactivity of the resulting material [10], being

related to the increased occurrence of edge sites in the vicinity of the

nitrogen group [7,11], which are electroactive by themselves [12], and the

induction of curvature in the graphene layers through the formation of

Stone-Wales defects [13,14]. Among then, N-doped Carbon nanotubes

(N-CNTs) have shown outstanding activity for ORR probably because of

a combination of the about mentioned factors [8,15,16]. In consequence,

intensive studies in the field have produced novel synthesis

methodologies and/or doping processes for attaining nitrogen-containing

nanostructured carbon materials [15,17–30]. They can be obtained either

by the reaction between a carbon material and a N-containing compound

or by synthesis of a carbon material using a N-rich carbon precursor

[20,30–34].

Selective generation of nitrogen functionalities is difficult to achieve

when using the most common chemical methods for nitrogen doping, such

Page 128: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the ORR

113

as the reaction of a carbon material with nitrogen containing molecules,

chemical vapor deposition (CVD) using a N-containing molecule,

template methods using N-rich precursors, etc. [33–39].

In this sense, functionalization and grafting of molecules by

electrochemical methods can produce modified materials with a higher

selectivity towards specific functional groups [40,41]. This method

combined with further heat treatment can be very useful to generate

tailored N-species [42]. In the case of CNTs, while electrochemical

functionalization with nitrogen groups using reductive conditions has

been profusely studied, the use of oxidative conditions has not been

analyzed in detail, being more dedicated to the preparation of composites

and thin films of nitrogen-containing polymers, such as polyaniline

[43,44]. However, oxidation of aliphatic and aromatics amines for their

grafting on carbon surfaces has been studied in the past and this method

could be used with CNTs [45]. The process is a one-electron oxidation of

the amine group that gives a radical which then is attached to the surface

by a C-N bond. An interesting and illustrative example of the potentiality

of this method is the modification of glassy carbon surfaces using 4-

aminobenzoic acid (4-ABA) [46,47], 4-aminobenzenesulfonic acid (4-

ABSA) [48] and 4-aminobenzylphosphonic acid (4-ABPA) [49] in

aqueous solution. These examples show that the grafting of species with

a terminal carboxyl, sulfonic and phosphonic groups, respectively, is

possible. This variety of terminal groups in the functionalized aminoacids

could be beneficial for delivering different properties to a carbon surface.

Furthermore, covalently anchored or non-convalently adsorbed

Page 129: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 3

114

aminoacids could also polymerize. The obtained homopolymers from p-

aminobenzoic, benzensulfonic or benzylphosphonic acids would be short-

chain polymeric materials, where the preferential growth of polymer

could take place through the incorporation of monomers at the ortho

position to the carboxylic group, although some contribution of meta-

substituted rings cannot be discarded [50]. These modified carbon

materials could be used as synthesized or subjected to further heat

treatment to induce their controlled decomposition to obtained highly

selective N-doped carbon materials.

Thus, one of the objectives of this work is to study the electrochemical

functionalization of CNTs with differently substituted aminobenzene

acids (namely 4-ABA, 4-ABSA and 4-ABPA), since sulfur and

phosphorus groups have also been proposed as electroactive for the ORR

[38,51,52]. The functionalization has been achieved by potentiodynamic

treatment in oxidative conditions that can promote both the covalent

bonding to the carbon nanotubes and the polymerization of the

aminoacids. The effect of the different functional groups in the para

position of the employed aminobenzene acids in the electrochemical

behavior and catalytic activity for ORR has been studied. Furthermore,

heat treated N-doped CNTs obtained from the electrochemically

functionalized CNTs have also been characterized, showing important

changes when the atmosphere during the heat treatment is changed from

an inert to a slightly oxidative one. This has an important influence in the

activity towards ORR.

Page 130: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the ORR

115

2 Materials and methods

2.1 Reagents

Multiwall CNTs were purchased from Cheap Tubes Inc. (Brattleboro, Vt,

USA) with a 95% of purity and a BET surface area of 484 m2 g-1 and they

were used without further purification. 4-aminobenzoic acid (4-ABA) was

purchased from Merck. 4-aminobenzenesulfonic acid (4-ABSA), 4-

aminobenzylphosphonic acid (4-ABPA), N,N-dimethylformamide

(DMF) and potassium hydroxide were purchased from Sigma-Aldrich.

Sulfuric acid (98%) and perchloric acid (70%) were purchased from VWR

Chemicals Prolabo. Oxygen with 99.99% of purity was purchased from

Linde.

2.2 Electrochemical modification of CNTs

The working electrode was prepared using a dispersion of 1 mg ml-1 of

CNTs in DMF. A glassy carbon electrode was polished and 10 µl of the

mentioned dispersion was added on the glassy carbon surface, with the

solvent being evaporated using an infrared heating lamp. The study of the

electrochemical modification of CNTs was performed in a three-electrode

cell, the glassy carbon electrode charged with CNTs being used as the

working electrode, a platinum wire being used as the counter electrode

and Ag/AgCl electrode as the reference electrode, but the potentials are

referred to a reversible hydrogen electrode (RHE). Potentiodynamic

functionalization was achieved submitting the sample to cyclic

voltammetry in a 0.1M HClO4 solution containing 1 mM of the respective

aminoacid (4-ABA, 4-ABSA, 4-ABPA), where the potential was scanned

between 0.7 and 1.6 V (vs. RHE) at 10 mV s-1 during 10 cycles.

Page 131: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 3

116

The preparation was scaled-up for the production of 25 mg of

functionalized CNTs through the same procedure than before. A paste was

prepared by mixing the CNTs with a binder (PTFE, 60 wt.%) in a ratio

95:5 wt.%; this mixture was spread and pressed uniformly and thinly with

a spatula onto a graphite sheet collector that was used as the working

electrode.

2.3 Heat treatment

Functionalized CNTs with 4-ABA were heat treated into a tubular furnace

at 800 ºC for 30 min using a heating rate of 20 ºC min-1. Two different

atmospheres were used in this treatment: one with pure nitrogen and the

other one a slightly oxidizing mixture of gases (3125 ppm O2 in N2).

2.4 Chemical and electrochemical characterization

The surface composition and oxidation states of the species in the

materials were studied by using XPS in a VG-Microtech Mutilab 3000

spectrometer and Al Kα radiation (1253.6 eV). The C1s peak position was

set at 284.8 eV and used as reference to shift the position of the whole

spectrum. Elemental analysis of the surface of the sample was obtained

comparing the areas under the main peak of each atom found in the

sample, that have corrected by the corresponding Scofield sensitivity

factors and the kinetic energy raised to the 0.6 power of each peak.

Deconvolution of the XPS N1s spectra was done by least squares fitting

using Gaussian-Lorentzian curves, while a Shirley line was used for the

background determination. The deconvoluted N1s peaks were assigned to

different surface groups and oxidation states of nitrogen according to

those described in previous works [53].

Page 132: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the ORR

117

The electrochemical characterization of the electrodes was performed in

an Autolab PGSTAT302 (Metrohm, Netherlands) potentiostat using the

same standard three-electrode cell configuration already described in

section 2.2. Two aqueous electrolytes with different pH were used: acid

medium (1 M H2SO4) and basic medium (0.1 M KOH). The

electrochemical behavior was studied by cyclic voltammetry (CV)

between 0.0 and 1.0 V (vs. RHE) at 50 mV s-1.

2.5 Electrochemical activity towards ORR

Electrochemical activity tests towards ORR were conducted in a three-

electrode cell using 0.1 M KOH, a platinum wire as the counter electrode

and RHE electrode as the reference electrode. A rotating ring-disk

electrode (RRDE, Pine Research Instruments, USA) equipped with a

glassy carbon disk (5.61 mm diameter) and a attached platinum ring was

used as the working electrode. The glassy carbon disk was modified with

the functionalized nanotubes using 25 µl of a 1 mg ml-1 dispersion,

obtaining a catalyst charge of 0.1 mg cm-2. For comparison purpose, a

Pt/C electrocatalysts prepared according to procedure described in Ref.

[54] on Vulcan XC-72F has been used. For the measurements of Pt/C

catalyst, 2.5 µl of a dispersion consisting in 10 mg ml-1 of catalyst and 5

mg ml-1 of Nafion® (from a 5%weight Nafion® perfluorinated resin

solution, Aldrich) were deposited over the surface of the glassy carbon

disk. Cyclic voltammetry and linear sweep voltammetry (LSV) were

performed between 0.0 and 1.0 V (vs. RHE). The first one was done in a

N2-saturated and O2-saturated atmosphere at 50 mV s-1. The last one was

performed in an O2-saturated atmosphere at different rotation rates

Page 133: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 3

118

between 400 and 2025 rpm at 5 mV s-1, while the potential of the ring was

held constant at 1.5 V (vs. RHE). The electron transfer number was

calculated on basis of Koutecky-Levich equation [55]:

1

𝑗=

1

𝑗𝐿+

1

𝑗𝐾=

1

𝐵𝜔1 2⁄ +1

𝑗𝐾 Eq. 3.1

𝐵 = 0.62 𝑛 𝐹 𝐶0 (𝐷0)2 3⁄ 𝜐−1 6⁄ Eq. 3.2

𝑗𝐾 = 𝑛 𝐹 𝜅 𝐶0 Eq. 3.3

Where j is the measured current density, jK and jL are the kinetic and

diffusion limiting current densities respectively, ω is the angular velocity

of the disk (ω = 2πN, N refers to linear rotation speed), n is the overall

number of electrons transferred, F is the Faraday constant, ν is the kinetic

viscosity of the electrolyte, C0 is the bulk concentration of O2, D0 is the

diffusion coefficient of O2 in the electrolyte, κ is the electron transfer rate

constant. The values for 0.1 M KOH are: C0 = 1.2 x 10-3 mol L-1, D0 = 1.9

x 10-5 cm2 s-1, ν = 0.01 cm2 s-1. It is also possible to calculate the electron

number during the hydrogen peroxide oxidation from the RRDE

measurements:

𝑛 = 4 𝐼𝑑

𝐼𝑑+ 𝐼𝑟 𝑁⁄ Eq. 3.4

Where Ir and Id stands for the intensities measured at the ring and the disk,

respectively, and N is the collection efficiency of the ring, which was

experimentally determined to be 0.37.

Page 134: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the ORR

119

3 Results and discussion

3.1 Electrochemical functionalization of CNTs

In order to study the optimal conditions to functionalize CNTs with

different aminoacids, several working conditions were tested. The first

one was done by cyclic voltammetry in 1 M H2SO4 + 1 mM of 4-ABA.

The voltage window was step-wise opened from 0.0 to 0.5-1.2 V (vs.

RHE). The results (Fig. 3.1a) show a rectangular shape for the cyclic

voltammograms (CVs) until 1 V, characteristic of the double layer

formation on the surface of the CNTs. When the potential window is

opened to 1.1 and 1.2 V, an oxidation current appears showing a

maximum at 1.08 V. These potential onsets for the oxidation current

resemble those obtained over a platinum electrode for the same para-

substituted aminoacid [50]. Thus, it is expected that the current

corresponds to the polymerization rather than the covalent

functionalization of the 4-ABA on the CNTs surface. After the first sweep

up to 1.2 V, several peaks appear at 0.53 and 0.77 V in the subsequent

cycles. Fig. 1b shows the voltammograms obtained with the electrode of

Fig. 1a immersed in H2SO4 solution free of ABA between 0.0 and 1.0 V

(vs. RHE). It can be observed that the peak at 0.77 V decreases with

successive cycling, while the one at 0.53 V is maintained. This seems to

be connected to the formation of different dimers and oligomers of 4-ABA

over the carbon surface, which are not covalently attached to the CNTs

surface. Therefore, the fate of these species is slowly diffused out of the

carbon surface, explaining the decrease of the redox peaks. Further

confirmation of this hypothesis is obtained when the electrode is rinsed in

Page 135: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 3

120

abundant water for one day, Fig. 3.11b (dashed line). The CV recorded

after cleansing of the electrode clearly shows the vanishing of the redox

peaks, confirming that no electroactive polymer attachment to the CNTs

was achieved. Nevertheless, a wide and low intense peak is shown at the

0.4-0.9 V potential range, so the presence of a noticeable amount of non-

covalently functionalized polymer remaining over the CNTs cannot be

discarded.

Fig. 3.1 Cyclic voltammetry of CNTs in: (a) 1 M H2SO4 + 1 mM 4-ABA, (b) 1 M H2SO4 at different cycles. Scan rate: 10 mV s-1

-10

-5

0

5

10

0 0.2 0.4 0.6 0.8 1 1.2

j / A

g-1

E vs. RHE / V

(a)

-6

-3

0

3

6

0 0.2 0.4 0.6 0.8 1

j / A

g-1

E vs. RHE / V

(b)

- - - after one day

Page 136: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the ORR

121

These starting tests evidenced that a higher potential could be needed to

covalently functionalize the CNTs with aminobenzene acids. Previously

reported studies about the functionalization of glassy carbon electrodes

support this requirement, since potentials up to 1.6 V are needed to

effectively decorate the surface of the electrode with aminoacids [46–49].

Fig. 3.2a shows the CVs recorded from 0.7 to 1.4 V (red lines) or 1.6 V

(black lines) (vs. RHE) using 0.1 M HClO4 solution. This experimental

strategy will allow assessing the effect of the upper potential limit reached

during the synthesis in the electrochemical properties of the functionalized

samples. In Fig. 3.2a two irreversible peaks are now observed, the first

one at about 0.97 V, and the second one starting at 1.3 V (vs. RHE). The

first one decreases and slightly shifts to a more positive potential with the

number of scans, and it can be related with the oxidation of the amino

group to its corresponding radical [48,49]. This radical can be either the

initiator of the polymerization of the aminoacid, or be attached on the

surface of the CNTs. The second oxidation current has the onset potential

at around 1.3 V (vs. RHE). The intensity of this peak decreases gradually

with the number of scans and it can be due to the oxidation of the CNTs

and the formation of C-N bonded anchored species, together with the

over-oxidation of the formed polymer [46,48,49].

Page 137: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 3

122

Fig. 3.2 (a) Functionalization of CNTs with 4-ABA at different potential windows

using 0.1 M HClO4 + 1 mM 4-ABA, (b) Cyclic voltammetry of CNTs (dashed line)

and functionalized nanotubes with 4-ABA obtained using two different potential

windows in 1 M H2SO4 solution, (c) Cyclic voltammetry of CNTs (dashed line) and

functionalized nanotubes with 4-ABA using a potential window up to 1.6 V in 0.1 M

KOH solution.

-5

5

15

25

35

45

0.7 1 1.3 1.6

j / A

g-1

E vs. RHE / V

(a)

-15

-10

-5

0

5

10

15

0 0.2 0.4 0.6 0.8 1

j / A

g-1

E vs. RHE / V

CNT1.4 V1.6 V

(b)

-8

-4

0

4

8

0 0.2 0.4 0.6 0.8 1

j / A

g-1

E vs. RHE / V

(c)

Page 138: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the ORR

123

Fig. 3.2b shows the CVs of functionalized CNTs at the two limit potentials

of Fig. 3.2a in absence of 4-ABA in H2SO4 solution. These CVs were

obtained just after functionalization and cleaning with ultrapure water.

The most straightforward difference with the voltammograms of Fig. 3.1b

is the appearance of a new redox process at 0.37 V, as well as the increase

in the current of the other redox processes. At these potential limits (1.4

V and 1.6 V (vs.RHE)), the CNTs edge sites could also be oxidized and

electroactive quinone surface groups can be formed and contribute to

pseudocapacitance [56,57]. Thus, it seems that the current increase

obtained at 1.4 and 1.6 V is related to a further increase in the polymeric

thin film deposited on the carbon nanotube, as well as the electrochemical

oxidation of their edge sites.

In order to attain functionalization with other functional groups, the

synthesis with the para substituted sulfonic and phosphonic

aminobenzene acids were also carried out using 1.6 V as the upper

potential limit. Fig. 3.3 shows CV of glassy carbon electrodes modified

with 10 µg of CNTs in a 0.1 M HClO4 aqueous solution with 1 mM of 4-

ABSA and 4-ABPA at 10 mV s-1. It can be seen a similar voltammetric

behavior with an oxidation peak at around 0.95 V in which the substituted

aminobenzene acid is oxidized, and the second one at potentials higher

than 1.3 V, in which the CNTs are oxidized or the radical anchors on the

CNTs surface. 4-ABA and 4-ABSA behave similarly in terms of their

oxidation current intensity (peak at 0.97 V), while that of 4-ABPA is

lower.

Page 139: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 3

124

Fig.3.3 Electrochemical functionalization of CNTs in 0.1 M HClO4 + 1 mM of (a) 4-ABSA, (b) 4-ABPA

3.2 Chemical and electrochemical characterization

Fig. 3.2b and c shows the voltammograms of the bare CNTs and

NT_4ABA in acid and alkaline solutions, respectively. The same

characterization in acid and alkaline solutions for the functionalized CNTs

with 4-ABSA and 4-ABPA are presented in Figs. 3.4 and 3.5.

-10

0

10

20

30

40

0.7 1 1.3 1.6

j / A

g-1

E vs RHE / V

(a)

-10

0

10

20

30

40

0.7 1 1.3 1.6

j / A

g-1

E vs. RHE / V

(b)

Page 140: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the ORR

125

Fig. 3.4 Cyclic voltammetry of CNTs (dashed line) and functionalized nanotubes with 4-ABSA (solid line) in (a) 1M H2SO4 and (b) 0.1 M KOH

Unmodified CNTs voltammograms have a rectangular shape in both

media, which is typical of carbon materials where the capacitance is

determined by electric double layer formation. In contrast, in the modified

CNTs a much higher capacitance and different oxidation-reduction

processes are observed. This is due to the presence of functionalized

electroactive species at the surface of the CNTs.

-10

-5

0

5

10

0 0.2 0.4 0.6 0.8 1

j / A

g-1

E vs. RHE / V

CNT NT_4-ABSA

(a)

-8

-4

0

4

8

0 0.2 0.4 0.6 0.8 1

j / A

g-1

E vs. RHE / V

CNT NT_4-ABSA

(b)

Page 141: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 3

126

Fig. 3.5 Cyclic voltammetry of CNTs (dashed line) and functionalized nanotubes with 4-ABPA (solid line) in (a) 1M H2SO4 and (b) 0.1M KOH

Table 3.1 includes the capacitance of the different electrodes in the two

electrolytes. The materials show a net increase in the capacitance, as

consequence of the pseudocapacitance contribution of the redox processes

associated to the organic molecules, which in some cases is up to 240%

(Table 3.1). The position of the main redox peaks seems to be similar

independently of the ABA selected for the functionalization, although

they seem to be slightly shifted due to the different mediating effect of

each functional group (carboxylic, sulfonic or phosphonic). Since the best

-6

-3

0

3

6

0 0.2 0.4 0.6 0.8 1

j / A

g-1

E vs. RHE / V

CNT NT_4-ABPA

(a)

-6

-3

0

3

6

0 0.2 0.4 0.6 0.8 1

j / A

g-1

E vs. RHE / V

CNT NT_4-ABPA

(b)

Page 142: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the ORR

127

results in terms of capacitance increase are achieved for NT_4-ABA, it

seems that the polymeric functionalization is favored in that case, while

the presence of the sulfonic acid at para position could restrict the growth

of the polymer. As for the NT_4-ABPA, it seems that the presence of the

large phosphonic group hinders both the polymerization and the

appearance of the electroactivity in the functionalized CNTs, especially

the redox couple at 0.7 V, being probably connected to steric effects. It is

also important to mention that the behavior of each material varies

depending on the medium, owing to the change of electroactivity of the

species with the pH. Moreover, the solubility of some of the obtained

polymers is higher in basic pH than in acid pH, what can explain the lower

capacitance measured in 0.1 M KOH [58].

Table 3.1 Gravimetric capacitance of pristine and functionalized samples

Sample CH2SO4

/ F g-1 Increase

/ % CKOH / F g-1

Increase / %

CNTs 35 - 32 -

NT_4-ABA 119 240 65 103

NT_4-ABSA 84 140 64 100

NT_4-ABPA 55 57 49 53

The chemical composition of the surface and the oxidation states of the

species were studied by XPS. The functionalized CNTs show an increase

in oxygen and nitrogen content (Table 3.2) compared to the unmodified

CNTs for all the samples. These results were expected due to the nature

of the molecules attached to the nanotubes, but it is important to note that

Page 143: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 3

128

NT_4-ABA shows the most significant nitrogen increment that reaches a

4.2% of nitrogen in its atomic composition. The oxygen increment is

variable, depending on the attached aminobenzene acid. The increase for

NT_4-ABA is due to the presence of the carboxylic group in the

aminobenzene acid, and also to the oxidation of the CNTs during the

functionalization. Keeping in mind that 4-ABA possesses 2 oxygen atoms

in its structure, the expected oxygen increase when one considers the

measured amount of nitrogen would be 8.4%. The difference between the

XPS value (12.6%) and this one, should correspond to the CNTs

oxidation, which is not very high for functionalization with 4-ABA

(4.2%). This low CNTs oxidation is also observed for 4-ABSA, but it is

important for functionalization with 4-ABPA because the reactivity of this

last compound is lower and the incorporation to the CNTs is less

important. This is in agreement with the change in increase in capacitance

for the prepared materials (Table 3.1) which is the lowest for the 4-ABPA.

Table 3.2 Atomic composition obtained from XPS

Sample C / at.% N / at.% O / at.% S / at.% P / at.%

CNTs 98.1 -- 1.9 -- --

NT_4-ABA 83.2 4.2 12.6 -- --

NT_4-ABSA 91.3 0.9 6.8 1.0 --

NT_4-ABPA 86.3 1.6 11.7 -- 0.4

Page 144: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the ORR

129

Fig. 3.6 N1s XPS spectra of: (a) NT_4ABA, (b) NT_4-ABSA, (c) NT_4-ABPA

Fig. 3.6 shows the N1s XPS spectra for the different functionalized CNTs.

For all samples, a N1s peak was observed at 399.8 eV, which can be

397398399400401402403

Cou

nts /

a.u

B.E. / eV

(a)

397398399400401402403

Cou

nts /

a.u

B.E. / eV

(b)

397398399400401402403

Cou

nts /

a.u

B.E. / eV

(c)

Page 145: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 3

130

deconvoluted in two contributors at 399.5 and 400.5 eV and FWHM of

1.4 eV, assigned to neutral and positively charged amines, respectively

[53]. The presence of these nitrogen species suggests that

functionalization was produced by the formation of secondary amine

species via C-N bonding to the surface of the carbon nanotube [46] or by

the formation of ramified polymers from the linkage of several

aminoacids molecules in ortho position [50]. Table 3.3 shows the

percentage of nitrogen groups for all the samples.

Table 3.3 Percentage of nitrogen groups obtain from N1s XPS spectra

Sample % Neutral amine % Charged nitrogen

NT_4-ABA 44.66 55.34

NT_4-ABSA 63.15 36.85

NT_4-ABPA 59.69 40.31

3.3 N-doped CNTs from NT_4-ABA

In order to prepare N-doped CNTs, the functionalized CNTs with 4-ABA

were thermally treated in different atmospheres. These functionalized

CNTs were selected because of their larger amount of nitrogen

incorporation in comparison with the other aminobenzene acids. Two

different heat treatments were carried out; one in inert atmosphere (N2)

and another in a slightly oxidant atmosphere with 3125 ppm of O2 in N2.

The oxygen concentration fed to the furnace was fixed at such a low value

to minimize undesired gasification of CNTs.

Heat treatment of NT_4-ABA under inert atmosphere rendered the

thermal decomposition of most of the functionalized 4-ABA, leaving

Page 146: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the ORR

131

almost no nitrogen on the CNT surface (sample NT_4-ABA_800_N in

Table 3.4). These results indicate that the electrochemical oxidation of the

4-ABA on the CNTs produces oligomers with very short chains because

of the para position being blocked by the carboxylic acid what prevents

the formation of polyaniline chains. Differently to all these results, XPS

measurements revealed that, when NT_4-ABA was heat treated in the

presence of a small concentration of oxygen (NT_4-ABA_800_O),

negligible changes are produced in the nitrogen amount (Table 3.4).

Table 3.4 Atomic composition obtained from XPS

Sample C / at.% N / at.% O / at.%

NT_4-ABA 83.2 4.2 12.6

NT_4-ABA_800_N 96.2 0.2 3.3

NT_4-ABA_800_O 83.5 4.1 12.4

Fig. 3.7 shows the N1s XPS peak for the NT_4-ABA_800_O sample. The

peak can be deconvoluted into three contributions. The peak at 398.5 eV

can be assigned to pyridine groups and the one at 400.7 eV to positively

charged nitrogen like pyridone and pyrrole [54]. Interestingly, a peak at

399.5 eV appears which assignation is not straightforward. The binding

energy could correspond to amine groups, although these species will not

exist considering the temperature of the heat treatment and the atmosphere

used, or more probably to C-N [59] or N-C-O groups [60].

Page 147: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 3

132

Fig. 3.7 N1s XPS spectra of NT_4-ABA_800_O

Fig. 3.8 shows the cyclic voltammetry in N2-saturated atmospheres

obtained for these samples in alkaline solution. The results for both heat

treated samples show a trapezoidal shape with a higher double layer than

the one in the original nanotubes. They resemble the triangular shape

observed for N-containing CNTs in basic media [61], in agreement with

the presence of nitrogen in these materials. The capacitance of the heat

treated sample in presence of oxygen increases in alkaline solution to 42

F g-1 which corresponds to an increase of 32% with respect to the original

CNTs.

396397398399400401402403

Cou

nts /

a.u

B.E. / eV

Page 148: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the ORR

133

Fig. 3.8 Cyclic voltammetry of CNTs (dashed line), NT_4-ABA_800_N (dotted line) and NT_4-ABA_800_O (solid line) in 0.1 M KOH at 50 mV s-1

3.4 Electrochemical activity towards ORR

The catalytic activities of all the materials towards ORR were studied in

O2-saturated 0.1 M KOH electrolyte by linear sweep voltammetry

analysis using a RRDE at different rotation rates. The ring current

registered in the Pt ring electrode is related to the concentration of

hydroperoxide ion, the intermediate found in the 2-electron pathway,

while that measured in the disk comes from the electrons consumed in the

oxygen reduction reaction that takes place on the disk electrode covered

with the samples.

3.4.1 Functionalized CNTs with aminobenzene acids

Fig. 3.9 shows the results of LSV experiments at 1600 rpm for the

functionalized CNTs and 20% Pt/Vulcan (commercial formulation

catalyst for comparison purposes). The functionalization with the

substituted aminobenzene acids slightly changes the onset potential

towards ORR compared with the unmodified CNTs. It seems that the

-4

-2

0

2

4

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

j / A

g-1

E vs. RHE / V

Page 149: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 3

134

functional groups attached to the nanotubes surface (carboxylic, sulfonic,

phosphonic) do not show a significant improvement in their activity

towards ORR. In addition, the limit current density is lower for the NT_4-

ABSA and NT_4-ABPA and similar for NT_4-ABA. Then, the

functionalization of CNTs with aminobenzene acids only rendered a small

increase in the onset potential and in the case of NT_4-ABA a slight

increase in the limiting current density. These results point out the absence

of significant electroactivity of the amine and imine species found in the

surface of these materials.

Fig. 3.9 Linear sweep voltammetry of modified CNTs in O2-saturated 0.1 M KOH at 5 mV s-1 and 1600 rpm

3.4.2 N-doped CNTs from NT_4ABA

In order to drawn reliable comparisons of the onset potential and limiting

currents between different NT_4-ABA and heat treated samples, Fig. 3.10

shows the weight-normalized LSV curves at 1600 rpm for all the NT_4-

ABA samples after heat treatment. In order to compare, the CNTs were

-0.18

-0.12

-0.06

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Spec

ific

curr

ent /

A m

g-1cm

-2

E vs. RHE / V

CNTNT_4-ABANT_4-ABSANT_4-ABPAPt/Vulcan

Page 150: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the ORR

135

subjected to the same heat treatment under oxygen atmosphere

(NT_800_O sample) and 20% Pt/Vulcan has been used in the same

conditions. Table 3.5 compiles the most relevant ORR kinetic parameters

derived from the RRDE measurements.

Fig. 3.10 Linear sweep voltammetry of NT_4ABA based samples in O2-saturated 0.1 M KOH at 5 mV s-1 and 1600 rpm

The onset potential and limiting specific current increase for the NT_4-

ABA_800_O sample compared to the pristine CNTs, reaching values

close to the Pt-based catalyst. It should be noted that all the NT-based

samples show the same pattern in their LSV curves, while the onset of the

ORR reaction is shifted to different potentials that depends on the surface

chemistry resulting from the functionalization treatment. Heat treatment

of the functionalized CNTs in nitrogen atmosphere (NT_4ABA_800_N)

decreases the electrocatalytic activity with respect to the pristine CNTs. It

seems that these functionalized CNTs thermally decompose without

-0.18

-0.12

-0.06

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Spec

ific

curr

ent /

A m

g-1cm

-2

E vs. RHE / V

CNTNT_800_ONT_4ABA_800_NNT_4ABA_800_OPt/Vulcan

Page 151: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 3

136

leaving a relevant nitrogen-rich residue as consequence of the low degree

of polymerization which produces a high amount of oligomers with low

length which are easily decomposed without residues. Moreover, thermal

treatment results in a lower polarity of the oxygen-cleansed surface of the

nanotubes, favoring the CNTs agglomeration in water, lowering their

dispersability and reducing the accessible surface area of the electrode.

Table 3.5 Electrochemical parameters as onset ORR potential and electron-transfer number at 0.3 V calculated from RRDE experiments for the different electrocatalysts in

O2-saturated 0.1 M KOH at 5 mV s-1 and 1600 rpm

Sample E vs RHE / V n

CNT 0.73 2.24

NT_800_O 0.77 2.45

NT_4-ABA 0.75 2.35

NT_4-ABA_800_N 0.69 2.11

NT_4-ABA_800_O 0.81 2.49

20% Pt/Vulcan 0.91 3.81

In clear contrast, the NT_800_O sample that has been oxidized using the

same protocol as NT_4-ABA_800_O delivered a better response than

pristine CNTs. The thermal oxidation of carbon nanotubes can produce a

greater number of unsaturated edge sites, which have been demonstrated

to be active sites for oxygen chemisorption and reduction [12,18].

Furthermore, the presence of furans, pyrones and other oxygen basic

functionalities, which can be introduced by thermal treatments under

Page 152: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the ORR

137

oxygen rich atmosphere [62], has been proposed by Strelko as promoters

of the oxygen reduction reaction [5].

Bearing this result in mind, the enhancement of the electrocatalytic

activity observed for the functionalized heat treated sample in presence of

small concentration of oxygen can be better understood. Firstly, as

mentioned before, it has been long proven in the literature that nitrogen

content in carbon materials, and more specifically the pyridinic and

pyrrolic-like nitrogen, has an important role in electrocatalytic

performance towards ORR. It was shown in the XPS results that there are

different nitrogen species in the surface of the prepared samples (Fig. 3.7),

with NT_4-ABA_800_O being the one that shows the largest amount of

nitrogen, including positively charged nitrogen species, which seems to

be important to ORR catalytic performance. Furthermore, oxygen species

are also found in that sample which may contribute to the electrocatalytic

activity. Strelko postulated that a combination of oxygen and nitrogen

heteroatoms allows a more extensive pi-conjugation of the graphene layer

and promotes the electron-donor property of the carbon surface [5], and

that amide groups could be transformed into pyrrole groups by pyrolysis

at high temperatures [4]. Thus, the presence of oxygen during the heat

treatment could be a key factor that favors both the formation of oxygen

functionalities of basic character and different nitrogen functionalities that

can also contribute to the activity.

Fig. 3.11a shows the results of the ring and disk currents for the sample

NT_4-ABA_800_O. The appearance of a maximum in the ring current

can be attributed to the formation of HO2- from the 2-electron reduction

Page 153: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 3

138

of O2, being also concomitant with the steep increase of measured current

in the disk. Beyond the onset potential, the current registered in the ring

slightly decreases, while the one of the disk still rises, pointing out that a

limiting current was no attained in this electrode. This seems to support

that the oxygen reaction is happening through two subsequent steps in this

catalyst, the first one due to the 2-electron reduction to hydroperoxide,

and the second one being the subsequent 2-electron reduction of the

hydroperoxide intermediate to water, involving a 4-electron mechanism.

The intermediate values for the electron transfer number (Table 3.5)

obtained for these samples indicate a combination of both mechanisms at

the more negative potentials. A similar behavior was also observed in the

other CNTs samples, but with a higher ring-to-disk current ratio, i.e lower

value of n. All the obtained values are far from those measured for the Pt-

Vulcan sample.

The electron transfer number obtained during ORR was also analyzed by

applying the Koutecky Levich (K-L) equation in the RDE results recorded

at different rotation rates (insert Fig. 3.11b). It can be observed that K-L

plots exhibit a good linearity and the slope is constant in the selected

potential range, which means that the electron transfer numbers are similar

at different potentials. The calculation of the electron transfer number

done with the K-L equation and the RRDE measurements are also in close

agreement, demonstrating the preponderance of the 2-electron pathway

for most of the obtained samples (Fig. 11b) and the shifting to a 4-electron

reaction mechanism at more negative potentials.

Page 154: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the ORR

139

Fig. 3.11 (a) Linear sweep voltammetry curves of NT_4-ABA_800_O in O2-saturated 0.1 M KOH at 5 mV s-1 at different rotation speeds (from 400 to 2025 rpm). (b)

Electron transfer number at different potential calculated from RRDE measurements, the insert shows Koutecky-Levich plots at diferent potentials

-1.2

-0.8

-0.4

0.0

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I / m

A

E vs. RHE / V

(a)

400rpm

400rpm

2025rpm

2025rpm

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8

n

E vs. RHE / V

(b)

0.02

0.04

0.06

0.06 0.11 0.16

j-1/ A

-1cm

2

ω-1/2 / s1/2 rad-1/2

Page 155: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 3

140

4 Conclusions

The electrochemical functionalization of CNTs with aminobenzoic,

aminobenzenesulfonic and aminobenzylphosphonic acid in 0.1 M HClO4

has been carried out using a potentiodynamic method. The

functionalization was achieved through the oxidative formation of an

aminobenzene radical that can form an electroactive polymer layer. If the

upper potential limit is increased enough, the generation of surface oxygen

groups takes place over the edge sites and defects of the carbon nanotubes,

together with covalent functionalization of aminobenzenes present in the

media. It has been observed a negative effect of the presence of sulfonic

or phosphonic functionalities on the functionalization degree. The heat

treatment of the NT_4-ABA sample in nitrogen atmosphere produces the

almost complete decomposition of the oligomers and functionalities

formed. However, when the heat treatment is done in presence of a low

concentration of O2, the sample maintains most of the nitrogen content of

the starting functionalized sample indicating that O2 favors reactions that

stabilize the polymer formed.

The functionalized materials did not render a relevant modification of the

parent CNTs activity towards ORR. Similarly, the substitution of the

carboxylic function of the aminobenzoic acid for sulfonic or phosphonic

ones does not seem to have any effect on the electrocatalytic activity.

Nevertheless, heat treatment of the functionalized CNTs in a slightly

oxidizing atmosphere produces a material with an enhanced onset

potential for the reaction. Since the material obtained by pyrolysis in inert

atmosphere of NT_4-ABA even rendered a worse activity than that

Page 156: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the ORR

141

measured for the parent CNTs, the presence of oxygen and nitrogen

functionalities seem to be critical for such enhancement. The existence of

this combination of high amounts of surface oxygen and nitrogen groups

seems to modulate the electron-donor properties of the resulting material.

Thus, pyridine, pyrrole/pyridine and N-C-O/C-N species seem to have a

higher contribution to the catalytic activity, whereas amine and imine

species do not have a relevant activity for this reaction. Selectivity to the

4-electron pathway was not achieved in any case. Nevertheless, these

promising results opens the door for using oxidative treatments coupled

with electrochemical functionalization for the preparation of metal-free,

nitrogen-containing electrocatalysts.

5 References [1] L. Zhang, J. Zhang, D.P. Wilkinson, H. Wang, Progress in preparation of non-

noble electrocatalysts for PEM fuel cell reactions, J. Power Sources. 156 (2006) 171–182.

[2] F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J.-P. Dodelet, G. Wu, H.T. Chung, C.M. Johnston, P. Zelenay, Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuelcells, Energy Environ. Sci. 4 (2011) 114–130.

[3] C.V. Rao, C.R. Cabrera, Y. Ishikawa, In Search of the Active Site in Nitrogen-Doped Carbon Nanotube Electrodes for the Oxygen Reduction Reaction, J. Phys. Chem. Lett. 1 (2010) 2622–2627.

[4] V.V. Strelko, V.S. Kuts, P.A. Thrower, On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions, Carbon. 38 (2000) 1499–1503.

[5] V.V. Strelko, N.T. Kartel, I.N. Dukhno, V.S. Kuts, R.B. Clarkson, B.M. Odintsov, Mechanism of reductive oxygen adsorption on active carbons with various surface chemistry, Surf. Sci. 548 (2004) 281–290.

[6] T. Sharifi, G. Hu, X. Jia, T. Wågberg, Formation of Active Sites for Oxygen Reduction Reactions by Transformation of Nitrogen Functionalities in

Page 157: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 3

142

Nitrogen-Doped Carbon Nanotubes, ACS Nano. 6 (2012) 8904–8912.

[7] S. Maldonado, K.J. Stevenson, Influence of Nitrogen Doping on Oxygen Reduction Electrocatalysis at Carbon Nanofiber Electrodes, J. Phys. Chem. B. 109 (2005) 4707–4716.

[8] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction, Science. 323 (2009) 760–764.

[9] J.D. Wiggins-Camacho, K.J. Stevenson, Mechanistic Discussion of the Oxygen Reduction Reaction at Nitrogen-Doped Carbon Nanotubes, J. Phys. Chem. C. 115 (2011) 20002–20010.

[10] P. Matter, L. Zhang, U. Ozkan, The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction, J. Catal. 239 (2006) 83–96.

[11] S. Maldonado, S. Morin, K.J. Stevenson, Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping, Carbon. 44 (2006) 1429–1437.

[12] X. Chu, K. Kinoshita, Surface modification of carbons for enhanced electrochemical activity, Mater. Sci. Eng. B. 49 (1997) 53–60.

[13] M. Kaukonen, R. Kujala, E. Kauppinen, On the Origin of Oxygen Reduction Reaction at Nitrogen-Doped Carbon Nanotubes: A Computational Study, J. Phys. Chem. C. 116 (2012) 632–636.

[14] G.-L. Chai, Z. Hou, D.-J. Shu, T. Ikeda, K. Terakura, Active Sites and Mechanisms for Oxygen Reduction Reaction on Nitrogen-Doped Carbon Alloy Catalysts: Stone–Wales Defect and Curvature Effect, J. Am. Chem. Soc. 136 (2014) 13629–13640.

[15] Z. Chen, D. Higgins, H. Tao, R.S. Hsu, Z. Chen, Highly Active Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction in Fuel Cell Applications, J. Phys. Chem. C. 113 (2009) 21008–21013.

[16] D. Yu, Q. Zhang, L. Dai, Highly Efficient Metal-Free Growth of Nitrogen-Doped Single-Walled Carbon Nanotubes on Plasma-Etched Substrates for Oxygen Reduction, J. Am. Chem. Soc. 132 (2010) 15127–15129.

[17] Z. Chen, D. Higgins, Z. Chen, Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells, Carbon. 48 (2010) 3057–3065.

[18] P.H. Matter, E. Wang, M. Arias, E.J. Biddinger, U.S. Ozkan, Oxygen reduction reaction activity and surface properties of nanostructured nitrogen-containing carbon, J. Mol. Catal. A Chem. 264 (2007) 73–81.

Page 158: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the ORR

143

[19] S. Kundu, T.C. Nagaiah, W. Xia, Y. Wang, S. Van Dommele, J.H. Bitter, M. Santa, G. Grundmeier, M. Bron, W. Schuhmann, M. Muhler, Electrocatalytic Activity and Stability of Nitrogen-Containing Carbon Nanotubes in the Oxygen Reduction Reaction, J. Phys. Chem. C. 113 (2009) 14302–14310.

[20] Q. Guo, D. Zhao, S. Liu, S. Chen, M. Hanif, H. Hou, Free-standing nitrogen-doped carbon nanotubes at electrospun carbon nanofibers composite as an efficient electrocatalyst for oxygen reduction, Electrochim. Acta. 138 (2014) 318–324.

[21] Y. Shao, J. Liu, Y. Wang, Y. Lin, Novel catalyst support materials for PEM fuel cells: current status and future prospects, J. Mater. Chem. 19 (2009) 46–59.

[22] Y. Shao, J. Sui, G. Yin, Y. Gao, Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell, Appl. Catal. B Environ. 79 (2008) 89–99.

[23] Y. Nabae, M. Sonoda, C. Yamauchi, Y. Hosaka, A. Isoda, T. Aoki, Highly durable Pt-free fuel cell catalysts prepared by multi-step pyrolysis of Fe phthalocyanine and phenolic resin, Catal. Sci. Technol. 4 (2014) 1400–1406.

[24] J. Ozaki, K. Nozawa, K. Yamada, Y. Uchiyama, Y. Yoshimoto, A. Furuichi, T. Yokoyama, A. Oya, L.J. Brown, J.D. Cashion, Structures, physicochemical properties and oxygen reduction activities of carbons derived from ferrocene-poly(furfuryl alcohol) mixtures, J. Appl. Electrochem. 36 (2005) 239–247.

[25] J. Ozaki, S. Tanifuji, A. Furuichi, K. Yabutsuka, Enhancement of oxygen reduction activity of nanoshell carbons by introducing nitrogen atoms from metal phthalocyanines, Electrochim. Acta. 55 (2010) 1864–1871.

[26] J. Ozaki, S. Tanifuji, N. Kimura, A. Furuichi, A. Oya, Enhancement of oxygen reduction activity by carbonization of furan resin in the presence of phthalocyanines, Carbon. 44 (2006) 1324–1326.

[27] W.-J. Jiang, J.-S. Hu, X. Zhang, Y. Jiang, B.-B. Yu, Z.-D. Wei, L.-J. Wan, In situ nitrogen-doped nanoporous carbon nanocables as an efficient metal-free catalyst for oxygen reduction reaction, J. Mater. Chem. A. 2 (2014) 10154–10160.

[28] J. Zhang, S. Wu, X. Chen, M. Pan, S. Mu, Egg derived nitrogen-self-doped carbon/carbon nanotube hybrids as noble-metal-free catalysts for oxygen reduction, J. Power Sources. 271 (2014) 522–529.

[29] R. Zhang, Y. Peng, Z. Li, K. Li, J. Ma, Y. Liao, L. Zheng, X. Zuo, D. Xia, Oxygen Electroreduction on Heat-treated Multi-walled Carbon Nanotubes Supported Iron Polyphthalocyanine in Acid Media, Electrochim. Acta. 147 (2014) 343–351.

Page 159: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 3

144

[30] L. Qu, Y. Liu, J.B. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano. 4 (2010) 1321–1326.

[31] W. Shen, W. Fan, Nitrogen-containing porous carbons: synthesis and application, J. Mater. Chem. A. 1 (2013) 999–1013.

[32] H. Wang, T. Maiyalagan, X. Wang, Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications, ACS Catal. 2 (2012) 781–794.

[33] W. Xiong, F. Du, Y. Liu, A. Perez, M. Supp, T.S. Ramakrishnan, L. Dai, L. Jiang, 3-D Carbon Nanotube Structures Used as High Performance Catalyst for Oxygen Reduction Reaction, J. Am. Chem. Soc. 132 (2010) 15839–15841.

[34] W.Y. Wong, W.R.W. Daud, A.B. Mohamad, A.A.H. Kadhum, K.S. Loh, E.H. Majlan, K.L. Lim, The Impact of Loading and Temperature on the Oxygen Reduction Reaction at Nitrogen-doped Carbon Nanotubes in Alkaline Medium, Electrochim. Acta. 129 (2014) 47–54.

[35] A. Zhao, J. Masa, W. Schuhmann, W. Xia, Activation and Stabilization of Nitrogen-Doped Carbon Nanotubes as Electrocatalysts in the Oxygen Reduction Reaction at Strongly Alkaline Conditions, J. Phys. Chem. C. 117 (2013) 24283–24291.

[36] G.-L. Tian, Q. Zhang, B. Zhang, Y.-G. Jin, J.-Q. Huang, D.S. Su, F. Wei, Toward Full Exposure of “Active Sites”: Nanocarbon Electrocatalyst with Surface Enriched Nitrogen for Superior Oxygen Reduction and Evolution Reactivity, Adv. Funct. Mater. 24 (2014) 5956–5961.

[37] C. Domínguez, F.J. Pérez-Alonso, M. Abdel Salam, S.A. Al-Thabaiti, A.Y. Obaid, A.A. Alshehri, J.L. Gómez de la Fuente, J.L.G. Fierro, S. Rojas, On the relationship between N content, textural properties and catalytic performance for the oxygen reduction reaction of N/CNT, Appl. Catal. B Environ. 162 (2015) 420–429.

[38] P. Song, X. Bo, A. Nsabimana, L. Guo, Additional doping of phosphorus into polypyrrole functionalized nitrogenous carbon nanotubes as novel metal-free oxygen reduction electrocatalyst in alkaline solution, Int. J. Hydrogen Energy. 39 (2014) 15464–15473.

[39] I. Hijazi, T. Bourgeteau, R. Cornut, A. Morozan, A. Filoramo, J. Leroy, V. Derycke, B. Jousselme, S. Campidelli, Carbon Nanotube-Templated Synthesis of Covalent Porphyrin Network for Oxygen Reduction Reaction, J. Am. Chem. Soc. 136 (2014) 6348–6354.

[40] D. Bélanger, J. Pinson, Electrografting: a powerful method for surface modification., Chem. Soc. Rev. 40 (2011) 3995–4048.

[41] G. Tuci, C. Zafferoni, A. Rossin, A. Milella, L. Luconi, M. Innocenti, L.

Page 160: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the ORR

145

Truong Phuoc, C. Duong-Viet, C. Pham-Huu, G. Giambastiani, Chemically Functionalized Carbon Nanotubes with Pyridine Groups as Easily Tunable N-Decorated Nanomaterials for the Oxygen Reduction Reaction in Alkaline Medium, Chem. Mater. 26 (2014) 3460–3470.

[42] D. Salinas-Torres, S. Shiraishi, E. Morallón, D. Cazorla-Amorós, Improvement of carbon materials performance by nitrogen functional groups in electrochemical capacitors in organic electrolyte at severe conditions, Carbon. 82 (2015) 205–213.

[43] M. Baibarac, I. Baltog, C. Godon, S. Lefrant, O. Chauvet, Covalent functionalization of single-walled carbon nanotubes by aniline electrochemical polymerization, Carbon. 42 (2004) 3143–3152.

[44] M. Gao, S. Huang, L. Dai, G. Wallace, R. Gao, Z. Wang, Aligned Coaxial Nanowires of Carbon Nanotubes Sheathed with Conducting Polymers, Angew. Chemie. 112 (2000) 3810–3813.

[45] R.S. Deinhammer, M. Ho, J.W. Anderegg, M.D. Porter, Electrochemical Oxidation of Amine-Containing Compounds: A Route to the Surface Modification of Glassy Carbon Electrodes, Langmuir. 10 (1994) 1306–1313.

[46] G. Yang, Y. Shen, M. Wang, H. Chen, B. Liu, S. Dong, Copper hexacyanoferrate multilayer films on glassy carbon electrode modified with 4-aminobenzoic acid in aqueous solution, Talanta. 68 (2006) 741–747.

[47] A.H. Holm, K.H. Vase, B. Winther-Jensen, S.U. Pedersen, K. Daasbjerg, Evaluation of various strategies to formation of pH responsive hydroquinone-terminated films on carbon electrodes, Electrochim. Acta. 53 (2007) 1680–1688.

[48] X. Li, Y. Wan, C. Sun, Covalent modification of a glassy carbon surface by electrochemical oxidation of r-aminobenzene sulfonic acid in aqueous solution, J. Electroanal. Chem. 569 (2004) 79–87.

[49] G. Yang, B. Liu, S. Dong, Covalent modification of glassy carbon electrode during electrochemical oxidation process of 4-aminobenzylphosphonic acid in aqueous solution, J. Electroanal. Chem. 585 (2005) 301–305.

[50] A. Benyoucef, F. Huerta, J.L. Vázquez, E. Morallon, Synthesis and in situ FTIRS characterization of conducting polymers obtained from aminobenzoic acid isomers at platinum electrodes, Eur. Polym. J. 41 (2005) 843–852.

[51] D.-S. Yang, D. Bhattacharjya, S. Inamdar, J. Park, J.-S. Yu, Phosphorus-Doped Ordered Mesoporous Carbons with Different Lengths as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media, J. Am. Chem. Soc. 134 (2012) 16127–16130.

[52] Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, S. Huang,

Page 161: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 3

146

Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction, ACS Nano. 6 (2012) 205–211.

[53] E. Raymundo-Piñero, D. Cazorla-Amorós, A. Linares-Solano, J. Find, U. Wild, R. Schlögl, Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin, Carbon. 40 (2002) 597–608.

[54] F. Zaragoza-Martín, D. Sopeña-Escario, E. Morallón, C.S.-M. de Lecea, Pt/carbon nanofibers electrocatalysts for fuel cells, J. Power Sources. 171 (2007) 302–309.

[55] A.J. Bard, L.R. Faulkner, E. Swain, C. Robey, Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley and Sons Inc., New York, 2001.

[56] M.J. Bleda-Martínez, J.A. Maciá-Agulló, D. Lozano-Castelló, E. Morallón, D. Cazorla-Amorós, A. Linares-Solano, Role of surface chemistry on electric double layer capacitance of carbon materials, Carbon. 43 (2005) 2677–2684.

[57] M.J. Bleda-Martínez, D. Lozano-Castelló, E. Morallón, D. Cazorla-Amorós, A. Linares-Solano, Chemical and electrochemical characterization of porous carbon materials, Carbon. 44 (2006) 2642–2651.

[58] A. Benyoucef, F. Huerta, M.I. Ferrahi, E. Morallon, Voltammetric and in situ FT-IRS study of the electropolymerization of o-aminobenzoic acid at gold and graphite carbon electrodes: Influence of pH on the electrochemical behaviour of polymer films, J. Electroanal. Chem. 624 (2008) 245–250.

[59] J.R. Pels, F. Kapteijn, J.A. Moulijn, Q. Zhu, K.M. Thomas, Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis, Carbon. 33 (1995) 1641–1653.

[60] L.N. Bùi, M. Thompson, N.B. McKeown, A.D. Romaschin, P.G. Kalman, Surface modification of the biomedical polymer poly(ethylene terephthalate), Analyst. 118 (1993) 463–474.

[61] O. Ornelas, J.M. Sieben, R. Ruiz-Rosas, E. Morallón, D. Cazorla-Amorós, J. Geng, N. Soin, E. Siores, B.F.G. Johnson, On the origin of the high capacitance of nitrogen-containing carbon nanotubes in acidic and alkaline electrolytes, Chem. Commun. 50 (2014) 11343–11346.

[62] T.J. Bandosz, Surface Chemistry of Carbon Materials, in: P. Serp, J.L. Figueiredo (Eds.), Carbon Mater. Catal., John Wiley & Sons, Inc., 2008: pp. 45–92.

Page 162: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

CHAPTER 4

Successful functionalization of

superporous zeolite templated

carbon using aminobenzene

acids and electrochemical

methods

Page 163: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán
Page 164: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods

149

CHAPTER 4. SUCCESSFUL FUNCTIONALIZATION OF

SUPERPOROUS ZEOLITE TEMPLATED CARBON USING

AMINOBENZENE ACIDS AND ELECTROCHEMICAL METHODS

1 Introduction

Zeolite templated carbons constitute a family of highly porous

nanostructured carbon materials which are prepared using a zeolite as hard

template. After filling the porosity of the zeolite with carbon, the zeolite

is removed, releasing a negative carbon replica of the parent structure. If

the synthesis conditions are properly selected, a kind of highly

microporous material being composed by a few stacked (or even one)

graphene layers of high curvature can be obtained, showing outstanding

electrochemical properties [1]. An illustrative example of such materials

is the Zeolite Templated Carbon (ZTC) obtained using the zeolite Y as

template [2]. ZTC has a well-defined, ordered and highly interconnected

microporosity, high specific surface area (reaching values close to 4000

m2 g-1), large number of edge sites and high ordered structure, similar to

the parent zeolite. Because of its properties, this carbon material is very

interesting for fundamental studies, and also shows a high potential for

different applications, i.e. adsorption, electrode for EDLC, catalyst

support, energy storage and fuel cells [1–3]. Moreover, the controlled

modification of the surface chemistry of this extraordinary material could

enhance its properties for the applications mentioned above or other fields.

Page 165: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 4

150

However, due to the high reactivity of ZTC and the high concentration of

edge sites, its functionalization avoiding important structural changes is a

challenge. As an example, the introduction of surface oxygen groups

through conventional chemical oxidation produces a strong damage of the

3-dimensionally ordered structure [4]. It was found that the use of

electrochemical techniques can control the process with high accuracy

without high structural changes [4,5]. This is because electrochemical

techniques have several advantages compared to the conventional

chemical routes: i) they are simple and can be immediately interrupted,

providing a better control on the time of the treatment, ii) can be run at

room temperature and atmospheric pressure, iii) can work with small

amount of reagents and sample, iv) the reaction conditions are very

reproducible and, v) they are processes with very high sensitivity and

selectivity [6].

The modification of ZTC with other heteroatoms like N-containing

functional groups would open new possibilities for new applications. It is

known that the generation of nitrogen surface groups is of high interest

due to the number of applications that are available for nitrogen-doped

carbon materials. Among others, they are of interest for increasing the

electrochemical activity of carbon materials in the oxygen reduction

reaction [7,8]; for increasing the capacitance, rate performance and

durability as electrodes of supercapacitors [9–12]; for enhancement of gas

and liquid adsorption of acid adsorbates [13]; for the preparation of novel

heterogeneous catalysts [14,15] and for the immobilization of

biomolecules [16]. The synthesis of N-containing ZTC is done using

Page 166: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods

151

chemical vapor deposition, in which N-species are incorporated in the

carbon network [17–21]; however, it is not possible to control the type of

N-species and it inevitably becomes diverse. Post-synthesis modification

without structure destruction of ZTC would be a highly desirable method

for selective introduction of specific N-containing functional groups.

Electrochemical techniques have been successfully used for the covalent

and non-covalent functionalization of different carbon materials with

nitrogen functional groups [22] and polymers [23,24]. The modification

of carbon nanotubes using 4-aminobenzoic acid (4-ABA), 4-

aminobenzenesulfonic acid (4-ABSA) and 4-aminobenzylphosphonic

acid (4-ABPA) in aqueous solution, is an illustrative example of the

potential of this method to functionalize with different heteroatoms [8,25–

27].

Considering the potential improvement for several applications of

modified ZTC with different nitrogen functionalities, in this study, we will

use electrochemical methods to introduce N-species in the ZTC taking

into account that the experimental conditions can be precisely controlled

and that different N-containing molecules can be used, thus increasing the

possibilities of modification of the chemical properties of the carbon

material. We will analyze the electrochemical functionalization of ZTC

with two different aminobenzene acids: 2-aminobenzoic acid (2-ABA)

and 4-aminobenzoic acid (4-ABA). The acids have the carboxylic group

in ortho- and para-positions in their structure, respectively, and it

determines the reactivity and possible polymerization over the ZTC

surface. The study of the electrochemical functionalization includes

Page 167: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 4

152

different conditions that are tested in order to preserve the ZTC structure

after introducing new functionalities on its surface, giving possible routes

for a controlled modification. The influence of such functionalization on

the electrochemical behavior of ZTC is also determined in this work.

2 Materials and methods

2.1 ZTC synthesis

ZTC was prepared using zeolite Y (Na-form, SiO2/Al2O3 = 5.6, obtained

from Tosoh Co. Ltd.) as a template by the method reported elsewhere

[4,5,28]. 2 and 4-aminobenzoic acids (2-ABA and 4-ABA, respectively),

sulfuric acid (1 M), perchloric acid (70%), and the potassium hydroxide

were purchased fromWako Chemicals GmbH.

2.2 Electrochemical modification of ZTC

The working electrode was prepared with a paste of ZTC consisting of

ZTC, acetylene black (Denka black, Denki Kagaku Kogyo Kabushiki

Kaisha) as a conductive promoter and PTFE (Du Pont-Mitsui

Fluorochemicals Company, Ltd.) as binder in a proportion 90:5:5,

respectively. A squared-molded ZTC dry paste containing ~6 mg of ZTC

and 1 cm2 was placed in a Pt mesh and pressed at 300 kg cm2 for 5 min.

The electrode was dried for 6 h in vacuum, in order to remove all the

humidity and adsorbed gases from the carbon porosity, and thus allowing

accurate determination of the used active phase in the experiments.

The electrochemical modification of ZTC was performed in a three-

electrode cell, with the working electrode prepared as mentioned above, a

platinum wire as counter electrode and Ag/AgCl electrode as reference

Page 168: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods

153

electrode. Potentiodynamic functionalization was achieved by submitting

the sample to cyclic voltammetry in a 0.1 M HClO4 solution containing 1

mM of the respective amino-benzoic acid (2-ABA or 4-ABA), where the

potential was scanned between 0 and 1.1 V (vs. Ag/AgCl) at different scan

rates.

2.3 Structural, chemical and electrochemical characterization

The structure of the prepared materials was studied by XRD using Cu-Ka

radiation at 30 kV and 20 mA. The surface composition and oxidation

states of the species in the materials were studied by X-ray photoelectron

spectroscopy (XPS) (X-ray photoelectron spectrometer JEOL, JPS-9200)

using Mg Ka radiation at 12 kV and 25 mA. Temperature programmed

desorption (TPD) experiments were carried out in a DSC-TGA equipment

(TA Instruments, SDT 2960 Simultaneous) coupled to a mass

spectrometer (Thermostar, Balzers, GSD 300 T3). The thermobalance

was purged for 2 h under a helium flow rate of 100 ml min-1 and then

heated up to 950 °C (heating rate 20 °C min-1).

Fourier Transform Infrared Spectroscopy (FTIR) was used to verify the

functionalization process. The samples were dried at 100 °C for 12 h prior

to the experiments. The spectra were recorded between 4000 and 600 cm-

1 using an IR spectrometer (JASCO FT/IR-4100) with a MCT detector.

The electrochemical characterization of the electrodes was performed

using the same standard three-electrode cell configuration already

described. The modified electrode was used as working electrode. Two

aqueous electrolytes with different pH were used: acid (1 M H2SO4) and

Page 169: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 4

154

basic media (0.1 M KOH). Prior to the measurements, the electrodes that

were electro-modified in 0.1 M HClO4 were rinsed in ultrapure water for

5 h and soaked in the corresponding electrolyte for 24 h. The

electrochemical behavior was studied by cyclic voltammetry (CV)

between -0.2 and 0.8 V (vs. Ag/AgCl) for H2SO4, and -0.9 and 0.1 V (vs.

Ag/AgCl) for KOH at different scan rates, from 1 to 100 mV s-1. In order

to analyze the effect of the functionalization procedure in the conductivity

of the materials, measurements of electrochemical impedance

spectroscopy (EIS) were performed in the same system described above,

before and after the electrochemical modification and the rate

performance study. Impedance spectra were measured at the initial open

circuit potential in the frequency range of 10 mHz – 100 kHz with an

amplitude voltage of 10 mV.

3 Results and discussion

3.1 Electrochemical behavior of ZTC in 0.1 M HClO4

Prior to the electrochemical functionalization experiments, a CV run in

absence of any ABA monomer in the solution was performed in the

electrolyte of choice for understanding the behavior of the ZTC under

these conditions. ZTC shows a large oxidation current above 0.6 V in the

first anodic scan (Fig. 4.1a). This fact has been already reported in the

literature [5,29] and is related to the oxidation of the ZTC, which is highly

reactive because of a large number of edge sites [5], leading to a direct

electro-oxidation mechanism upon positive polarization in acid media.

The subsequent cycles show that the oxidation current decreases. At the

end of the process it is possible to observe new redox processes at about

Page 170: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods

155

0.30 to 0.40 V that are attributed to formation of quinone groups over the

ZTC surface which were introduced during the oxidation process [4],

Thus, this experiment confirms that ZTC is easily electrochemically

oxidized in this electrolyte even using low potentials.

Fig. 4.1 Cyclic voltammetry of an electrode of ZTC in (a) 0.1 M HClO4 and (b) 0.1 M HClO4 + 1 mM 4-ABA at 1 mV s-1, 5 cycles

3.2 Direct potentiodynamic electrochemical functionalization

of ZTC up to 1.1 V

Fig. 4.1b shows the CV of the experiment using the 4-ABA in the solution

and a potential window from 0 to 1.1 V at 1 mV s-1. The peak

corresponding to the amine oxidation clearly appears at 0.84 V (marked

by a solid arrow, Fig. 4.1b), and decreases with the number of cycles

[8,30], as well as the oxidation current at higher potentials. It can also be

observed that after the first cycle, several redox processes appear at 0.35

and 0.5 V (dashed arrows, Fig. 4.1b), which increase with the number of

cycles. It is important to note that, in spite of the well-known tendency of

ZTC to be electrochemically oxidized through a direct mechanism in acid

media [4,29], leading to the formation of electroactive surface oxygen

-2

-1

0

1

2

3

4

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

j / m

A g

-1

Ewe (vs. Ag/AgCl) / V

(a)

-2

-1

0

1

2

3

4

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

j / m

A g

-1

Ewe (vs. Ag/AgCl) / V

(b)

Page 171: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 4

156

groups, the redox peaks obtained in the presence of 4-ABA after the first

positive scans are found at different potentials, and therefore are expected

to come from a different origin. Moreover, the total irreversible charge

measured after this electrochemical treatment is different when it is

conducted in the presence of 4-ABA, being 56 C g-1 higher when the

aminobenzoic acid is added in the working electrolyte. Since the amount

of charge is larger than that consumed during the direct electrochemical

oxidation of ZTC (blank experiment), some charge is being used in the

oxidation of the 4-ABA monomers. The activated monomers could then

be attached directly to the surface of ZTC (covalent functionalization) or

form 4-ABA oligomers, potentially rendering non-covalent

functionalization. This result seems to confirm that ZTC surface can be

functionalized using this electrochemical treatment.

3.3 Step-wise potentiodynamic electrochemical

functionalization of ZTC

In order to define the optimal conditions to functionalize ZTC, several

conditions were tested with 4-ABA. The experiments were done by using

cyclic voltammetry at a higher scan rate (5 mV s-1) in HClO4 + 1 mM of

4-ABA and increasing the more positive potential to higher values from

0.6 to 1.1 V. Fig. 4.2 shows the voltammograms corresponding to those

experiments. It can be observed that initially, there is no oxidation current

using a positive potential of 0.6 V. In contrast, when higher potentials are

applied, an irreversible oxidation current appears, which is followed by an

increase of the area enclosed by the CV. It is also evident that the

irreversible oxidation current decreases with the cycles, which points out

Page 172: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods

157

the depletion of reactive sites from the ZTC surface. Thus, the intensity in

the 0 – 0.6 V region gradually increases when the higher potential is

stepped in the positive side up to 0.8 V, 1.0 V and 1.1 V. The increase of

the voltammetric charge seems to be related to the formation of slightly

irreversible redox processes, being these worse defined than in the

experiment in Fig. 4.1b due to the use of a higher scan rate.

Fig. 4.2 Cyclic voltammetry of an electrode of ZTC in 0.1 M HClO4 + 1 mM 4-ABA solution at 5 mV s-1. 4 cycles in each positive potential.

3.4 Electrochemical behavior of the initial 4-ABA modified

electrodes

For a better resolution of the redox processes resulting from the formation

of ABA-related electroactive species, Fig. 4.3 shows the electrochemical

behavior in 1 M H2SO4 solution of the electrode obtained after step-wise

functionalization (the treatment shown in Fig. 4.2). The areas obtained

from the cyclic voltammetry experiments are very similar in all samples.

This indicates that the accessible porosity is similar before and after the

functionalization process. The CV of 4-ABA functionalized ZTC

(ZTC_4-ABA) displays the formation of a well-defined redox process at

-4

-2

0

2

4

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

j / A

g-1

Ewe (vs.Ag/AgCl) / V

Page 173: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 4

158

0.49 V and a very broad peak at lower potentials (0 – 0.5 V). The broad

peak centered ca. 0.3 V mainly corresponds to the pseudocapacitive

contribution of electroactive surface oxygen groups, which are known to

be generated during the functionalization process in acid media when

potentials higher than 0.8 V are used [5]. This is also observed in the

experiment in the absence of ABA, where a broad redox process appears

at about 0.30 to 0.40 V that is attributed to the formation of quinone groups

over the ZTC surface. Furthermore, if the CV is examined closely, new

redox contributions can be found at 0.10 V and 0.35 V (see arrows in Fig.

4.3). These small redox peaks were not found in previous studies with

different carbon materials [8,30], and seem to be characteristic of the

electrochemical functionalization of ZTC with ABA molecules. The peak

at 0.49 V is related to the formation of oligomers of 4-ABA, by the

incorporation of p-aminobenzoic monomers at the ortho-position to the

carboxylic groups, which probably are strongly attached to the ZTC

surface through non-covalent interactions, generating electroactive

species in acid medium thanks to the protonation reaction of the amino

group [31]. The potential value where this redox reaction appears is also

very similar to that obtained over CNT for the same electrochemical

treatment of functionalization with para-substituted amino-benzene acids

[8].

Page 174: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods

159

Fig.4.3 Cyclic voltammetry in 1 M H2SO4 electrolyte of the functionalized electrodes with 4-ABA (solid line) and without 4-ABA (dashed line) by the electrochemical

treatment shown in Fig. 4.2. Scan rate: 5 mV s-1, 4th cycle

The characterization in H2SO4 of the functionalized electrode by direct

potentiodynamic functionalization up to 1.1 V (the treatment shown in

Fig. 4.1) is presented in Fig. 4.4. It can be observed a very different

response compared to the one obtained in Fig. 4.3. It shows a large peak

at 0.38 V and a small one at 0.49 V. The last one has been observed before

for 4-ABA step-wise functionalized ZTC in Fig. 4.3, but now the much

lower intensity seems to point out that scanning the potential directly to

1.1 V at the same time using a lower scan rate lead to the preferential

oxidation of the ZTC instead of the formation of the 4-ABA oligomers.

This is confirmed by the very similar CV obtained in sulfuric acid 1 M of

the ZTC treated in perchloric acid in the absence of 4-ABA (dashed line

in Fig. 4.4). In both cases, the main contributions to the pseudocapacitance

are the redox processes coming from the electro-generated surface oxygen

groups.

-800

-400

0

400

800

-0.3 -0.1 0.1 0.3 0.5 0.7 0.9

C /

F g-1

Ewe (vs.Ag/AgCl) / V

0.10V 0.35V0.49V

Page 175: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 4

160

Fig.4.4 Cyclic voltammetry in 1 M H2SO4 electrolyte of the modified electrodes with 4-ABA (solid line) and without 4-ABA (dashed line) by the electrochemical treatment

shown in Fig. 4.1. Scan rate 5 mV s-1, 4th cycle.

Consequently, these tests show that the functionalization process depends

on the positive potential limit and the scan rate applied during the

treatment. When a step-wise process is used with low positive potentials,

the 4-ABA related reactions are probably occurring at the same time as

the electrochemical oxidation of ZTC. However, at high potentials the

electrochemical oxidation of ZTC prevails. Then, if the ZTC electrode is

electrochemically treated at low positive potentials before opening the

potential window on the positive side, the 4-ABA related electroactive

species created on the ZTC surface can hinder the electrooxidation

process that would otherwise take part over ZTC surface when it is later

exposed to the potential of 1.1 V. Therefore, a lower positive potential

limit and short oxidation times (i.e higher scan rate) are preferred in order

to promote the 4-ABA functionalization upon the ZTC electrochemical

oxidation.

-1000

-500

0

500

1000

-0.3 -0.1 0.1 0.3 0.5 0.7 0.9

C /

F g-1

Ewe (vs. Ag/AgCl) / V

Page 176: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods

161

3.5 Optimal electrochemical functionalization of ZTC with

aminobenzoic acids

Based on the results shown above, new conditions were chosen. As it was

demonstrated before, high positive potentials lead to the oxidation of the

ZTC instead of the functionalization, then functionalization treatments

until 0.8 V at 5 mV s-1 were proposed for 2 and 4-ABA. This potential

seems to be high enough to favor the formation of oligomers that will be

non-covalently attached on the surface of ZTC, while direct covalent

functionalization will be probably less favored [8,25]. The results of the

functionalization processes are shown in Fig. 4.5; a blank experiment in

which ZTC is submitted to the same treatment, but in the absence of any

aminobenzoic acid, is also included for comparison purposes.

Fig.4.5 Cyclic voltammetry of an electrode of ZTC in 0.1 M HClO4 + 1 mM of (a) 2-ABA and (b) 4-ABA at 5 mV s-1, 20 cycles. The black line corresponds to the

experiment without monomer in solution

The results in Fig. 4.5 do not show a clear peak related to amine oxidation

process for 2-ABA and 4-ABA, but compared with the blank experiment,

the oxidation current is higher in both cases. Those oxidation currents

decrease with the number of cycles, generating redox processes at lower

-4

-2

0

2

4

6

-0.1 0.1 0.3 0.5 0.7 0.9

j / m

A g

-1

Ewe (vs. Ag/AgCl) / V

(a)

BlankMod_2-ABA

-4

-2

0

2

4

6

-0.1 0.1 0.3 0.5 0.7 0.9

j / m

A g

-1

Ewe (vs. Ag/AgCl) / V

(b)

BlankMod_4-ABA

Page 177: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 4

162

potentials, being clearer and better defined in the case of the 2-ABA. This

result is expected because 2-ABA polymerizes easier than 4-ABA due to

steric effects. The 2-ABA is able to form a linear polymer similar to PANI,

whereas 4-ABA can form very short-chain ramified oligomers [31].

Fig. 4.6 shows the characterization of these functionalized ZTC electrodes

with 2-ABA (ZTC_2ABA) and 4-ABA (ZTC_4ABA) in acid (1 M

H2SO4) and basic (0.1 M KOH) media. Compared to the blank experiment

(i.e. ZTC electrochemically treated in 0.1 M HClO4), the functionalized

ZTCs shows unique redox peaks, corresponding to the attached molecules

that are electroactive in both media, and the position of the main redox

peaks is different for each ABA. In acid medium (Fig. 4.6a), the

ZTC_2ABA shows the formation of three peaks at 0.11, 0.27 and 0.35 V.

The peaks appear at lower potentials than the ZTC_4ABA, which shows

redox processes at 0.35 and 0.51 V. This fact can be attributed to the self-

doping effect of the carboxylic group close to the amine group [31].

Fig.4.6 Cyclic voltammetry of functionalized ZTC without ABA (black line), with 2-ABA (red line) and 4-ABA (green line) in (a) 1 M H2SO4 and (b) 0.1 M KOH at 5 mV

s-1, 4th cycle.

-800

-400

0

400

800

-0.3 -0.1 0.1 0.3 0.5 0.7 0.9

C /

F g-1

Ewe (vs. Ag/AgCl) / V

(a)

-800

-400

0

400

800

-1 -0.8 -0.6 -0.4 -0.2 0 0.2

C /

F g-1

Ewe (vs. Ag/AgCl) / V

(b)

Page 178: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods

163

The CV response in basic medium (Fig. 4.6b) is different to that in acid

medium. In the case of ZTC_2-ABA, only a small redox process at -0.45

V appears, which is close to the potential where the peak of ZTC_2-ABA

is found in 1 M H2SO4 (Fig. 4.6a). Except for that redox process, the

electrode behaves fairly similar to the modified ZTC in the absence of any

ABA (black line in Fig. 4.6b), which shows less intense processes than in

acid electrolyte in this potential window. Interestingly, for the ZTC_4-

ABA electrode two broad peaks centered at -0.55 and 0.30 V appear,

which provide to this sample with a higher contribution of

pseudocapacitance in this electrolyte. The 2-ABA polymer is known to be

partially soluble in basic media, and therefore it could be detached from

ZTC surface and washed out from the porosity in 0.1 M KOH solution. In

spite of that, it is possible to see remaining redox processes, pointing out

that part of the 2-ABA functionalities (probably those covalently bonded)

still remain attached to the surface. The higher stability and electroactivity

showed by ZTC_4-ABA could be explained considering that ZTC has

been covalently modified in a larger extent because the polymer formation

with this molecule is more impeded.

In general, the materials show a net increase in the capacitance, as

consequence of the pseudocapacitance contribution of the redox processes

associated to the ABA molecules. Capacitances in acid medium of 399 F

g-1 were measured at 1 mV s-1 for the ZTC treated in the absence of ABA,

whereas values of 427 and 441 F g-1 were obtained for ZTC_2-ABA and

ZTC_4-ABA at the same scan rate, respectively. When the capacitance is

determined in basic medium, it varies to 286, 318 and 364 F g-1 for the

Page 179: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 4

164

blank, ZTC_2-ABA and ZTC_4-ABA. Fig. 4.7 shows the rate

performance for all samples in acid and basic media. Interestingly, the net

increase in capacitance, which is as high as 78 F g-1 for ZTC_4-ABA in

basic medium and 30 – 35 F g-1 for both functionalized electrodes in acid

medium, is kept upon increasing the scan rate; this demonstrates that the

ABA polymers and molecules must be attached on the carbon surface, and

therefore the electron transfer and charge propagation to ZTC is fast,

unlike a solution redox process.

Fig. 4.7 Rate performance of functionalized ZTC in (a) 1 M H2SO4 and (b) 0.1 M KOH.

If we consider that each redox process is related to the presence of one

electroactive heteroatom and only implies the transfer of one electron, the

amount of heteroatoms functionalized on the ZTC surface can be

determined from the differences in charge registered during the CV

measurements between the electrochemically functionalized ZTC in the

absence and presence of ABA. From the results obtained in acid media,

where all the introduced functionalities should be electroactive, the

amounts are 0.416 and 0.368 mmol g-1 for ZTC_2-ABA and ZTC_4-

ABA, respectively. The capacitance retention at fast scan rates is higher

250

300

350

400

450

500

0 25 50 75 100

C /

F g-1

Scan rate / mV s-1

(a)

BlankZTC_2-ABAZTC_4-ABA 50

150

250

350

450

0 25 50 75 100

C /

F g-1

Scan rate / mV s-1

(b)

BlankZTC_2-ABAZTC_4-ABA

Page 180: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods

165

in acid medium and better than for the oxidized ZTC, which could be

helpful for high power applications. In both media, the loss of capacitance

seems to be mainly inherent to ZTC and unaffected by the presence of the

functionalities.

The possible effect of these ABA species on the conductivity and ion

mobility of the electrode has been analyzed by EIS. Fig. 4.8 shows the

Nyquist plot of the ZTC in 0.1 M HClO4 before and after the

functionalization with 2-ABA. It is possible to see that the electrode show

the characteristic response of a porous carbon electrode and that, after the

functionalization, a similar trend is observed in both cases. First, the

Equivalent Series Resistance (ESR) seems to be slightly improved after

the electrochemical treatment, without any relevant differences arising in

the size of their semicircle after the functionalization. Second, a rather low

Equivalent Distributed Resistance (EDR, a known feature of ZTC, which

possesses a highly interconnected array of micropores that enhances ion

mobility through it) and the quasi-ideal capacitor behavior with a vertical

line recorded at low frequencies, are kept after the electrochemical

treatment in 0.1 M HClO4, independently of the presence of ABA in the

electrolyte. The similar tendencies found seem to confirm that the

formation of ABA functionalities in the pore network of ZTC do not

render a significant decrease neither in electrical conductivity nor in ion

mobility which allow to preserve a good retention of capacitance (Fig.

4.7).

Page 181: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 4

166

Fig. 4.8 Nyquist plot of the pristine (black line) and 2-ABA modified electrode (red line) in 0.1 M HClO4.

3.6 Electrochemical stability of the electrodes

In order to evaluate the electrochemical stability of the modified ZTC

materials, cyclability tests were done in acid electrolyte (1 M H2SO4). Fig.

4.9 shows the results of CV at 10 mV s-1 after the 1st and 500th cycle. It

can be seen that the CV shows an excellent stability after cycling in both

cases. This result confirms that the redox processes are not occurring in

solution (otherwise, the products will diffuse out the porosity towards the

bulk of the solution) and correspond to redox-active species strongly

attached to the surface of the electrode material.

Fig. 4.9 Cyclic voltammetry in 1 M H2SO4 electrolyte of (a) ZTC_2-ABA and (b) ZTC_4-ABA, at 10 mV s-1

0

1

2

3

4

5

0 2 4 6 8

-Im

(Z) /

Ω

Re(Z) / Ω

-800

-400

0

400

800

-0.3 -0.1 0.1 0.3 0.5 0.7 0.9

C /

F g-1

Ewe (vs. Ag/AgCl) / V

(a)

1st

500th-800

-400

0

400

800

-0.3 -0.1 0.1 0.3 0.5 0.7 0.9

C /

F g-1

Ewe (vs. Ag/AgCl) / V

(b)

1st

500th

Page 182: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods

167

The behavior of the functionalized electrodes at very high positive

potentials was tested by performing a CV from 0 to 1.2 V in 1 M H2SO4

at 5mV s-1, 5 cycles. Fig. 4.10 shows the CV obtained in the

characterization potential region for the three electrodes after the

treatment. It is possible to observe significant changes in the CV after

subjecting the materials to strong oxidation conditions. The CVs patterns

of the modified ZTC samples are quite similar to the sample without any

ABA functionalities. Interestingly, the electrode ZTC_4-ABA still shows

the unique redox peak at 0.51 V, which corresponds to electroactive

species. It seems that such high potentials are oxidizing and removing

most of the ABA species present on the ZTC, being the most stable those

derived from 4-ABA.

Fig. 4.10 Cyclic voltammetry in 1 M H2SO4 electrolyte after oxidation treatment of functionalized ZTC without ABA (black line) and with 2-ABA (red line) and 4-ABA

(green line) at 5 mV s-1, 5th cycle

3.7 Structural and chemical characterization

X-ray diffraction patterns of ZTC are shown in Fig. 4.11a. The small peak

displayed at 2θ = 18.2° correspond to the PTFE used during the fabrication

-1000

-500

0

500

1000

-0.3 -0.1 0.1 0.3 0.5 0.7 0.9

C /

F g-

1

Ewe (vs. Ag/AgCl) / V

Page 183: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 4

168

of the ZTC paste. ZTC treated in the absence of ABA molecules (blank

experiment) shows a sharp peak at 2θ = 6.4°, being derived from {111}

reflections of zeolite Y as a template [28]. ZTC_2-ABA and ZTC_4-ABA

show a weaker peak, and also a smaller contribution of the diffraction at

low angles. These features can be explained on the basis of the formation

of the species inside the pores of the ZTC rather than in a destruction of

the ordered structure. Thus, the intensity ratio of the {111} peak with

respect to the background intensity at 2θ = 10° decreased 45% and 46%

in the case of the ZTC_2-ABA and ZTC_4-ABA, respectively. This ratio

is similar to the decrease found in the intensity ratio at low angles. As

shown before, the functionalization of ZTC with ABA does not hinder the

ion mobility and charge transfer through ZTC in aqueous electrolyte, a

result that seems to confirm that the structure of ZTC is not damaged;

rather than that, it is filled with the ABA functionalities.

Fig. 4.11 a) XRD patterns of functionalized ZTC with and without ABA. (b) FTIR spectra of functionalized ZTC without ABA and with 2-ABA (red line), 4-ABA (green

line)

Fig. 4.11b shows the FTIR transmission spectra in the region between

1200 and 600 cm-1 of the three electrodes presented before. It is important

0 10 20 30 40 502θ

ZTC_4-ABA

ZTC_2-ABA

ZTC_Blank

(a)

600700800900100011001200

%T

W / cm-1

(b)

700725750775800

Page 184: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods

169

to note that all bands found for the electrode of ZTC functionalized in the

absence of ABA are also present in the ABA-functionalized electrodes,

showing no shifting on their position. Most of them can be ascribed to the

presence of oxygen groups or to the PTFE binder. A new band

approximately at 740 and 760 cm-1 can be seen in ZTC_2-ABA and

ZTC_4-ABA, respectively, which is not found in the ZTC electrode when

no ABA is added during the functionalization treatment. It corresponds to

the stretching mode of aromatic amine groups present in the ABA

molecule, confirming the successful functionalization of ZTC with the

amino-benzoic acids [32,33]. The position of the band seems to shift

depending on whether the 2- or the 4-ABA monomers are used during the

functionalization, which agrees with the different structures that can be

obtained with the two monomers.

The surface composition and the oxidation states of the species of the

materials were studied by XPS. The atomic composition of all samples is

shown in Table 4.1.

Table 4.1 Atomic composition obtained by XPS of functionalized ZTC without ABA and with 2-ABA and 4-ABA

Sample C1s / at.% N1s / at.% O1s / at.%

ZTC_Blank 94.0 0.0 6.0

ZTC_2-ABA 93.4 1.4 5.2

ZTC_4-ABA 94.5 1.2 4.4

An increase in nitrogen and oxygen content is observed for all

functionalized samples compared with ZTC. Blank experiment confirmed

Page 185: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 4

170

that most of the oxygen in the samples is due to the electrooxidation

process. However, the additional oxygen content can be attributed to the

aminobenzoic molecule that has a carboxylic functionality in its structure.

This is also supported with the amount of nitrogen in the functionalized

ZTC, which shows an increment that reaches a 1.4% of nitrogen in its

atomic composition. It is important to remark that in the case of ZTC_2-

ABA the content in nitrogen and oxygen is higher than for the ZTC_4-

ABA. The results confirm that the functionalization at lower potentials is

higher in the case of 2-ABA than 4-ABA. The results obtained by XPS

are in agreement with the ones obtained by electrochemical

measurements. The polymerization over ZTC surface is easier for the one

with ortho-position; in the case of para-substituted aminobenzoic acid the

formation of the polymer is impeded because of the aforementioned steric

effects, which leads to the formation of few short-chain oligomers.

Fig. 4.12 shows the N1s XPS spectra for the different functionalized ZTC.

For both samples, a N1s peak was observed at 400.3 eV, which can be

separated in two contributions, one at 399.3 eV assigned to neutral

amines, and a second at 400.5 eV assigned to positively charged amines

[34]. The presence of these nitrogen species suggests that

functionalization was produced by the formation of ramified polymers

from the linkage of several aminoacids molecules via amine bridges [31].

Page 186: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods

171

Fig. 4.12 N1s XPS spectra of (a) ZTC_2ABA, (b) ZTC_4ABA

The formation of nitrogen-rich stable polymers and oligomers was also

demonstrated by temperature-programmed desorption (TPD). Fig. 4.13

shows the TPD profiles for all samples. In the experiments, the evolution

of CO, CO2, HCN and NH3 was followed. Several other m/z signals

related to the formation of other gaseous products (NO, NO2, methane,

hydrogen …) were also followed, but are not shown herein since they did

not provide any relevant information. The decomposition of surface

oxygen functionalities of a porous carbon upon heating in inert

atmosphere is a well-known process that has been extensively used for

characterizing the surface functionalities of porous carbon materials

[35,36]. It is known that CO evolution is related to the decomposition of

neutral and basic groups such as carbonyl, quinones, phenols, ethers and

some others, which can be identified thanks to their different thermal

stabilities, which causes them to evolve as CO at different temperatures.

Similarly, CO2 desorption is mainly related to the decomposition of

carboxylic, anhydride and lactone moieties; in the case of anhydrides, they

are also accompanied by the release of a CO molecule for each formed

396397398399400401402403404

Cou

nts /

a.u

B.E. / eV

(a)

396397398399400401402403404

Cou

nts /

a.u

B.E. / eV

(b)

Page 187: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 4

172

CO2 molecule. Similarly, the presence of N-functionalities can also be

detected following the m/z lines corresponding to the gases evolved

during its decomposition [37].

Fig. 4.13 TPD profiles for the ZTC, ZTC_2-ABA y ZTC_4-ABA electrodes (a) CO, (b) CO2 and (c) HCN evolution

0

1

2

3

4

5

0 250 500 750 1000

CO

/ µm

ol g

-1s-1

T / ºC

(a)

ZTC_4ABAZTC_2ABAZTC_Blank

0

1

2

3

0 250 500 750 1000

CO

2/ µ

mol

g-1

s-1

T / ºC

(b)

ZTC_4ABAZTC_2ABAZTC_Blank

0.0

0.2

0.4

0.6

0 250 500 750 1000

HC

N /

µmol

g-1

s-1

T / ºC

(c)

ZTC_4-ABAZTC_2-ABA

Page 188: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods

173

The CO-TPD profiles in Fig. 4.13a show that the three electrodes have a

large amount of surface oxygen groups, though the nature and amount of

CO-evolving groups are quite different for the ZTC sample after the

electrochemical treatment in the absence of ABA (ZTC_Blank). A large

peak of CO desorption at 750 °C can be seen for this electrode. This seems

to be related to the decomposition of quinone/carbonyl type groups, which

are known to be formed during the electrochemical oxidation of ZTC [4].

Interestingly, the amount of CO-type groups is much smaller in the case

of the ZTC_2-ABA and ZTC_4-ABA and the most predominant

contribution is a peak at around 650 °C, being associated to decomposition

of less thermally stable groups. These results show that, as previously

discussed, during the functionalization treatment in the presence of ABA

molecules most of the charge is used for the ABA oxidation thus

preventing the ZTC electrochemical oxidation. Probably, either the ABA-

containing molecules occupy the ZTC active sites or the ABA-related

reactions are faster than the ZTC electrooxidation.

It is important to highlight here that quinone/carbonyl groups have been

claimed to be electroactive specially in acid electrolyte [38], and are

clearly observed in the case of ZTC [5,29]. However, the

pseudocapacitance contribution associated to redox reactions of quinone-

type groups was similar for the ABA-modified samples (see Fig. 4.6).

Therefore, it can be concluded that not all the CO-type surface oxygen

groups that are formed during the electrochemical functionalization of

ZTC are electroactive, in agreement with previous observations [39], and

that most of the electroactive oxygen groups are still present after

Page 189: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 4

174

functionalization with ABA molecules, thus suggesting that overoxidation

of the carbon material can be avoided when ABA monomers are added

during the treatment. This opens the possibility of increasing the

selectivity towards the most electroactive surface functional groups

Another interesting result comes from the examination of the CO2 profiles

(Fig. 4.13b). They show an increase of CO2 desorption at around 400 °C

in the ABA-functionalized ZTC. The narrow desorption peaks correspond

to the thermal decomposition of a homogeneous species. It clearly

corresponds to the decomposition of the carboxylic acid from the ABA

oligomers. The CO2 evolution observed for ZTC_2-ABA, contains a CO2-

peak at lower temperatures that can be due to the destabilizing effect of

the amine bridge in the vicinity of the carboxylic group, facilitating its

thermal decomposition.

Fig. 4.13c shows the HCN-TPD profiles of the ABA-functionalized ZTC

electrodes. The profile of ZTC functionalized in absence of any ABA

molecule was subtracted to those shown to rule out the possible

interference of the PTFE used during the fabrication of the ZTC paste

(which also has a contribution in the m/z = 27 line) in this experiment.

Desorption of HCN forms a large peak at 750 °C, and the release of small

amounts of NH3 was also found at this temperature (not shown). This

process seems to be connected to the thermal decomposition of the amine

and imine groups that exist in the oligomers, polymers and other species

obtained from functionalization in the presence of 2- and 4-ABA.

The quantification of the amount of desorbed CO, CO2, NH3 and HCN is

included in Table 4.2. It is important to remark that the quantity of HCN

Page 190: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods

175

for ZTC_2-ABA is twice that of ZTC_4-ABA, which confirms that 2-

ABA is more easily polymerized than 4-ABA. The relationship between

the amount of N-containing groups and the amount of carboxylic groups

(determined from difference with the blank experiment) seems to be close

to 1:1 in both cases. Another interesting result is the clear inverse

relationship between the amount of N groups and the amount of CO-

desorbing groups. The larger the amount of N groups (i.e. the more

extensive the functionalization is), the lower the amount of

electrochemically generated CO groups. Moreover, the amount of

electroactive groups that were measured from the charge in the CVs of

Fig. 4.6 (416 and 368 mmol g-1 for 2- and 4-ABA, respectively) seems to

be in agreement with the amount of N groups.

Table 4.2 Evolution of CO, CO2, HCN and NH3 from TPD experiments

Sample CO / µmol g-1

CO2 / µmol g-1

HCN / µmol g-1

NH3 / µmol g-1

ZTC_Blank 4529 1022 0 0

ZTC_2-ABA 2829 1361 295 114

ZTC_4-ABA 3332 1457 170 109

4 Conclusions

The electrochemical functionalization of ZTC with 2- and 4-

aminobenzoic acids has been carried out using a potentiodynamic method.

The functionalization was achieved by using oxidative conditions where

the amino group of the amino-benzoic acid is activated and can form

either an electroactive polymer layer on the top of the ZTC surface or a

covalent bond with the highly abundant edge sites of ZTC. Different

Page 191: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 4

176

experimental conditions were tested in order to perform a successful

functionalization. When a high upper potential limit is used (1.1 V), the

generation of oxygen functionalities is preferred over the

functionalization with aminobenzene acids. This is due to the low amount

of monomer and the high reactivity of ZTC and high concentration of edge

sites. Consequently, the functionalization process was proposed and

successfully achieved using lower upper potential (0.8 V). The

electrochemical behavior of the functionalized samples have been carried

out in acid and basic media, demonstrating the appearance of redox

processes, some of them being unique to this system and being probably

related to the collaboration between surface functionalities of the highly

reactive ZTC and ABA-derived short chain polymers. Thus, the

functionalized electrodes show an increase in the capacitance value

compared to the pristine one due to the pseudocapacitance contribution.

The increase in capacitance is also maintained at high scan rates, pointing

out a fast charge transfer between the inserted functionalities and the ZTC

electrode. The introduced functionalities are stable upon successive

cycling and exposure to high oxidative potentials leads to an oxidation

and removal of most of the ABA species present on the ZTC surface. XRD

confirmed that functionalities have been generated inside the porosity of

ZTC, while FTIR, XPS and TPD experiments verified the

functionalization process by confirming the presence of different nitrogen

groups over the ZTC surface. These promising results show an alternative

method for the modification of surface chemistry of highly porous carbon

materials

Page 192: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods

177

5 References [1] H. Nishihara, T. Kyotani, Templated nanocarbons for energy storage, Adv.

Mater. 24 (2012) 4473–4498.

[2] T. Kyotani, Z. Ma, A. Tomita, Template synthesis of novel porous carbons using various types of zeolites, Carbon. 41 (2003) 1451–1459.

[3] H. Nishihara, Q.-H. Yang, P.-X. Hou, M. Unno, S. Yamauchi, R. Saito, J.I. Paredes, A. Martínez-Alonso, J.M.D. Tascón, Y. Sato, M. Terauchi, T. Kyotani, A possible buckybowl-like structure of zeolite templated carbon, Carbon. 47 (2009) 1220–1230.

[4] R. Berenguer, H. Nishihara, H. Itoi, T. Ishii, E. Morallón, D. Cazorla-Amorós, T. Kyotani, Electrochemical generation of oxygen-containing groups in an ordered microporous zeolite-templated carbon, Carbon. 54 (2013) 94–104.

[5] H. Itoi, H. Nishihara, T. Ishii, K. Nueangnoraj, R. Berenguer, T. Kyotani, Large Pseudocapacitance in Quinone-Functionalized Zeolite-Templated Carbon, Bull. Chem. Soc. Jpn. 87 (2014) 250–257.

[6] R. Berenguer, J.P. Marco-Lozar, C. Quijada, D. Cazorla-Amorós, E. Morallón, A comparison between oxidation of activated carbon by electrochemical and chemical treatments, Carbon. 50 (2012) 1123–1134.

[7] S. Maldonado, K.J. Stevenson, Influence of Nitrogen Doping on Oxygen Reduction Electrocatalysis at Carbon Nanofiber Electrodes, J. Phys. Chem. B. 109 (2005) 4707–4716.

[8] C. González-Gaitán, R. Ruiz-Rosas, E. Morallón, D. Cazorla-Amorós, Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the oxygen reduction reaction, Int. J. Hydrogen Energy. 40 (2015) 11242–11253.

[9] D. Salinas-Torres, S. Shiraishi, E. Morallón, D. Cazorla-Amorós, Improvement of carbon materials performance by nitrogen functional groups in electrochemical capacitors in organic electrolyte at severe conditions, Carbon. 82 (2015) 205–213.

[10] O. Ornelas, J.M. Sieben, R. Ruiz-Rosas, E. Morallón, D. Cazorla-Amorós, J. Geng, N. Soin, E. Siores, B.F.G. Johnson, On the origin of the high capacitance of nitrogen-containing carbon nanotubes in acidic and alkaline electrolytes, Chem. Commun. 50 (2014) 11343–11346.

[11] D. Salinas-Torres, O. Ornelas, R. Ruiz-Rosas, D. Cazorla-Amorós, E. Morallón, Almacenamiento de energía eléctrica en materiales carbonosos, in: F. Carrasco Marín, F.J. Maldonado Hódar, M.Á. Álvarez Merino (Eds.), Desarro. Y Apl. Mater. Av. Carbón, Universidad Internacional de Andalucía, 2014: p. 428.

Page 193: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 4

178

[12] M.J. Mostazo-López, R. Ruiz-Rosas, E. Morallón, D. Cazorla-Amorós, Generation of nitrogen functionalities on activated carbons by amidation reactions and Hofmann rearrangement: Chemical and electrochemical characterization, Carbon. 91 (2015) 252–265.

[13] E. Raymundo-Piñero, D. Cazorla-Amorós, A. Linares-Solano, The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres, Carbon. 41 (2003) 1925–1932.

[14] L.F. Mabena, S. Sinha Ray, S.D. Mhlanga, N.J. Coville, Nitrogen-doped carbon nanotubes as a metal catalyst support, Appl. Nanosci. 1 (2011) 67–77.

[15] F.J. Maldonado-Hódar, S. Morales-Torres, Aplicaciones de los materiales de carbón en catálisis, in: F. Carrasco Marín, F.J. Maldonado Hódar, M.Á. Álvarez Merino (Eds.), Desarro. Y Apl. Mater. Av. Carbón, Universidad Internacional de Andalucía, 2014: p. 428.

[16] Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing., ACS Nano. 4 (2010) 1790–1798.

[17] P.-X. Hou, H. Orikasa, T. Yamazaki, K. Matsuoka, A. Tomita, N. Setoyama, Y. Fukushima, T. Kyotani, Synthesis of Nitrogen-Containing Microporous Carbon with a Highly Ordered Structure and Effect of Nitrogen Doping on H2O Adsorption, Chem. Mater. 17 (2005) 5187–5193.

[18] C.O. Ania, V. Khomenko, E. Raymundo-Piñero, J.B. Parra, F. Béguin, The Large Electrochemical Capacitance of Microporous Doped Carbon Obtained by Using a Zeolite Template, Adv. Funct. Mater. 17 (2007) 1828–1836.

[19] Z. Yang, Y. Xia, X. Sun, R. Mokaya, Preparation and Hydrogen Storage Properties of Zeolite-Templated Carbon Materials Nanocast via Chemical Vapor Deposition: Effect of the Zeolite Template and Nitrogen Doping, J. Phys. Chem. B. 110 (2006) 18424–18431.

[20] Y. Xia, G.S. Walker, D.M. Grant, R. Mokaya, Hydrogen Storage in High Surface Area Carbons: Experimental Demonstration of the Effects of Nitrogen Doping, J. Am. Chem. Soc. 131 (2009) 16493–16499.

[21] H. Nishihara, P.-X. Hou, L.-X. Li, M. Ito, M. Uchiyama, T. Kaburagi, A. Ikura, J. Katamura, T. Kawarada, K. Mizuuchi, T. Kyotani, High-Pressure Hydrogen Storage in Zeolite-Templated Carbon, J. Phys. Chem. C. 113 (2009) 3189–3196.

[22] R. Ruiz-Rosas, M.J. Valero-Romero, D. Salinas-Torres, J. Rodríguez-Mirasol, T. Cordero, E. Morallón, D. Cazorla-Amorós, Electrochemical Performance of Hierarchical Porous Carbon Materials Obtained from the Infiltration of Lignin into Zeolite Templates, ChemSusChem. 7 (2014) 1458–1467.

[23] D. Salinas-Torres, J.M. Sieben, D. Lozano-Castello, E. Morallón, M. Burghammer, C. Riekel, D. Cazorla-Amorós, Characterization of activated

Page 194: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods

179

carbon fiber/polyaniline materials by position-resolved microbeam small-angle X-ray scattering, Carbon. 50 (2012) 1051–1056.

[24] D. Salinas-Torres, J.M. Sieben, D. Lozano-Castelló, D. Cazorla-Amorós, E. Morallón, Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre–PANI electrodes, Electrochim. Acta. 89 (2013) 326–333.

[25] G. Yang, Y. Shen, M. Wang, H. Chen, B. Liu, S. Dong, Copper hexacyanoferrate multilayer films on glassy carbon electrode modified with 4-aminobenzoic acid in aqueous solution, Talanta. 68 (2006) 741–747.

[26] X. Li, Y. Wan, C. Sun, Covalent modification of a glassy carbon surface by electrochemical oxidation of r-aminobenzene sulfonic acid in aqueous solution, J. Electroanal. Chem. 569 (2004) 79–87.

[27] G. Yang, B. Liu, S. Dong, Covalent modification of glassy carbon electrode during electrochemical oxidation process of 4-aminobenzylphosphonic acid in aqueous solution, J. Electroanal. Chem. 585 (2005) 301–305.

[28] Z. Ma, T. Kyotani, Z. Liu, O. Terasaki, A. Tomita, Very High Surface Area Microporous Carbon with a Three-Dimensional Nano-Array Structure: Synthesis and Its Molecular Structure, Chem. Mater. 13 (2001) 4413–4415.

[29] K. Nueangnoraj, R. Ruiz-Rosas, H. Nishihara, S. Shiraishi, E. Morallón, D. Cazorla-Amorós, T. Kyotani, Carbon–carbon asymmetric aqueous capacitor by pseudocapacitive positive and stable negative electrodes, Carbon. 67 (2014) 792–794.

[30] A. Benyoucef, F. Huerta, M.I. Ferrahi, E. Morallon, Voltammetric and in situ FT-IRS study of the electropolymerization of o-aminobenzoic acid at gold and graphite carbon electrodes: Influence of pH on the electrochemical behaviour of polymer films, J. Electroanal. Chem. 624 (2008) 245–250.

[31] A. Benyoucef, F. Huerta, J.L. Vázquez, E. Morallon, Synthesis and in situ FTIRS characterization of conducting polymers obtained from aminobenzoic acid isomers at platinum electrodes, Eur. Polym. J. 41 (2005) 843–852.

[32] T. Ramanathan, F.T. Fisher, R.S. Ruoff, L.C. Brinson, Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems, Chem. Mater. 17 (2005) 1290–1295.

[33] J. Shen, W. Huang, L. Wu, Y. Hu, M. Ye, Study on amino-functionalized multiwalled carbon nanotubes, Mater. Sci. Eng. A. 464 (2007) 151–156.

[34] E. Raymundo-Piñero, D. Cazorla-Amorós, A. Linares-Solano, J. Find, U. Wild, R. Schlögl, Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin, Carbon. 40 (2002) 597–608.

Page 195: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 4

180

[35] Y. Otake, R.G. Jenkins, Characterization of oxygen-containing surface complexes created on a microporous carbon by air and nitric acid treatment, Carbon. 31 (1993) 109–121.

[36] M.C.C. Román-Martínez, D. Cazorla-Amorós, A. Linares-Solano, C.S.-M. de Lecea, Tpd and TPR characterization of carbonaceous supports and Pt/C catalysts, Carbon. 31 (1993) 895–902.

[37] H.F. Gorgulho, J.P. Mesquita, F. Gonçalves, M.F.R. Pereira, J.L. Figueiredo, Characterization of the surface chemistry of carbon materials by potentiometric titrations and temperature-programmed desorption, Carbon. 46 (2008) 1544–1555.

[38] M.J. Bleda-Martínez, J.A. Maciá-Agulló, D. Lozano-Castelló, E. Morallón, D. Cazorla-Amorós, A. Linares-Solano, Role of surface chemistry on electric double layer capacitance of carbon materials, Carbon. 43 (2005) 2677–2684.

[39] S. Leyva-García, K. Nueangnoraj, D. Lozano-Castelló, H. Nishihara, T. Kyotani, E. Morallón, D. Cazorla-Amorós, Characterization of a zeolite-templated carbon by electrochemical quartz crystal microbalance and in situ Raman spectroscopy, Carbon. 89 (2015) 63–73.

Page 196: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

CHAPTER 5

Electrochemical glucose

biosensors based on

nanostructured carbon materials

Page 197: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán
Page 198: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

183

CHAPTER 5. ELECTROCHEMICAL GLUCOSE BIOSENSORS

BASED ON NANOSTRUCTURED CARBON MATERIALS

1 Introduction

Research on glucose detection has been in the spotlight for many years

because of its implication in diseases as diabetes and hypoglycemia. They

are caused by metabolic disorders in which the body does not produce the

necessary amount of insulin for glucose processing, leading to glucose

levels out of the normal concentration range (4.0 to 5.9 mM) [1]. The

diagnosis and supervision of these diseases leads to a high demand for

blood glucose monitoring systems and, given the large number of people

which have been diagnosed with diabetes (422 million in 2014 as reported

by the World Health Organization), huge efforts have been done in the

development of novel sensors. In this sense, the concept of enzyme

electrodes proposed by Clark and Lyons in 1962 [2] constituted a major

breakthrough for glucose sensors. As a result, the development of

biosensors based on glucose oxidase enzyme (GOx) is seen as the most

promising technology to achieve accurate, non-invasive and even

continuous monitoring of sugar levels, and research on this field has

witnessed a remarkable activity. The use of this specific enzyme leads to

an increase in the selectivity and the sensitivity of the sensor, minimizing

the possible interferences with other analytes present in biological fluids

[3].

Page 199: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 5

184

Glucose oxidase is a flavor protein that catalyzes the oxidation of β-D-

glucose at its hydroxyl group, which through the O2 as electron acceptor,

produces D-glucono-δ-lactone and hydrogen peroxide [4]:

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 𝑂2𝐺𝑂𝑥→ 𝐷–𝑔𝑙𝑢𝑐𝑜𝑛𝑜– 𝛿– 𝑙𝑎𝑐𝑡𝑜𝑛𝑒 + 𝐻2𝑂2 Eq. 5.1

The cofactor Flavin Adenine Dineucleotide (FAD) is the active site where

the oxidation reaction of glucose takes place. The FAD contains amine

groups involved in the glucose oxidation catalysis [4,5].

Different generations of glucose biosensors that are characterized by

different detection mechanisms have been developed [1]. First-generation

biosensors are based in the detection of the H2O2 produced during the

reaction. The FAD is first reduced by the glucose and then reoxidized with

oxygen. Thus, a voltage is applied between the electrodes of the sensor,

and the necessary current intensity for keeping such voltage will be related

to the oxidation of the generated H2O2 on the surface of the working

electrode. These sensors are very simple, however interference problems

arise from using positive working potentials, where the competitive

oxidation on the electrode of other analytes frequently found in biological

samples (such as uric and ascorbic acids) would contribute to the

registered current intensity, thus interfering with the H2O2 detection. The

second generation biosensors rely the detection on the introduction of a

mediator. One, if not the most, limiting factor in the glucose biosensors is

the electron transfer between the FAD and the electrode surface. This

problem is due to the size of the GOx molecule and the thick protein layers

covering the FAD redox center, preventing the direct electron transfer

(DET) [3,6,7]. For that reason, the introduction of a mediator that acts as

Page 200: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

185

an electron carrier between the FAD and the electrode surface has

emerged as a good solution that eases achieving an increased response in

this type of biosensors, which can work using lower working potential,

thus minimizing the interference problems [8]. Several compounds have

been successfully used for this purpose: ferrocene derivatives [9–11],

ferro/ferricyanide [12,13], organic salts [14], quinone compounds [15],

among others. Finally, in the case of the third generation biosensors,

efforts are focused on the elimination of the mediator and the development

of a biosensor that can work at low potentials, close to that of the redox

potential of the enzyme [1]. In this type of sensors a direct electron-

transfer between the glucose and the electrode through the FAD group is

proposed for improving their sensitivity [6,7,16,17]. Sensors of this

generation are still under development and novel protocols and materials

are currently being studied, where nanostructured carbon materials are

playing a main role [1,18].

Nanostructured carbon materials have been extensively studied in the last

years for sensing application [19–22]. They show outstanding properties

such as high electrical conductivity, high surface area, high mechanical

resistance and modifiable surface chemistry. When used as support of

enzymes and other biomolecules, their unique properties and structure can

enhance the electrochemical reactivity of these biomolecules. This is

because they promote the electron transfer reactions between the

biomolecule and the analyte, which results in an increase of the selective

recognition, and in an enhancement of the detection limit [21,23].

Depending on the biomolecule, the surface chemistry of the carbon

Page 201: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 5

186

materials can be tailored in order to improve the interaction between the

biomolecule and the carbon surface, thus providing a successful

immobilization [24]. For instance, oxygen and nitrogen functionalities can

be introduced in conventional and nanostructured carbon materials using

well-known chemical and electrochemical methods [25–30]. The surface

oxygen groups can interact with the amine groups of the protein chains

from the enzyme, allowing a strong interaction by the formation of amide

bridges. The inclusion of nitrogen has also been proposed for this use

[7,31].

This work presents the preparation of carbon-based electrochemical

biosensors and their performance as glucose sensor in different

electrochemical conditions. For this purpose, GOx has been immobilized

on two types of carbon nanotubes with different structure – hollow tube

and herringbone structure – that were previously functionalized using

different procedures. Thus, oxygen functionalization has been achieved

by using a chemical oxidation method, while the introduction of 4-

aminobenzoic acid (4-ABA) derived functionalities has been performed

by using electrochemical potentiodynamic techniques. It is demonstrated

that the electrochemical response and the sensor performance is greatly

affected by the original structure and the surface chemistry of the carbon

support. Attention has been paid to the relationship between the

immobilized amount of GOx and the performance of the biosensor. All

materials have been tested for glucose detection using different

approaches (namely H2O2 detection at positive potentials, mediator

addition at less positive potentials and at negative potentials), which

Page 202: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

187

allowed to categorize the performance of these materials as first, second

and third generation sensors.

2 Materials and methods

2.1 Reagents

Two different carbon materials, hollow tube multiwalled carbon

nanotubes (t-NT) and herringbone carbon nanotubes (h-NT) have been

used as substrates/transducers along this work. Hollow tube multiwalled

carbon nanotubes were purchased from Cheap Tubes Inc. (Brattleboro,

Vt, USA) with a 95% of purity, and were used without further purification.

Low purity commercial herringbone carbon nanotubes were thoroughly

washed in 3 M HCl, 6 M NaOH and water to remove impurities, achieving

a purity of 93%. 4-aminobenzoic acid (4-ABA) was purchased from

Merck and used as received. Perchloric acid (HClO4 60%) and nitric acid

(HNO3 65%) were purchased from VWR Chemicals. Potassium

dihydrogen phosphate (KH2PO4), dipotassium hydrogen phosphate

(K2HPO4), glucose oxidase from Aspergillus Niger (50KU), bovine serum

albumin (BSA), glutaraldehyde (GA 50%), and D-(+)-Glucose (>99.5%),

were purchased from Sigma-Aldrich. All the solutions were prepared

using ultrapure water (18 MOhms Millipore ® Milli-Q® water). The

gases N2, and O2, (5.0 grade, 99.999% purity, Linde) were used without

any further purification or treatment.

2.2 Physicochemical characterization

The samples were characterized by Transmission Electron Microscopy

(TEM) coupled to EDX with a JEOL JEM-2010 microscope operating at

200 kV with a spatial resolution of 0.24 nm. The characterization of the

Page 203: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 5

188

porosity of the materials was performed by physical adsorption of N2 at

−196 °C, using an automatic adsorption system (Autosorb-6,

Quantachrome). Prior to measurements, the samples were degassed at 250

°C for 4 h. Temperature programmed desorption (TPD) experiments were

carried out in a DSC-TGA equipment (TA Instruments, SDT Q600)

coupled to a mass spectrometer (Thermostar, Balzers, GSD 300 T3). The

thermobalance was purged for 2 h under a helium flow rate of 100 ml min-

1 and then heated up to 950 ºC (heating rate 20 ºC min-1).

2.3 Modification of CNTs

The surface chemistry of the carbon nanotubes was modified aiming to

improve the enzyme immobilization. Two functionalization processes

were done: i) chemical oxidation with HNO3 and ii) electrochemical

functionalization with 4-ABA.

2.3.1 Chemical oxidation with HNO3

The chemical functionalization of carbon nanotubes was performed using

a common chemical oxidation treatment [30]. The procedure consisted in

mixing the carbon nanotubes and HNO3 (65%) as oxidizing agent in a 100

ml beaker. The ratio of carbon mass (g) to the volume of acid (ml) was

1:40. The mixture was kept under magnetic stirring at room temperature

for 3 h and 6 h for the herringbone and the hollow tube nanotubes,

respectively. After the oxidation, several washes with distilled water were

done until the pH became neutral. The samples were ready for use after a

complete drying at 120ºC overnight, resulting in h-NTOX and t-NTOX

samples.

Page 204: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

189

2.3.2 Electrochemical functionalization of herringbone carbon

nanotubes with 4-ABA

A working electrode was prepared from a paste of the h-NT consisting of

a mixture of the carbon nanotubes and a binder (PTFE, 60 wt.%, Sigma

Aldrich) in a ratio 95:5 wt.%, respectively. A square-molded of the dried

paste containing 25 mg and 1.5 cm2 of this mixture was manually pressed

and spread onto each side of a graphite sheet collector to achieve an

electrode with a uniform and thin coating of carbon nanotubes.

The functionalization of the h-NT was performed in a three-electrode cell,

using the working electrode prepared as mentioned above, a platinum wire

as counter electrode and Ag/AgCl electrode as reference electrode.

Potentiodynamic functionalization was achieved by submitting the

sample to cyclic voltammetry in a 0.1 M HClO4 solution containing 1 mM

of 4-ABA, where the potential was scanned between 0.5 and 1.4 V (vs.

Ag/AgCl) at 10 mV s-1 during 10 cycles. This sample is denoted as h-

NT_4ABA.

2.4 Electrodes preparation and enzyme immobilization

The electrodes were prepared using dispersions of the carbon nanotubes

in water. The concentration was different for each material in order to

ensure the homogeneity of the dispersions, 0.5, 0.25, 0.5 and 0.125 mg

ml-1 for h-NT, h-NTOX, h-NT_4ABA and t-NTOX, respectively. In the case

of the t-NT, it was not possible to achieve a good dispersion even at very

low concentrations, and therefore they have been discarded for this study.

10 µg of each carbon material were drop casted from their suspensions (in

each suspension, the drop-casted volume was selected in order to attain

Page 205: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 5

190

such amount of material) on a polished glassy carbon surface (3 mm Ø)

and dried using an infrared heating lamp.

The modified glassy carbon electrode was loaded with different amounts

of GOx. The proper amount of GOx solution (10 mg GOx, 40 mg BSA,

and 1 ml of 0.1 M phosphate buffer solution - PBS) was casted onto the

electrode surface in order to reach 1:0.25, 1:0.5, 1:1, 1:5, 1:10 and 1:20

substrate:GOx mass ratios. The electrodes were dried at room

temperature. Then, a 1:1 mass ratio of GA solution (2.5%) to GOx was

dropped onto the surface and left for 30 min. The GA promotes the

crosslinking of the enzyme and the support, which enhanced the enzyme

stability [32]. Thereafter, the electrodes were drop casted with 2 µl of 5%

Nafion® solution and dried at room temperature. Finally, the electrodes

were immersed in a PBS solution under stirring for 20 mins in order to

remove all the unreacted GA and the GOx that was not successfully

immobilized. All enzyme-modified electrodes were stored at 4ºC in a

refrigerator when not in use.

2.5 Electrochemical measurements

The electrochemical characterization of the electrodes was performed in

a Biologic VSP 300 potentiostat using the same standard three-electrode

cell configuration already described in section 2.3.2. The electrochemical

behavior was studied by cyclic voltammetry (CV) in 0.1 M PBS (pH 7)

electrolyte at room temperature. In order to analyze the sensitivity towards

the presence of glucose, chronoamperometric experiments were

performed in the same system described above. Different potentials were

used: 0.45 V and 0.2 V. Successive additions of glucose aliquots (0.1 to

Page 206: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

191

20 mM) were injected into the PBS solution, and the changes in the

current intensity associated to the activity of GOx towards glucose

oxidation were registered and employed for the determination of the

sensitivity of the different sensors. Chronoamperometric experiments at -

0.4 V were performed using a rotating disk electrode (RDE, EDI101,

Radiometer analytical) as working electrode for improving the oxygen

mass transfer to the electrodes. The measurements were performed at a

rotating speed of 1000 rpm, and successive additions of glucose aliquots

from 0.002 to 13.5 mM were injected into the PBS solution.

3 Results and discussion

3.1 Physicochemical characterization

The morphology of the carbon nanotubes was characterized by

transmission electron microscopy (TEM). Fig. 5.1 shows the TEM images

of the pristine carbon nanotubes. From the TEM images it was possible to

determine the diameter of the nanotubes, being 20 – 30 nm and 6 – 10 nm

for the h-NT and t-NT, respectively. The t-NT have a hollow tube

structure, formed by several concentric tubes and the h-NT display a

herringbone structure.

Page 207: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 5

192

Fig. 5.1 TEM images of (a) h-NT and (b) t-NT

Fig. 5.2 shows the N2 adsorption isotherms for the h-NT (with and without

oxidation treatment) and t-NTOX. All materials present type II isotherms

with a hysteresis loop. The surface area in these nanostructured materials

is mainly defined by their external surface area, but they also have the

contribution of the porosity generated by the empty spaces between the

tubes.

The BET surface areas were calculated for these samples. In the case of

h-NT and h-NTOX, the values were 150 and 145 m2 g-1, respectively; for

the t-NTOX, the surface area was slightly higher, 255 m2 g-1. These results

are in agreement with the materials structure and the smaller diameter of

the t-NTOX. The herringbone structure of the h-NT leads to a lower

surface area compared to the t-NTOX and both of them have a low

contribution of micropores (0.06 cm3 g-1 for h-NT and h-NTOX and 0.1

cm3 g-1 for t-NTOX).

(a) (b)

Page 208: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

193

Fig. 5.2 N2 adsorption isotherms at -196 °C of h-NT, h-NTOX and t-NTOX

The formation of different surface oxygen groups was studied by TPD.

Fig. 5.3 shows the CO and CO2 evolution profiles for all samples. The

evolution of CO is related to the decomposition of neutral and basic

groups such as carbonyl, quinones, phenols and ethers. Likewise, CO2

evolution is mainly associated to the decomposition of carboxylic,

anhydrides and lactones groups [26,33,34]. In the case of 4-ABA modified

carbon nanotubes, previous studies has demonstrated that the obtained

functionalities decompose thermally at around 400-500 ºC producing the

release of CO2 due to the cleavage of the carboxylic acid found in the

starting 4-ABA [35].

0

100

200

300

400

500

0 0.2 0.4 0.6 0.8 1

V ads

/ cm

3g-1

P/P0

h-NTh-NTOXt-NTOX

Page 209: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 5

194

Fig. 5.3 (a) CO and (b) CO2 TPD profiles of h-NT, h-NTOX, h-NT_4ABA and t-NTOX

The CO2-TPD profiles in Fig. 5.3a confirm the presence of anhydrides

(desorption in the 400 - 600º C range) and lactones (600 - 800 ºC range)

in the original h-NT sample, and the generation of a small amount of

carboxylic acid moieties (200 - 400 ºC range) after the mild HNO3

treatment, which ensures the preservation of the h-NT structure and the

valuable electrical properties derived from it. In the case of the t-NTOX,

it seems that the formation of anhydrides is favored, a difference that

could be caused by the longer functionalization time employed for the

0

0.1

0.2

0.3

0.4

0 200 400 600 800 1000

CO

2/ µ

mol

g-1

s-1

T / ºC

h-NTh-NTOXh-NT_4ABAt-NTOX

(a)

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

CO

/ µm

ol g

-1s-1

T / ºC

h-NTh-NTOXh-NT_4ABAt-NTOX

(b)

Page 210: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

195

HNO3 treatment. The h-NT_4ABA sample also shows a desorption peak

at low temperatures, starting in 200°C, which is attributed to the

carboxylic groups generated during the electrooxidation. Additionally, a

desorption peak at slightly higher temperatures (450 - 500 °C) can be seen

in this sample. It has been associated with the decomposition of the

carboxylic acid from the ABA oligomers attached to the carbon surface

[35].

The CO desorption profiles are shown in Fig. 5.3b. The CO evolution seen

at temperatures higher than 600 ºC for both oxidized h-NTs and t-NTs

points out the existence of phenols (thermal decomposition at

temperatures between 650 - 750 ºC) and quinones/carbonyls (which

desorbs as CO at temperatures higher than 800ºC) groups in these

samples, with a larger amount of the latter in the case of t-NTOX. The CO

desorption profile shows a large peak at 600°C and 700°C for the bare h-

NTs that is probably related to the carbothermal reduction of the traces of

metal catalyst employed during the synthesis of h-NTs. The nitric acid

treatment seems to remove these metal traces, as depicted by the decrease

in CO evolution observed at that temperature. In the case of the h-

NT_4ABA sample, a slight increase of CO evolution is observed in all the

temperature range. This can be attributed to the presence of anhydride

groups which decompose as CO and CO2 at temperatures lower than 600

ºC, and also to the formation of CO-evolving functions, which is known

to occur during electrochemical oxidation of carbon materials [35,36].

The amounts of desorbed CO, CO2 and total oxygen are shown in Table

5.1. The higher amount of CO2 has been achieved for the 4-ABA

Page 211: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 5

196

functionalized samples, followed very close by t-NTOX. It has been

proposed that covalent functionalization can be achieved on oxidized

carbon nanotubes through the formation of amide linkages between the

amine functionalities of the aminoacids forming the protein chains of the

glucose oxidase and the carboxylic groups (that desorb as CO2, as has

been previously addressed) [3]. Therefore, a correlation between the

presence of certain oxygen groups and the enzyme immobilization in each

material would be expected.

Table 5.1 Amount of CO and CO2 from TPD experiments

Sample CO / µmol g-1 s-1 CO2 / µmol g1 s-1 Ototal / µmol g-1 s-1 h-NT 1110 170 1450 h-NTOX 600 270 1140 h-NT4ABA 1220 360 1940 t-NTOX 660 340 1340

3.2 Immobilization of GOx

3.2.1 Electrochemical characterization

The electrochemical behavior of GOx-loaded carbon nanotubes was

tested by cyclic voltammetry. Fig. 5.4 shows the electrochemical response

in PBS electrolyte of the enzyme containing (solid lines) and bare (dashed

lines) materials.

Page 212: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

197

Fig. 5.4 Cyclic voltammetry without (dashed line) and with GOx (solid line) of (a) h-NT, (b) h-NTOX, (c)h-NT_4ABAand (d) t-NTOX in 0.1 M PBS (pH 7)

The bare materials show distinct electrochemical behavior depending on

the structure and surface chemistry. The h-NT without any modification

show a rectangular shape, which is characteristic of carbon materials

where the electrochemical response is dictated by the electrical double

layer formation (purely capacitive behavior). In contrast, the other three

samples, which were functionalized, show different oxidation-reduction

processes. The oxidized carbon nanotubes (Fig. 5.4b and d) show a redox

peak at ca. 0 V (vs. Ag/AgCl), which is attributed to the

quinone/hydroquinone couple, being an expectable outcome of the

oxidation treatment, where CO-desorbing groups –regarded as

electrochemically active [37]– have been formed on the surface of the

nanotubes. It is also important to remark that the larger surface area of t-

-2

-1

0

1

2

-0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

j / A

g-1

E vs. Ag/AgCl / V

(a)

-2

-1

0

1

2

-0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

j / A

g-1

E vs. Ag/AgCl / V

(b)

-2

-1

0

1

2

-0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

j / A

g-1

E vs. Ag/AgCl / V

(c)

-2

-1

0

1

2

-0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

j / A

g-1

E vs. Ag/AgCl / V

(d)

Page 213: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 5

198

NTOX delivers a larger double layer formation than the h-NTOX

(gravimetric capacitance values of 21 vs. 10 F g-1 for t-NTOX and h-

NTOX, respectively). On the other hand, the 4-ABA functionalized

sample shows a broad redox process between -0.3 and -0.1 V,

corresponding to the oligomers and other anchored species over the

carbon surface that come from the 4-ABA molecule [38].

Fig. 5.4 (solid lines) shows the cyclic voltammetry of the electrodes with

GOx on their surface. In all samples, it is possible to see a new redox

process at around -0.45 V, which corresponds to the electroactive

component of the GOx, the Flavin Adenine Dinucleotide (FAD). The

cathodic peak is attributed to the reduction of FAD to FADH2 and the

anodic peak to the reoxidation of the group from FADH2 to FAD. The

presence of these peaks has been connected in the past with the direct

electron transfer (DET) between the enzyme and the surface of

nanostructured carbon materials [39]. It can be seen that DET has been

achieved in all cases, but the current intensity owing to FAD redox

processes varies depending on the substrate. The charge associated to the

oxidation process has been determined in each case, being 0.41, 0.29, 0.43

and 0.46 C g-1 for h-NT, h-NTOX, h-NT_4-ABA and t-NTOX. Thus, even

when the amount of immobilized GOx could be higher in the case of

functionalized carbon nanotubes, it can be seen that the presence of

carboxylic moieties does not necessarily bring an improvement on DET,

and can even decrease it. This feature could be related to the orientation

of the immobilized GOx. The depth of the redox center lying inside GOx

is around 1.3 nm, while the average size of GOx is around 7 nm, so the

Page 214: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

199

electron-transfer rate between the active site of glucose oxidase and the

surface of carbon nanotubes is expected to be highly dependent on the

orientation of the enzyme with respect to the surface [6,40].

3.2.2 Catalytic activity towards glucose oxidation

In order to make an initial screening of the catalytic activity towards

glucose oxidation, chronoamperometric experiments were carried out at

an oxidation potential of 0.45 V (vs. Ag/AgCl). The experiments were

performed with all the electrodes showed in Fig. 5.4 by successive

addition of glucose aliquots from 1 to 20 mM to an O2-saturated PBS

solution. The materials without GOx – the control electrodes (dashed lines

in Fig. 5.4) – did not show any response in the current signal when varying

the glucose concentration, even at high values of 20 mM (not shown for

brevity purposes), pointing out that the substrates are not able to oxidize

glucose by themselves. On the other hand, all samples containing GOx

showed a fast increase in the current with each addition of glucose (e.g h-

NTOX chronoamperometric experiment Fig. 5.5).

The reaction between glucose and GOx involves the reduction of the

redox center of the FAD with glucose to give the reduced form FADH2,

followed by its reoxidation by molecular oxygen to regenerate the

oxidized form of the redox center [1]:

𝐺𝑂𝑥(𝐹𝐴𝐷) + 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 → 𝐺𝑂𝑥(𝐹𝐴𝐷𝐻2) + 𝐺𝑙𝑢𝑐𝑜𝑙𝑎𝑐𝑡𝑜𝑛𝑎𝑡𝑒 Eq. 5.2

𝐺𝑂𝑥(𝐹𝐴𝐷𝐻2) + 𝑂2 → 𝐺𝑂𝑥(𝐹𝐴𝐷) + 𝐻2𝑂2 Eq. 5.3

Then, the biosensing process under the selected conditions (+0.45 V vs

Ag/AgCl) occurs by the electrochemical oxidation of hydrogen peroxide

Page 215: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 5

200

formed during the reoxidation of the FADH2 over the surface of the

carbon nanotubes. Similar experiments conducted directly over the

surface of the glassy carbon electrode (without the presence of carbon

nanotubes) showed no response upon addition of glucose on the

electrolyte. Both the amount of immobilized enzyme and the sensitivity

towards hydrogen peroxide oxidation are increased by the much larger

surface area and electrochemical activity of the surface of these substrates

when compared to that of the bare glassy carbon electrode, explaining the

central role played by nanostructured carbon materials in this application.

Fig. 5.5 Chronoamperometric response to successive additions of glucose into O2-

saturated in 0.1 M PBS (pH 7) at 0.45 V of h-NTOX modified electrode.

Equivalent chronoamperometric experiments for the GOx-carbon

nanotubes electrodes were recorded under the same conditions shown in

Fig. 5.5. The intensity current achieved after each glucose addition was

recorded and utilized for determining the sensitivity (slope of the linear

region in the calibration curve) to glucose detection for all the sensors

(Fig. 5.6). The results show that for all samples the glucose detection is

0

50

100

150

0 3000 6000 9000

I / n

A

t / s

1mM

3mM7mM

2mM

10mM15mM

0.5mM

Page 216: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

201

possible from the lowest tested value of concentration in these

experiments (1 mM). Furthermore, the calibration curve shows a linear

trend until a certain glucose concentration, which varies between 7 mM

and 15 mM depending on the chosen substrate. Beyond this concentration,

a saturation of signal is achieved and detection above that limit is not

possible at the given conditions. The sensitivity was found to be especially

poor in the case of the sensor constructed using h-NT_4ABA as substrate.

Fig. 5.6 Calibration curves obtained of h-NT, h-NTOX, h-NT_4ABA and t-NTOX.

Table 5.2 summarizes the parameters of the sensitivity and correlation

coefficient. The highest sensitivity values were found for the t-NTOX,

being 2, 4 and 8 times higher than the h-NTOX, h-NT and h-NT_4ABA,

respectively. It is important to note that, under the selected sensing

conditions, there is no a clear relationship between an improved DET and

the sensitivity of the sensor. This is expected when the sensing mechanism

is considered, since it involves oxidation of the hydrogen peroxide

generated by the enzyme, without the participation of DET. This oxidation

will take place at the surface of the carbon nanotubes, which is close to

0

50

100

150

200

0 5 10 15 20

I / n

A

C / mM

h-NT

h-NTOX

h-NT4ABA

t-NTOX

Page 217: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 5

202

the enzymes, allowing fast sensing of the generated H2O2. The improved

sensitivity found for h-NTOX and t-NTOX samples compared to the non-

oxidized ones can be attributed to the presence of carboxylic type groups,

which as previously mentioned can form amide bridges between the

amino groups of the protein chains of the enzyme, allowing a larger

amount of enzyme being immobilized on these samples compared to the

other substrates.

Table 5.2 Sensitivity and correlation coefficient from chronoamperometric

experiments at 0.45V

Sample Sensitivity

/ nA mM-1

Correlation coefficient

/ R

h-NT 6.90 0.996

h-NTOX 11.06 0.998

h-NT_4ABA 2.58 0.992

t-NTOX 24.1 0.999

3.3 Optimization of GOx loading during immobilization

The optimal carbon materials to GOx mass ratio during the

immobilization of the enzyme has been assessed for the oxidized samples

(h-NTOX and t-NTOX), since these samples showed the best sensing

activity in the first screening experiments. The effect of the mass ratios in

DET of the resulting electrodes has been checked. Fig. 5.7b shows the

cyclic voltammetry of t-NTOX samples. It can be clearly seen that the

current intensity owing to the redox processes of FAD increases with the

GOx loading from 1:0.25 to 1:10. On the other hand, the relation is not

Page 218: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

203

straightforward for the h-NTOX (Fig. 5.7a). This could be attributed to

the differences in the structure and surface chemistry of the materials,

which allow not only a successful immobilization, but can also affect the

orientation of the immobilized enzyme, turning the FAD group available.

Fig. 5.7 Cyclic voltammetry in 0.1 M PBS (pH 7) of (a) h-NTOX and (b) t-NTOX with different GOx loading.

Fig. 5.8 shows the calibration curves obtained from chronoamperometric

experiments conducted at 0.45V, while Table 5.3 summarizes the

sensitivity and linearity of the electrochemical response to the presence of

-2

-1

0

1

2

-0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

j / A

g-1

E vs. Ag/AgCl / V

1:0.51:11:51:101:20

(a)

-2

-1

0

1

2

-0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

j / A

g-1

E vs. Ag/AgCl / V

1:0.251:0.51:11:51:10

(b)

Page 219: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 5

204

glucose for all the electrodes showed in Fig. 5.7. The experiments were

performed using a lower concentration of glucose than previously used,

in order to assess the detection limit of these electrodes. Fig. 5.8a shows

that, for the h-NTOX sample, a change in the mass ratio did not change

significantly the sensitivity of the electrode (Table 5.3). The sensitivity of

the electrode with ratio 1:0.5 is lower and also the linear range is smaller

than for the rest of the studied ratios. Increasing the ratio to 1:1 delivers

some improvement on these parameters, but no further changes are seen

beyond this ratio. Again, the intensity of the FAD/FADH2 redox peak is

unrelated with the sensitivity of the electrodes. These results are consistent

with the hypothesis that adsorption of GOx on carbon nanotubes affects

the active conformation of the enzyme [6,40] Thus, GOx partially unfolds

upon adsorption on the curved surface of carbon nanotubes, facilitating

the electrical contact between the FAD and the surface [40].

Unfortunately, the enzyme denaturalization and inadequate orientation

renders the loss of GOx activity towards glucose oxidation [6,40]

Therefore, the peak intensity of the FAD/FADH2 redox pair can be

unrelated to the sensibility of the biosensors.

The t-NTOX samples (Fig. 5.8b) shows differences in the sensitivity. The

value of 1:0.5 increases in almost three times compared to the other

electrodes for the same linear range in all cases. A similar response is

attained for the rest of tested mass ratios. Interestingly, all the electrodes

were able to successfully detect the addition of 0.1 mM of glucose in the

electrolyte.

Page 220: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

205

Fig. 5.8 Calibration curves obtained for (a) h-NTOX and (b) t-NTOX electrodes, with different GOx loading

These results lead to the conclusion that for both substrates the amount of

immobilized and active GOx is maximized using mass ratios between

1:0.5 and 1:1. Any further increase would deliver either no more

additional immobilized GOx or even the blockage of previously

immobilized proteins (in the case of t-NTOX), thus rendering no

improvement in the electrocatalytic activity towards glucose detection of

the electrodes. Additionally, the results for t-NTOX show a better

sensitivity for all samples compared to h-NTOX. This can be attributed to

0

20

40

60

80

100

0 2 4 6 8

I / n

A

C / mM

1:0.51:11:101:20

(a)

0

100

200

300

400

500

0 2 4 6 8

I / n

A

C / mM

1:0.251:0.51:11:51:10

(b)

Page 221: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 5

206

the different surface area between both materials, which is larger for the

t-NTOX than for the h-NTOX, thus enabling a larger fixation of enzyme

and an enhanced activity towards hydrogen peroxide oxidation. Besides,

the higher amount of carboxylic functionalities in t-NTOX seems to allow

a larger attachment of GOx and maybe a better availability of the active

sites of the enzymes.

Table 5.3 Sensitivity, correlation coefficient and linear range from chronoamperometric experiments at 0.45V of h-NTOX and t-NTOX with different

loading of GOx

Sample Ratio Sensitivity

/ nA mM-1

Correlation coef.

/ R

Linear range

/ mM

h-NTOX

1:20 11.4 0.999 0.1 – 7

1:10 12.3 0.999 0.1 – 5

1:1 11.3 0.999 0.1– 5

1:0.5 9.60 0.996 0.1 – 3

t-NTOX

1:10 23.9 0.999 0.1 – 7

1:5 22.4 0.999 0.1 – 7

1:1 23.7 0.999 0.1 – 7

1:0.5 59.5 0.998 0.1 – 7

1:0.25 20.5 0.998 0.1 – 7

Until this point, all the experiments were performed at an oxidation

potential of 0.45 V. However, interference problems are known to happen

at this high potential [41,42]. Fig. 5.9 displays the response of an electrode

of h-NTOX when 0.1 mM of uric acid and 0.1 mM of ascorbic acid are

added after an initial addition of 1 mM of glucose in PBS. It is possible to

Page 222: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

207

see a high increase in the current after each addition; similar behavior

upon the same addition of analytes was found for the other substrates.

These results are in agreement with several studies about the detection of

uric and ascorbic acid using carbon materials as detectors, in which the

oxidation potentials of these compounds were found at potentials about

0.35 – 0.39 V and 0.20 – 0.25 V for uric and ascorbic acid, respectively

[41,42]. Therefore, under these conditions, the GOx electrodes are not

selective towards glucose detection.

Fig. 5.9 Chronoamperometric response to successive additions of uric acid (UA) and ascorbic acid (AA) into an initial concrentration of 1 mM of glucose at 0.45V of h-

NTOX modified electrode.

The use of lower potential during the chronoamperometric experiments to

avoid the interferences was tested using 0.15 and 0.25 V (results not

shown for brevity purposes). As expected there was no measureable

response for any glucose concentration. It suggests, as it was previously

mentioned, that the glucose detection at 0.45 V is being achieved by the

detection of the hydrogen peroxide formed during the reaction, instead of

by direct electron transfer between the enzyme and the glucose.

0

100

200

300

400

500

0 3000 6000 9000

I / n

A

t / s

1mM Glucose

0.1mM UA

0.1mM AA

Page 223: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 5

208

3.4 Use of mediators

The addition of redox mediators has been proposed in order to achieve a

better electron transfer between the enzyme and the electrode material,

and to deliver an improved performance not only in sensitivity but also in

selectivity while allowing the use of lower potentials [1,8]. The most

common mediators are based in ferrocene derivatives [9] and

ferro/ferrocyanide [12,43].

Fig. 5.10a shows the voltammetric response for the h-NTOX electrode in

presence of 0.5 mM of ferrocene in N2-saturated PBS with successive

glucose additions. Initially, the characteristic current peaks corresponding

to the redox processes of the iron species of ferrocene were found at

around 0.2 V. The glucose additions delivered a net oxidation current

above potentials of 0.05 V, while the redox processes corresponding to

the iron species were shifted away, indicative of a more irreversible redox

process. These findings indicate a successful mediation of the ferrocene

in the glucose detection. In the mediator detection mechanism, ferrocene

acts as electron carrier between the redox center of the enzyme and the

electrode surface. In the process, the reduced form of GOx cofactors are

oxidized by the action of the mediator. Then, the reduced form of the

mediator is re-oxidized at the electrode surface, which is reflected as an

increase in the current intensity, thus completing the redox cycle [1].

Further chronoamperometric experiments were carried out at 0.2 V (Fig.

5.10b), showing a better response for glucose addition than in absence of

the mediator at any tested glucose concentration. The sensitivity increases

Page 224: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

209

to 1.30 µA mM-1, achieving a linear range from 0.1 to 7 mM. Thus,

sensitivity is increased by two orders of magnitude.

Fig. 5.10 (a) Cyclic voltammetry and (b) chronoamperometric response to successive additions of glucose of h-NTOX modified electrode into N2-saturated 0.5 mM ferrocene in 0.1 M PBS (pH 7) at 0.2 V (background current was subtracted).

In order to study the effect of the presence of possible interferences using

the detection by mediator approach, chronoamperometric experiments

with addition of uric and ascorbic acid were performed. Fig. 5.11 shows

that there is no interference problems for successive addition of 0.1 mM

uric acid, since the current does not change and only a small perturbation

of the background current is seen. On the other hand, the addition of 0.1

mM of ascorbic acid shows an increase in the current, which demonstrates

that at a potential of 0.2 V some interferences, such as the oxidation of

ascorbic acid, are still possible. For that reason further efforts were made

to decrease the working potential.

-1.5

-0.5

0.5

1.5

2.5

-0.7 -0.4 -0.1 0.2 0.5

j / A

g-1

E vs. Ag/AgCl / V

0mM

10mM

(a)0

5

10

15

20

0 1500 3000 4500

I / µ

A

t / s

1mM3mM

7mM

10mM

15mM

20mM

0.5mM

0

0.5

1

0 600 1200

0.1mM

0.25mM

(b)

Page 225: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 5

210

Fig. 5.11 Chronoamperometric response to successive additions of uric acid (UA) and ascorbic acid (AA) into an initial concentration of 1 mM of glucose at 0.2 V of h-

NTOX modified electrode in 0.5 mM ferrocene in 0.1 M PBS (pH 7).

3.5 Mediator-less glucose determination using reduction

potentials

In order to avoid the interferences through a mediator-less solution,

chronoamperometric tests at potential of -0.4 V were performed in case of

the h-NTOX and t-NTOX electrodes using the optimum ratio found for

each material (1:1 and 1:0.5, respectively). The working potential was

selected near the oxidation potential of FAD group as previously detected

by CV measurements in Fig. 5.4. It has been proposed that under direct

electron transfer, the glucose oxidation reaction does not necessarily

involves the presence of O2 in order to show catalytic activity [7]. In this

proposal, the enzyme would oxidize the glucose into D-glucono-1,5-

lactone with the two protons and electrons being transferred from the

glucose to the FAD to form FADH2. Then FADH2 would be oxidized to

FAD by direct electron transfer to the electrode, and therefore the active

site of GOx would be regenerated to restart the reaction. The

0

0.5

1

1.5

2

0 1000 2000 3000

I / µ

A

t / s

1mM Glucose

0.1mM UA

0.1mM AA

Page 226: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

211

chronoamperometric experiment performed at -0.4 V in absence of O2,

did not show any response to the addition of glucose, indicating that, for

these substrates, even though the GOx could oxidize glucose through this

reaction scheme, the oxidation from FADH2 to FAD is difficult to attain

under these conditions. A similar conclusion was observed by Zhang et al

[44] for layer-by-layer GOx immobilization over single wall carbon

nanotubes, where the addition of concentrations higher than 0.1 M of

glucose under anaerobic conditions was needed in order to produce a

decrease in the current peaks associated to the redox processes of FAD

due to the formation of the glucose-FAD complex, proving that either the

active sites connected to the electrode are not participating in glucose

oxidation, or that the addition of oxygen is necessary in order to increase

the oxidation rate of reduced FAD, allowing the regeneration of the active

site. In a different work, Wooten et al. [6] reported similar behavior in

GOx/MWCNTs electrodes, where they showed the absence of glucose

detection in absence of O2 even when direct electron transfer is achieved.

They correlated the loss of the enzyme activity with a high degree of GOx

unfolding and unfavorable orientation of the enzyme upon contact with

CNT.

When the electrolyte is saturated with oxygen by constant bubbling of

oxygen, glucose detection was easily achieved (Fig. 5.12). In the presence

of oxygen, glucose is oxidized to D-glucono-1,5-lactone again by the

action of GOx and the O2 is reduced to H2O2 by the action of the enzyme,

which also leads to the oxidation of the FADH2 to FAD. A positive shift

of the current intensity value is expectable due to a lower oxygen

Page 227: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 5

212

concentration on the surface of the electrode induced by the enzyme

activity [6,17,44–46]. It has also been proposed that glucose could restrain

the direct electrocatalytic reduction of FAD by the CNT electrode, Eq.

5.4, by decreasing the concentration of FAD, and therefore explaining the

lower net current of the reduction process [47]:

𝐺𝑂𝑥(𝐹𝐴𝐷) + 2𝑒− + 2𝐻+ ⇌ 𝐺𝑂𝑥 (𝐹𝐴𝐷𝐻2) Eq. 5.4

Therefore, there can be a mixture of both sensing mechanisms, i.e. by

changes in the oxygen reduction reaction rate (based on Eq. 5.3) and by a

lower direct electron transfer (based on Eq. 5.4), under these working

conditions [7,48].

Fig. 5.12 shows the glucose detection in an O2 saturated atmosphere at -

0.4 V. A quick response after the addition of several glucose aliquots is

observed. The first added aliquot for both experiments was 2 µM,

however the detection was achieved at higher concentration of glucose.

The glucose biosensor prepared using h-NTOX shows a linear detection

range between 0.03 and 4 mM (correlation coefficient 0.999), with a

sensitivity of 1.07 µA mM-1 and a detection limit of 0.01 mM

(experimentally determined). The biosensor based in t-NTOX shows a

linear detection range between 0.3 and 7 mM (correlation coefficient

0.998), and a sensitivity of 0.804 µA mM-1 with a detection limit of 0.1

mM (experimentally determined). As it can be seen, the sensitivity of the

h-NTOX based biosensors is slightly higher than the one for t-NTOX, but

the linear range is reduced. This fact is important depending on the use

given to the biosensor, since the conventional blood glucose levels are

between 4.0 to 5.9 mM [1]. The t-NTOX biosensor covers this

Page 228: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

213

concentration range. On the other hand, h-NTOX based biosensor has a

linear range from lower concentration which can be applied for sweat

glucose levels that are lower than in blood (0.01 to 0.033 mM) [49].

The evaluation of the effect of the presence of different interferents was

also performed in these biosensors. The addition of uric acid (0.1 mM)

and (0.1 mM) exhibited no interference with the glucose determination in

both biosensors. Therefore, they are expected to be reliable for selective

glucose detection in biological fluids using these conditions.

Fig. 5.12 (a) and (c) Chronoamperometric response to successive additions of glucose into O2-saturated PBS at -0.4 V of h-NTOX and t-NTOX modified electrodes,

respectively. (b) and (d) Calibration curves obtained from experiments (a) and (c).

-10-9-8-7-6-5-4-3

0 1000 2000 3000 4000

I / µ

A

t / s

0.01mM

1mM3mM

0.1mM0.4mM

7mM(a)

-10

-8

-6

-4

-2

0 2 4 6 8 10 12 14

I / µ

A

C / mM

(b)

-39

-37

-35

-33

-31

-29

0 2000 4000 6000

I / µ

A

t / s

0.2mM

1mM3mM

0.3mM0.5mM

7mM(c)

-39

-37

-35

-33

-31

-29

0 2 4 6 8 10 12 14

I / µ

A

C / mM

(d)

Page 229: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 5

214

The differences between samples on the amount and the activity of

immobilized enzymes could be used for drawing some conclusions about

the different sensitivities achieved in each detection mechanism. In the

detection approach by oxidation of hydrogen peroxide at positive

potentials, t-NTOX is proposed to allow a higher enzyme immobilization,

which leads to a higher H2O2 formation (Fig. 5.8), therefore explaining

the higher sensitivity for this substrate under these conditions. On the

other hand, at reduction potential, the glucose detection is driven by

changes in the local concentration of oxygen with some indirect

contribution of the impeded direct electron transfer in presence of glucose

(Eq. 5.4), and under such conditions, h-NTOX is the best transducer

material. Nevertheless, t-NTOX is able to immobilize a larger amount of

enzyme, which explains that the linear range of the glucose detection

curve is longer than that of h-NTOX.

4 Conclusions

Electrochemical glucose biosensors based on glucose oxidase enzyme and

carbon nanotubes were developed using a simple procedure. Several

functionalization processes were tested on these materials to study the

effect of the surface chemistry upon the GOx immobilization and the

electrochemical activity towards glucose detection. The successful GOx

immobilization was verified by CVs, which demonstrated that direct

electron transfer between the enzyme and carbon nanotubes is possible,

as pointed out by the detection of the FAD electroactive group of the

enzyme in all the tested materials.

Page 230: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

215

Different approaches were used to improve the response of the biosensors

and avoid interference problems. Chronoamperometric experiments at

0.45 V in the presence of glucose were performed as an initial screening

test. The results show that the oxidized carbon nanotubes are the best

substrates for glucose biosensing. This can be attributed to the presence

of the carboxylic groups in the carbon surface, which can promote the

formation of amide bridges with the amino groups of the protein chains in

the enzyme, thus promoting the enzyme immobilization.

Functionalization with ABA moieties did not bring an improved

immobilization or sensitivity to the resulting GOx-NT_ABA electrode.

The t-NTOX shows a better sensitivity than the h-NTOX at 0.45 V. This

could be due to their larger surface area and higher amount of carboxylic

functionalities on this sample, which leads to improved GOx

immobilization. In this sense, the optimum amount of GOx loading during

the immobilization step for maximizing the electrode sensitivity towards

glucose detection was estimated to be 1:1 and 1:0.5 of carbon

material:GOx ratios for h-NTOX and t-NTOX, respectively.

The addition of a low amount of ferrocene as a redox mediator in the

electrolyte was found to enhance the sensitivity of the biosensor in two

magnitude orders and allows to work at lower potentials, which removes

the uric acid interference problems.

The use of a lower potential, closer to the potential of the FAD/FADH2

redox processes (-0.4 V) was also tested. Experiments in O2-saturated

solutions leaded to a good response to glucose detection with a high

sensitivity, while removing all interference problems. A similar

Page 231: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 5

216

experiment under anaerobic conditions pointed out that oxygen plays a

key role in the detection mechanism. h-NTOX based biosensor with a

sensitivity of 1.07 µA mM-1 and a detection limit of 0.01 mM (0.03 – 4

mM) was obtained, while the t-NTOX based biosensor showed a

sensitivity of 0.804 µA mM-1 and a detection limit of 0.1 mM (0.3 – 7

mM). Their use in practical applications will be determined by the glucose

concentration range.

5 References [1] J. Wang, Electrochemical Glucose Biosensors, Chem. Rev. 108 (2008) 814–

825.

[2] L.C. Clark, C. Lyons, Electrode systems for continuous moniroting in cardiovascular surgery, Ann. N. Y. Acad. Sci. 102 (1962) 29–45.

[3] Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose biosensors based on carbon nanotube nanoelectrode ensembles, Nano Lett. 4 (2004) 191–195.

[4] S. Ferri, K. Kojima, K. Sode, Review of glucose oxidases and glucose dehydrogenases: a bird’s eye view of glucose sensing enzymes., J. Diabetes Sci. Technol. 5 (2011) 1068–1076.

[5] D.S. Goodsell, Glucose Oxidase, RCSB Protein Data Bank. (2006).

[6] M. Wooten, S. Karra, M. Zhang, W. Gorski, On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system., Anal. Chem. 86 (2014) 752–757.

[7] X. Zhang, D. Liu, L. Li, T. You, Direct Electrochemistry of Glucose Oxidase on Novel Free-Standing Nitrogen-Doped Carbon Nanospheres@Carbon Nanofibers Composite Film, Sci. Rep. 5 (2015) 9885.

[8] A. Chaubey, B.D. Malhotra, Mediated biosensors, Biosens. Bioelectron. 17 (2002) 441–456.

[9] W. Schuhmann, Electron-transfer pathways in amperometric biosensors. Ferrocene-modified enzymes entrapped in conducting-polymer layers, Biosens. Bioelectron. 10 (1995) 181–193.

[10] A. Salimi, E. Sharifi, A. Noorbakhsh, S. Soltanian, Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: Direct electron transfer and electrocatalytic activity, Biosens. Bioelectron. 22 (2007) 3146–3153.

Page 232: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

217

[11] X. Liu, L. Shi, W. Niu, H. Li, G. Xu, Amperometric glucose biosensor based on single-walled carbon nanohorns, Biosens. Bioelectron. 23 (2008) 1887–1890.

[12] A.P. Baioni, M. Vidotti, P.A. Fiorito, S.I. Córdoba de Torresi, Copper hexacyanoferrate nanoparticles modified electrodes: A versatile tool for biosensors, J. Electroanal. Chem. 622 (2008) 219–224.

[13] M.S. Lin, W.C. Shih, Chromium hexacyanoferrate based glucose biosensor, Anal. Chim. Acta. 381 (1999) 183–189.

[14] S. Campuzano, R. Gálvez, M. Pedrero, F.J.M. de Villena, J.M. Pingarrón, Preparation, characterization and application of alkanethiol self-assembled monolayers modified with tetrathiafulvalene and glucose oxidase at a gold disk electrode, J. Electroanal. Chem. 526 (2002) 92–100.

[15] E.J. D’Costa, I.J. Higgins, A.P.F. Turner, Quinoprotein glucose dehydrogenase and its application in an amperometric glucose sensor, Biosensors. 2 (1986) 71–87.

[16] C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, L. Niu, Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene., Anal. Chem. 81 (2009) 2378–2382.

[17] V. Mani, B. Devadas, S.-M. Chen, Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor, Biosens. Bioelectron. 41 (2013) 309–315.

[18] W. Zhang, G. Li, Third-Generation Biosensors Based on the Direct Electron Transfer of Proteins, Anal. Sci. 20 (2004) 603–609.

[19] C.B. Jacobs, M.J. Peairs, B.J. Venton, Review: Carbon nanotube based electrochemical sensors for biomolecules, Anal. Chim. Acta. 662 (2010) 105–127.

[20] J. Wang, Carbon-Nanotube Based Electrochemical Biosensors: A Review, Electroanalysis. 17 (2005) 7–14.

[21] M. Feng, H. Han, J. Zhang, H. Tachikawa, Electrochemical sensors based on carbon nanotubes, in: Electrochem. Sensors, Biosens. Their Biomed. Appl., Elsevier, 2008: pp. 459–501.

[22] J. Wang, Nanomaterial-based electrochemical biosensors, Analyst. 130 (2005) 421–426.

[23] X. Xu, S. Jiang, Z. Hu, S. Liu, Nitrogen-Doped Carbon Nanotubes: High Electrocatalytic Activity toward the Oxidation of Hydrogen Peroxide and Its Application for Biosensing, ACS Nano. 4 (2010) 4292–4298.

[24] Y. Lin, S. Taylor, H. Li, K.A.S. Fernando, L. Qu, W. Wang, L. Gu, B. Zhou,

Page 233: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 5

218

Y.-P. Sun, Advances toward bioapplications of carbon nanotubes, J. Mater. Chem. 14 (2004) 527–541.

[25] H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windle, R.H. Friend, Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes, J. Phys. Chem. B. 103 (1999) 8116–8121.

[26] J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Orfao, Modification of the surface chemistry of activated carbons, Carbon. 37 (1999) 1379–1389.

[27] Y. Otake, R.G. Jenkins, Characterization of oxygen-containing surface complexes created on a microporous carbon by air and nitric acid treatment, Carbon. 31 (1993) 109–121.

[28] T.J. Bandosz, C.O. Ania, Surface chemistry of activated carbons and its characterization, in: Interface Sci. Technol., Elsevier, 2006: pp. 159–229.

[29] R. Berenguer, J.P. Marco-Lozar, C. Quijada, D. Cazorla-Amorós, E. Morallón, A comparison between oxidation of activated carbon by electrochemical and chemical treatments, Carbon. 50 (2012) 1123–1134.

[30] M.J. Bleda-Martínez, D. Lozano-Castelló, E. Morallón, D. Cazorla-Amorós, A. Linares-Solano, Chemical and electrochemical characterization of porous carbon materials, Carbon. 44 (2006) 2642–2651.

[31] Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing., ACS Nano. 4 (2010) 1790–1798.

[32] F. López-Gallego, L. Betancor, C. Mateo, A. Hidalgo, N. Alonso-Morales, G. Dellamora-Ortiz, J.M. Guisán, R. Fernández-Lafuente, Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports, J. Biotechnol. 119 (2005) 70–75.

[33] A. Linares-Solano, C. Salinas-Martinez de Lecea, D. Cazorla-Amoros, J.P. Joly, H. Charcosset, Nature and structure of calcium dispersed on carbon, Energy & Fuels. 4 (1990) 467–474.

[34] H.-P. Boehm, Surface oxides on carbon and their analysis: a critical assessment, Carbon. 40 (2002) 145–149.

[35] C. González-Gaitán, R. Ruiz-Rosas, H. Nishihara, T. Kyotani, E. Morallón, D. Cazorla-Amorós, Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods, Carbon. 99 (2016) 157–166.

[36] R. Berenguer, J.P. Marco-Lozar, C. Quijada, D. Cazorla-Amorós, E. Morallón, Effect of electrochemical treatments on the surface chemistry of activated carbon, Carbon. 47 (2009) 1018–1027.

[37] M.J. Bleda-Martínez, J.A. Maciá-Agulló, D. Lozano-Castelló, E. Morallón, D.

Page 234: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Electrochemical glucose biosensors based on nanostructured carbon materials

219

Cazorla-Amorós, A. Linares-Solano, Role of surface chemistry on electric double layer capacitance of carbon materials, Carbon. 43 (2005) 2677–2684.

[38] C. González-Gaitán, R. Ruiz-Rosas, E. Morallón, D. Cazorla-Amorós, Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the oxygen reduction reaction, Int. J. Hydrogen Energy. 40 (2015) 11242–11253.

[39] A. Guiseppi-Elie, C. Lei, R.H. Baughman, Direct electron transfer of glucose oxidase on carbon nanotubes, Nanotechnology. 13 (2002) 559–564.

[40] A. Seehuber, R. Dahint, Conformation and Activity of Glucose Oxidase on Homogeneously Coated and Nanostructured Surfaces, J. Phys. Chem. B. 117 (2013) 6980–6989.

[41] M.D. Rubianes, G.A. Rivas, Carbon nanotubes paste electrode, Electrochem. Commun. 5 (2003) 689–694.

[42] M. Zhou, Y. Zhai, S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide., Anal. Chem. 81 (2009) 5603–5613.

[43] S.A. Wring, J.P. Hart, Chemically modified, carbon-based electrodes and their application as electrochemical sensors for the analysis of biologically important compounds. A review, Analyst. 117 (1992) 1215–1229.

[44] J. Zhang, M. Feng, H. Tachikawa, Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes, Biosens. Bioelectron. 22 (2007) 3036–3041.

[45] D. Ivnitski, K. Artyushkova, R.A. Rincón, P. Atanassov, H.R. Luckarift, G.R. Johnson, Entrapment of Enzymes and Carbon Nanotubes in Biologically Synthesized Silica: Glucose Oxidase-Catalyzed Direct Electron Transfer, Small. 4 (2008) 357–364.

[46] X. Kang, J. Wang, H. Wu, I.A. Aksay, J. Liu, Y. Lin, Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing., Biosens. Bioelectron. 25 (2009) 901–905.

[47] S. Deng, G. Jian, J. Lei, Z. Hu, H. Ju, A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes., Biosens. Bioelectron. 25 (2009) 373–377.

[48] D. Zheng, S. Vashist, M. Dykas, S. Saha, K. Al-Rubeaan, E. Lam, J. Luong, F.-S. Sheu, Graphene versus Multi-Walled Carbon Nanotubes for Electrochemical Glucose Biosensing, Materials (Basel). 6 (2013) 1011–1127.

[49] Y. Watanabe, H. Miyagi, Study on Dynamics of Glucose Content in Sweat by High Performance Liquid Chromatography, Japanese J. Clin. Chem. 15 (1986) 75–79.

Page 235: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán
Page 236: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

CHAPTER 6

Nitrogen – metal containing

carbon nanotubes catalysts for

oxygen reduction reaction

Page 237: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán
Page 238: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

223

CHAPTER 6. NITROGEN–METAL CONTAINING CARBON

NANOTUBES CATALYSTS FOR OXYGEN REDUCTION REACTION

1 Introduction

Fuel cells are energy production devices that constitute a promising

technology for promoting clean energy generation. These devices have

several advantages when compared to other conventional technologies:

high energy density, zero emission of pollutants, high efficiency, and, in

some of their configurations, as the proton exchange membrane fuel cells

(PEMFCs), low working temperature. This last mentioned feature also

leads to an increase in the cathode overpotential for the oxygen reduction

reaction (ORR), which drives the necessity of using highly active catalysts

[1–3]. The most commonly used electro-catalysts are based on platinum

and noble-metals, which have shown to the date the highest activities [4].

However, their high cost, limited availability, high metal loading

requirement and low resistance to catalyst poisoning in case of cell cross-

over greatly hamper their performance, increase the cell prices and are

responsible for the low penetration of this technology [3,5]. Therefore, it

is necessary to develop new catalysts, which must have a similar activity

than noble-metal ones, while showing lower cost and higher chemical and

electrochemical stability.

Nanostructured carbon materials have high surface area that is readily

accessible to the reagents, along with high electrical conductivity,

corrosion resistance and a lower cost than current state-of-the-art catalysts

[6,7]. Nevertheless, their surface has a low catalytic activity towards

Page 239: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

224

ORR, showing slow kinetics and low water selectivity. In this sense,

nitrogen doped carbon materials loaded with metals (M-N/C) have been

proposed as candidates to replace the noble-metal ORR catalysts and have

become a major focus of the PEMFC research [8–19]. This interest arises

from their outstanding improvement in the ORR performance regarding

activity, selectivity to water and resistance against poisoning at the

working conditions. M-N/C catalysts can be prepared following different

synthesis routes, which includes synthesis of non-noble metal

nanoparticles (usually from transition metals) and subsequently

supporting them on N-doped carbon materials [5,13,14,20]; the pyrolysis

of metal/nitrogen/carbon compounds [10,11,18,19,21,22] and the use of

M-N4 complexes supported on carbon materials [23–25]. In the first route,

the strong interaction between the metallic particles and the support

enhances the catalyst efficiency, reduces the loss of active sites and

controls the charge transfer. The catalyst performance relies on the

nanoparticles size, their distribution and dispersion on the support [15].

For the second route, the synthesis usually consists in the heat treatment

under inert atmosphere in the presence of ammonia of a carbon material

impregnated with a metal precursor [22]. Modifications of this protocol

include the use of a solid or liquid nitrogen source [26], or employing M-

N2 or M-N4 complexes as the nitrogen and metal source [10,11,21,27].

The active sites obtained through these synthesis have been identified as

1 metal atom coordinated by either 2 or 4 N atoms, with the former being

regarded as the most active one [28,29]. In fact, only small metal loadings

(2 wt% and even lower) are required to achieve ORR activity comparable

to that of Pt-based catalysts. The enhancement in activity depends on the

Page 240: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

225

formation of these sites, which seems to be favored by the pyrolysis

temperature, while the selection of the carbon support, the metal precursor

and N-containing ligands is usually done trying to reduce the preparation

costs [19].

In the last synthesis route, transition metal complexes with N4

macrocycles are supported on carbon materials. Since the macrocycles

include π-systems, these complexes are capable of undergoing fast redox

processes, with minimal reorganization energies and can act as mediator

in electron transfer processes which enhances the catalytic activity in

several electrochemical reactions [16]. In particular, these compounds

have a noticeable activity as ORR catalyst, being first reported in 1964 by

Jasinski, who found that a complex formed by a N4-chelate with cobalt

was electrochemically active for this reaction [12]. Since then, a large

number of macrocyclic transition-metal compounds have been

synthetized and successfully tested as ORR catalysts [30]. In this sense,

Phthalocyanines (Pc) are one of the most utilized compounds in the

synthesis of M-N/C catalysts, being directly used as catalyst, but also as

the M-N source in the M-N/C preparation routes based on pyrolysis of

compounds adsorbed on carbon materials. Pc are macrocyclic compounds

combining eight N atoms in its structure that are able to coordinate

different metal elements (MPc). MPc such as Fe and Co macrocycles have

shown a suitable activity and remarkable selectivity compared to the Pt-

based catalysts [16,17]. In addition, they show a high resistance to

poisoning with alcohols which is a big concern in noble metal catalysts

[18,19].

Page 241: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

226

The major drawback of these materials is the low stability at the working

conditions in the fuel cell [31]. This fact has been studied and there are

several hypothesis about the deactivation of the catalyst: it can be related

to the decomposition of the compound via hydrolysis in the electrolyte

and loss of the conjugation in the macrocycle; or an attack of the hydrogen

peroxide formed during the ORR, which causes the oxidation of the

nitrogen atoms, losing the coordination with the metal [18,19,31]. It has

been found that, depending on the carbon support, the metal content and

the heat treatment, the electrocatalyst stability can be improved. However,

the mechanism is not fully understood yet [18] and the stability is still

poor for practical use.

In the present work, the use of cobalt (CoPc) and iron (FePc)

phthalocyanines supported on pristine and nitrogen-functionalized

multiwall carbon nanotubes as electrocatalysts towards ORR is studied.

The obtained electrocatalysts have been used as prepared and after several

heat treatments at different temperatures and atmospheres (inert and

slightly oxidant ones). The chemical and electrochemical characterization

is provided for the resulting catalysts, and their electrocatalytic

performance towards ORR in alkaline media has been assessed. Special

emphasis has been made on analyzing their stability.

2 Materials and methods

2.1 Reagents

Multiwall carbon nanotubes (CNTs) were purchased from Cheap Tubes

Inc. (Brattleboro, Vt, USA) with a 95% of purity and they were used

without further purification. 4-aminobenzoic acid (4-ABA), N,N-

Page 242: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

227

dimethylformamide (DMF), potassium hydroxide (KOH), cobalt

phthalocyanine (CoPc, 97% purity), iron phthalocyanine (FePc. 90%

purity) and platinum on graphitized carbon (20% loading) were purchased

from Sigma-Aldrich. Perchloric acid (70%) and methanol (99.8%) were

purchased from VWR-Chemicals Prolabo. All the solutions were

prepared using ultrapure water (18 MOhms Millipore ® Milli-Q® water).

The gases N2 (99.999%) O2 (99.995%), and H2 (99.999%) were provided

by Air Liquide and were used without any further purification or

treatment.

2.2 Electrochemical modification of CNTs with 4-ABA

The working electrode was prepared with a paste of CNTs consisting of

CNTs and a binder (PTFE, 60 wt%) in a proportion 95:5 wt%,

respectively. A square-molded of the dried paste containing 25 mg and

1.5 cm2 was manually pressed and spread onto each side of a graphite

sheet collector to achieve an electrode with a uniform and thin CNTs

coating. The electrochemical modification of this electrode was

performed in a three-electrode cell following the protocol detailed

elsewhere [32], with a platinum wire being used as the counter electrode

and Ag/AgCl electrode as the reference electrode. Potentiodynamic

functionalization was achieved submitting the sample to cyclic

voltammetry in a 0.1 M HClO4 solution containing 1 mM of the 4-ABA,

where the potential was scanned between 0.5 and 1.4 V (vs. Ag/AgCl) at

10 mV s-1 during 10 cycles. The 4-ABA functionalized CNTs were

recovered and heat treated in a tubular furnace at 800 ºC under slightly

Page 243: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

228

oxidizing atmosphere (3125 ppm O2 in N2) for 30 mins, using a heating

rate of 20 ºC min-1, obtaining the NT_4ABA_800O sample.

2.3 Synthesis of N-metal modified CNTs

N-metal modified CNTs with a metal loading of 2.3 wt% were prepared

using the incipient wetness impregnation method. The pristine and the

functionalized CNTs (NT_4ABA_800O) were used as supports. First, 50

mg of the CNTs (pristine and modified ones) were dried in a vacuum oven

at 80 °C. Next, 15.5 mg of FePc and 13.7 mg of CoPc were dissolved in

1.8 ml of DMF. These solutions were added to 50 mg of CNTs previously

outgassed at 80 ºC under vacuum. The mixture was dried in an oven at

200 °C for 12 h, resulting in NT_FePc and NT_CoPc samples.

These samples were subsequently heat treated into a tubular furnace under

nitrogen atmosphere at 400 and 800 ºC for 30 min using a heating rate of

20 ºC min-1 in order to check the effect of thermal treatments on their

activity and stability. These samples are denoted according to the

temperature of treatment as NT_MPc_T, where M is the metal and T is

the heat treated temperature, respectively. NT_FePc samples were also

treated under a slightly oxidizing mixture of gases (3125 ppm O2 in N2) at

500 ºC for 30 minutes, resulting in NT_FePc_500O sample.

Additionally, a catalyst based in FePc was prepared by a previous heat

treatment of the FePc at 400ºC, which was then supported in the CNTs.

For this purpose, the FePc was heat treated into a tubular furnace under

nitrogen atmosphere at 400ºC for 30 min using a heating rate of 20 ºC

min-1. Next, 7.0 mg of the pyrolyzed FePc were dissolved in 1 ml of DMF

Page 244: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

229

and added to a 30 mg of a previous outgassed CNTs. The mixture was

dried in an oven at 200°C for 12 h, resulting in FePc400_NT sample.

In order to study the role of iron content in the catalytic activity in the

FePc sample series, 20 mg of the catalysts were washed in 150 ml HCl

(37%) under continuous stirring. After the first 2 h, the acid was replaced

by a fresh one and left overnight. Then the samples were rinsed with water

until neutral pH. Finally, the samples were dried in an oven at 120 °C

overnight.

2.4 Chemical characterization

The surface area (SBET) of the CNTs was calculated from the N2

adsorption isotherm at −196 °C, which was determined in an automatic

adsorption system (Autosorb-6, Quantachrome). Prior to the

measurements, the samples were degassed at 250 °C for 4 h.

Thermogravimetric analyses were carried out in a thermobalance (SDT

2960 instrument, TA). After a purging time of 1 hour, the samples were

heating up to 800 ºC at 20 ºC min-1 in nitrogen atmosphere.

The surface composition and oxidation states of the species in the

materials were studied by using XPS in a VG-Microtech Mutilab 3000

spectrometer and Al Kα radiation (1253.6 eV). The deconvolution of the

XPS N1s and metal spectra were done by least squares fitting using

Gaussian-Lorentzian curves, while a Shirley line was used for the

background determination. The quantification of the metal content of the

prepared catalysts based on iron and cobalt were studied by ICP – OES.

A Perkin Elmer (Optima 4300DV) spectrometer was used for the analysis.

The samples were treated in acid aqueous solutions (HNO3 and HCl in a

Page 245: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

230

molar ratio of 1:3) in an ultrasound bath for 15 mins in order to extract the

metals loaded in the catalysts. After this treatment, the solutions were

diluted to have the appropriate concentration for the analysis.

2.5 Electrochemical measurements

The electrochemical characterization of the electrodes was performed in

an Autolab PGSTAT302 (Metrohm, Netherlands) potentiostat using a

standard three-electrode cell configuration. A rotating ring-disk electrode

(RRDE, Pine Research Instruments, USA) equipped with a glassy carbon

disk (5.61 mm diameter) and an attached platinum ring was used as the

working electrode, a platinum wire being used as the counter electrode

and a reversible hydrogen electrode (RHE) as the reference electrode. The

glassy carbon disk was modified with the samples using 76 µl of a 0.25

mg ml-1 dispersion (50 % isopropanol, 0.02 % Nafion®), obtaining a

catalyst charge of 0.08 mg cm-2.

The electrochemical behavior was studied by cyclic voltammetry (CV)

and linear sweep voltammetry (LSV) in 0.1 M KOH between 0.0 and 1.0

V (vs. RHE) The former was done in a N2-saturated atmosphere at 50 mV

s-1, while the later measurements were performed in an O2-saturated

atmosphere at a rotation rate of 1600 rpm and at a scan rate of 10 mV s-1,

while the potential of the ring was held constant at 1.5 V (vs. RHE). The

onset potential was measured at a current density of 0.1 mA cm-2 for all

samples. The electron transfer number of the reaction was calculated from

the hydrogen peroxide oxidation in the Pt ring:

𝑛 = 4 𝐼𝑑

𝐼𝑑+ 𝐼𝑟 𝑁⁄ Eq. 6.1

Page 246: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

231

Where Ir and Id stand for the intensities measured at the ring and the disk,

respectively, and N is the collection efficiency of the ring, which was

experimentally determined to be 0.37.

Chronoamperometric experiments were performed at 0.65 V (vs. RHE) in

order to study the stability of the electrodes. The tests lasted for 2 hours,

and the currents in the disk and ring were tracked during the duration of

the analyses. The crossover effect of methanol in the catalyst was also

studied by the addition of methanol to achieve a concentration of 2.5 M

during the measurements.

3 Results and discussion

3.1 Electrochemical characterization

Fig. 6.1 shows the cyclic voltammetry in 0.1 M KOH for all samples. The

CV of CNTs shows a typical rectangular shape, characteristic of the

double layer formation on the surface of the carbon nanotubes. In contrast,

the MPc supported on CNTs show different redox processes depending

on the corresponding metal. In the case of iron samples (Fig. 6.1b), two

redox processes are observed at 0.25 and 0.80 V, corresponding to the

Fe(I)/Fe(II) and Fe(II)/Fe(III) couples from coordinated metal in the

phthalocyanine complex, respectively [33]. On the other hand, cobalt

samples show a unique redox process at 0.37 V (Fig. 6.1a), which is

related to the Co(I)/Co(II) redox process of the adsorbed complex [34].

Page 247: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

232

Fig. 6.1 Cyclic voltammetry of (a) Co samples and (b) Fe samples in N2-saturated 0.1 M KOH at 50 mV s-1.

The amounts of electroactive cobalt and iron have been estimated from

the electrical charge measured between 0.25 and 0.55 V and between 0.65

and 0.95 V, respectively, after discounting the double layer contribution.

Values of 4.45 and 0.98 C g-1, which were translated into 0.29 and 0.06

wt.% using the Faraday constant, have been found for NT_CoPc and

NT_FePc. From the ICP determinations, bulk amounts of 2.4 and 2.1

wt.% have been measured for CoPc and FePc containing nanotubes,

respectively, pointing out that most of the loaded metal is not

electrochemically active in these samples.

Different behaviors have been found after the heat treatments of FePc and

CoPc-based catalysts. After the treatment at 400 °C both samples still

show the redox processes associated to the metal center of the N4-chelate,

though slight changes in the potentials can be seen. In the case of

NT_CoPc_400, the redox peak of cobalt is broader and less defined after

the heat treatment. However, the current intensities of the redox peaks

associated to iron are much higher, pointing out a remarkable

enhancement of the interaction between the FePc and the CNTs, leading

-80-60-40-20

0204060

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

C /

F g-1

E vs. RHE / V

CNTsNT_CoPcNT_CoPc_400NT_CoPc_800

(a)

-80-60-40-20

0204060

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

C /

F g-1

E vs. RHE / V

CNTsNT_FePcNT_FePc_400NT_FePc_800

(b)

Page 248: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

233

to a better electron transfer. Thus, the amount of iron electrochemically

active in this sample increases to 0.26 wt%. On the contrary, the heat

treatment at 800 °C leads to a major decrease of the redox processes of

these samples, and the CVs are similar to that of bare CNTs. This result is

probably related to the decomposition of the macrocyclic complex, which

was confirmed in the TG measurements shown in section 3.3.

3.2 Electroactivity towards ORR

The electroactivity of the catalysts towards ORR was studied in O2-

saturated 0.1 M KOH electrolyte. The analysis was performed by LSV

using a RRDE at 1600 rpm. The current registered by the ring allowed to

track the amount of hydrogen peroxide (i.e. the product formed in the 2-

electron ORR pathway), generated during the measurement. Fig. 6.2

shows the LSV curves at 1600 rpm for all Fe and Co samples.

Measurements corresponding to bare CNTs and a commercial sample of

20% Pt-C are included for comparison purposes. Table 6.1 compiles the

most relevant ORR kinetic parameters derived from the RRDE

experiments.

When compared to bare CNTs, all the tested electrocatalysts displayed an

enhanced activity towards ORR. All of them show higher onset potential

values and limiting specific current, confirming that MPc has an important

role in the ORR activity. It can be also seen that CoPc-loaded catalysts

show a lower performance than FePc-loaded ones, which is in consonance

with experimental findings already reported in literature [5,35], where the

higher onset potential of FePc over CoPc catalysts has been addressed and

connected to their different redox potentials [16]. As for the effect of the

Page 249: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

234

heat treatment, it seems that there exists a relationship between an

improved ORR catalytic activity and the current intensity of the redox

peaks (which was affected by the heat treatments) for the metal center

registered in O2-free CV measurements (Fig. 6.1). In this sense, recent

studies have related the ORR activity and onset potential of Fe-N4/C sites

to the Fe(II) oxidation state [36].

Fig. 6.2 Linear sweep voltammetry (a,b) and number of electrons (c,d) calculated from RRDE experiments of (a, c) Co samples and (b, d) Fe samples in an O2-saturated 0.1 M KOH at 10 mV s-1 and 1600 rpm. Bare CNTs and 20%Pt/C catalyst are also included

for comparison purposes.

-6

-5

-4

-3

-2

-1

0

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

j / m

A c

m-2

E vs. RHE / V

CNTsNT_CoPcNT_CoPc_400NT_CoPc_800Pt-Vulcan

(a)-6

-5

-4

-3

-2

-1

0

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

j / m

A c

m-2

E vs. RHE / V

CNTsNT_FePcNT_FePc_400NT_FePc_800Pt-Vulcan

(b)

1

1.5

2

2.5

3

3.5

4

-0.1 0.1 0.3 0.5 0.7

n

E vs. RHE / V

CNTsNT_CoPcNT_CoPc_400NT_CoPc_800Pt-Vulcan (c)

1

1.5

2

2.5

3

3.5

4

-0.1 0.1 0.3 0.5 0.7

n

E vs. RHE / V

CNTsNT_FePcNT_FePc_400NT_FePc_800Pt-Vulcan (d)

Page 250: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

235

Table 6.1 Electrochemical parameters calculated from the RRDE experiments of the different electrocatalysts in O2-saturated 0.1 M KOH at 10 mV s-1 and 1600 rpm.

Sample Eonset vs. RHE / V Electron transfer number at 0.4 V / n

NTs 0.74 2.23

NT_CoPc 0.83 2.46

NT_CoPc_400 0.83 2.42

NT_CoPc_800 0.85 2.34

NT_FePc 0.92 3.80

NT_ FePc_400 0.94 3.86

NT_FePc_800 0.88 2.81

20% Pt-C 0.97 3.92

The NT_CoPc and NT_CoPc_400 samples display similar behaviors and

show two wave processes, which could be related to a combined

mechanism of ORR. First, a 2-electron reduction reaction would generate

H2O2 with a subsequent 2-electron reduction to form H2O (OH- in this

case), which occurs at different potentials. This was confirmed following

the registered current in the ring. At 0.7 V the electron transfer number

was 2.13 and 2.31, and at 0.0 V the electron transfer number was 3.04 and

2.83, for NT_CoPc and NT_CoPc_400, respectively. The preferential

occurrence of a 2 e- instead of a 4 e- ORR mechanism in CoPc is in

agreement with DFT simulations of the reaction mechanisms in FePc and

CoPc [37,38]. These studies demonstrated that the O-O bond of an

adsorbed O2 molecule could be weaken (and therefore the 4 e- ORR

pathway would be favored) depending on the adsorption configuration,

with side-on configurations being more effective than end-on

Page 251: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

236

configurations for a 4-electrons pathway [37,39]. DFT calculations

demonstrated that end-on configurations seems to be energetically stable

for O2 on CoPc, while side-on is preferred on FePc. Therefore, a 2 + 2 e-

reaction pathway at low potentials is proposed for ORR in these CoPc-

based catalysts, in which the occurrence of hydrogen peroxide

disproportionation is probably necessary to achieve the second pair of

electrons [40]. Conversely, the NT_CoPc_800 sample does not display a

two wave process and the electron transfer number barely changes during

all potential range. The electron number is lower in this case, which is in

agreement with literature claims about prejudicial effect of thermal

treatment of supported phthalocyanines at temperatures above 600 ºC [5].

Previous studies about the effect of the heat treatment of CoPc shows that

at 800 ºC, peroxide formation is maximized, a feature that could be related

to the destruction of the Co-N4 complex and the formation of Co-N2 active

sites [41]. The increase on the onset potential could be related to the

incorporation of nitrogen groups in the CNTs structure, that could

improve electrical conductivity and serve as ORR catalysts [32,42]. This

is the case of pyridinic functions, being known to be active sites for ORR

[43–45], although not necessarily selective towards water formation [46].

The FePc-based samples show an excellent activity towards ORR,

reaching in some cases values very close to the Pt-based catalyst. These

results are in agreement with other studies that showed the remarkable

activity of FePc complex supported on carbon nanotubes [11,35],

graphene or Vulcan [23,39]. It is interesting to note that the limiting

current achieved in this work is higher than that registered in previously

Page 252: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

237

reported works where the Pc loading was higher (around 1:1 Pc/CNT ratio

or even higher) [11,35,47]. This is probably related to the poor electrical

conductivity of phthalocyanines, which is considered to be one of their

drawbacks as electrocatalysts, making necessary to disperse them on

highly conductive surfaces in order to improve their performance [38].

Based in the surface area of CNTs (407 m2 g-1) and considering that the

area covered by a FePc molecule is 1.15 nm2 (calculated from the side

length of FePc, 1.07 nm and square geometry), a monolayer of supported

FePc over the carbon nanotubes employed in this work would be achieved

at a 0.34:1 Pc/CNT weight ratio, which is close to the 0.31:1 ratio

employed in this work, and also similar to that employed in works where

a similar ORR performance of FePc/C catalysts was observed [39]. Excess

of Pc would be undesirable, not only because the Pc that is not in direct

contact with the surface of CNT is not active (an effect already found in

the catalysts herein reported, as previously discussed in section 3.1), but

also due to the oxygen diffusional constrains that it would render, making

it less accessible to the FePc molecules located over the surface of CNT,

which are expected to be the most active centers for ORR.

The activity towards ORR changes depending on the performed heat

treatment in the samples, following the order of activity: NT_FePc_400 >

NT_FePc > NT_FePc_800. NT_FePc shows an onset potential close to

the Pt-based catalyst, nonetheless, the limiting specific current is lower.

This fact seems to be overcome when the sample is heat treated at 400°C,

in which the limiting specific current matches the one displayed at lower

potentials by the Pt/C catalyst in the experimental system. The heat

Page 253: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

238

treatment of NT_FePc at 800 ºC rendered a decrease in the ORR

performance, a feature similar to that seen for NT_CoPc and that can be

explained in the same terms previously discussed. Another important fact

is the electron transfer number occurring during the reaction. In

accordance to the high limiting current, the NT_FePc and NT_FePc_400

samples show a high electron transfer number, close to 4, as in the case of

Pt-based catalyst. As previously mentioned, side-on oxygen adsorption

mode in the vicinity of the Fe center is preferred in case of FePc [37–39],

which eases the breaking of the O-O bond, a prerequisite for enabling the

4 e- pathway. Finally, the NT_FePc_800 sample shows a decrease in the

electron transfer number, pointing out that the modifications caused in Fe

and N species by the breakage of the macrocycle structure greatly affects

the ORR mechanism of the catalyst.

3.3 Surface chemistry and thermogravimetric analyses

Table 6.2 shows the atomic composition for all samples calculated by

XPS. The results confirm the incorporation of the phthalocyanine in all

the prepared catalysts (N and Fe/Co are found in atomic ratios close to 8:1

for all samples), although the metal content determined by this technique

was much lower than expected. Given the surface character of this

technique (only several nm of the surface of the sample are analyzed), the

metal content of the MPc over CNTs catalysts has been also determined

by ICP-OES. It was found that the iron and cobalt content of all samples

were between 2.1 – 2.4 wt% (Table 6.2), confirming that most of the

impregnated Pc remained attached to the surface of the CNTs.

Page 254: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

239

Table 6.2 Composition calculated by XPS and ICP-OES

Sample XPS ICP

C1s / at %

N1s / at%

O1s / at%

M 2p / at% (wt%) M / %

NT_CoPc 93.9 3.5 2.3 0.3 (1.7) 2.1

NT_CoPc_400 91.5 3.7 4.4 0.4 (1.7) 2.1

NT_CoPc_800 97.3 1.1 1.5 0.1 (0.7) 1.1

NT_FePc 92.6 2.8 4.3 0.3 (1.1) 2.4

NT_ FePc_400 95.6 2.0 2.2 0.2 (0.7) 2.1

NT_FePc_800 97.5 0.5 1.9 0.1 (0.4) 0.9

After the heat treatment, changes in the surface composition of nitrogen

and metal were found. At 400 ºC, the metal and nitrogen content barely

changed from the sample without any heat treatment. A much different

behavior was observed when the samples were treated at 800 ºC. Both the

nitrogen and metal content decreased after the treatment, a feature that is

attributable to the thermal decomposition of the Pc. ICP analyses are in

agreement with this finding, yielding iron and cobalt amount around 1.0

wt.% after the heat treatment at 800 ºC. The metal loss was also confirmed

by the formation of a dark blue or dark red deposit on the top of the surface

of the crucible where the samples were heat treated.

The changes in the oxidation state of iron and cobalt-based catalysts have

been analyzed by XPS (Fig 6.3). In the case of CoPc-loaded CNTs, Fig

6.3a, a peak located at ~780.5 eV can be seen in the XPS Co 2p region,

which corresponds to the Co(II) species [48]. This peak is not shifted from

its original location on the CoPc (black line in Fig. 6.3a), pointing out that

Page 255: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

240

the N-Co bond and probably the structure of the coordination complex is

neither affected when it is supported on the CNTs nor after the heat

treatment at 400º C (red and green spectra in Fig. 6.3a, respectively). The

oxidation state seems to be unaltered even after the heat treatment at 800

°C, where the maximum of the spectrum is again found at the same

binding energy (although a much lower intensity is recorded due to the

loss of cobalt after the heat treatment). Although the remaining amount of

cobalt could be considered as high enough to enhance ORR catalytic

activity.

Fig. 6.3 Co 2p XPS spectra (left) and Fe 2p XPS spectra (right) for all samples.

On the other hand, the Fe samples show a different behavior. The

determination of the Fe metal species using Fe 2p3/2 XPS region is difficult

because it has a complex multiplet structure, due to the coupling of the

core hole to the open valence shell of the Fe atom [11,49]. However, from

Fig. 6.3b it is possible to see that the peak at ~710.1 eV found at the FePc,

772777782787792797802B.E. / eV

CoPc

NTCoPc

NTCoPc400

NTCoPc800

704709714719724729734B.E. / eV

FePc

NTFePc

NTFePc400

NTFePc800

Page 256: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

241

which must be related to Fe(II) of the phthalocyanine complex, is slightly

shifted to more positive binding energies in the NT_FePc and

NT_FePc_400 samples, which are now located at 710.4 and 710.9 eV,

respectively. This feature seems to be related to a stronger interaction

between the carbon nanotubes and the FePc than in the case of the CoPc,

thus, leading to a decrease in the electron density of the Fe atom [23].

When the heat treatment temperature was increased at 800 ºC, the iron

remaining in the NT_FePc_800 catalyst was found to be reduced, as

pointed out by the negative shift of the maximum of the XPS spectra,

located at 707.3 eV, a value that corresponds to metal iron species. A

similar result has been found for carbon nanofibers, where a heat

treatment at 1000ºC of the FePc supported on carbon nanofibers leads to

the formation of metal iron (or its carbide) [50]. The presence of Fe(II)

species coordinated with the nitrogen atoms in the phthalocyanine

structure are known to be necessary for an enhanced electrocatalytic

activity [51], and the formation of metal iron seems to be related with the

activity loss in the sample NT_FePc_800.

Fig 6.4 shows the N1s spectra for all samples. The spectra of the

unsupported metal phthalocyanines show a peak at ~398.8 eV with small

contributions at higher binding energies. Although metal phthalocyanines

have two different N atoms in the molecule, it produces only one N1s peak

at around 398.8 eV since both contributions are separated by only 0.3 eV

in binding energy which is beneath the energy resolution of the spectra

[52]. The contribution observed at higher binding energies (400.2 eV) can

be related to the impurities in the metal phthalocyanines used. For

Page 257: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

242

example, if metal-free phthalocyanine is present, then pyrrole N bonded

to H atoms (i.e., H2Pc) produces a peak close to 400.4 eV [53,54].

In supported CoPc samples, neither NT_CoPc nor the NT_CoPc_400

samples show any significant differences in the N1s spectrum compared

to the initial CoPc. Different behavior is found for Fe-containing samples.

The NT_FePc and NT_FePc_400 materials show a change in the position

of the peaks from the initial iron phthalocyanine, which could be related

to the enhanced interaction with the carbon support, leading to a shift in

the position of the peaks.

When the heat treatment is performed at 800 ºC notable changes in the

N1s spectrum of both NT_CoPc_800 and NT_FePc_800 samples can be

seen (Fig. 6.4d,h). After the heat treatment, the spectra becomes wider in

the BE region and the features characteristic of carbon materials appear.

Thus, a new peak appears at 401.0 eV that could be attributed to the

formation of quaternary nitrogen species, where N atoms from the

macrocycle could be incorporated to the graphene layer [55]. The peak at

398.7 eV can either be due to remaining Fe-N4 sites or to the formation of

pyridine groups from N incorporation into the carbon nanotubes [55]. The

peak at 400 eV can be assigned to positively charged N species like

pyrrole or pyridine groups [55]. These results are in agreement with

previous studies, where it was found that the presence of Co during the

heat treatment of nitrogen-containing polymers and molecules induces the

formation of higher amount of pyridinic and quaternary nitrogen groups

that are active toward the ORR [56].

Page 258: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

243

Fig. 6.4 N1s XPS spectra of (a) CoPc, (b) NT_CoPc, (c) NT_CoPc_400, (d) NT_CoPc_800, (e) FePc, (f) NT_FePc, (g) NT_FePc_400 and (h) NT_FePc_800

396397398399400401402403

Cou

nts /

a.u

B.E. / eV

(a)

396397398399400401402403

Cou

nts /

a.u

B.E. / eV

(b)

396397398399400401402403

Cou

nts /

a.u

B.E. / eV

(c)

396397398399400401402403

Cou

nts /

a.u

B.E. / eV

(d)

396397398399400401402403

Cou

nts /

a.u

B.E. / eV

(e)

396397398399400401402403

Cou

nts /

a.u

B.E. / eV

(f)

396397398399400401402403

Cou

nts /

a.u

B.E. / eV

(g)

396397398399400401402403

Cou

nts /

a.u

B.E. / eV

(h)

Page 259: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

244

The absence of changes in the molecular structure of CoPc and FePc at

400 ºC was corroborated by thermogravimetric analyses (Fig 6.5) of bare

phthalocyanines and Pc supported on NTs, where no mass losses are

detected up to 550 ºC, confirming that the macrocyclic compound remains

unaffected. Attending to these TG profiles, a first decomposition stage

occurs between 550 and 650 ºC. The resulting pyrolyzed products can

undergo further decomposition reactions, as pointed out by the weight loss

registered at temperatures higher than 750 ºC (Fig. 6.5a). Very

interestingly, when FePc is supported on the CNTs (Fig. 6.5b), the thermal

decomposition seems to be delayed to higher temperature (630-650 ºC),

and a much lower weight loss than expected is attained (3.5 %, while 11.8

% is expected considering the amount of Pcs in the catalyst (23.7 %). The

high thermal stability of FePc and its tendency to catalyze nitrogen

fixation under thermal treatment up to 600 ºC has been previously

reported for the preparation of carbon alloy catalysts using FePc/phenolic

resin mixtures [57]. The huge impact of the carbon support as a driving

agent of the pyrolysis mechanism of CoPc and FePc has been also

proposed by Bambagioni et al., who detected the formation of different

Pc gaseous and solid fragments during the pyrolysis of Pc supported on

carbon black, but only found sublimated phthalocyanines as the product

of quartz-supported CoPc and FePc [58]. This fact supports that there

exists a strong interaction between the FePc and the CNTs, confirming the

XPS findings. An additional weight loss at temperatures between 300 and

450 ºC can be also seen in the case of the NT_FePc sample. TPD

measurements on NT_FePc have shown that the weight loss in this range

of temperatures is associated to an increase in the intensity of the 44 m/z

Page 260: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

245

line, which can be ascribed to the desorption of chemisorbed DMF (main

m/z lines of 73 and 44) employed in the impregnation step. A strong

increase in the intensity of the 2, 14, 18, 27 and 28 m/e- lines has been

found at temperatures between 630 and 670 ºC, and therefore this weight

loss stage is proposed to be related to the decomposition of the Pc

macrocycle, causing the partial release of its nitrogen groups as HCN and

N2, mainly. Similar thermal decomposition behavior has been reported for

FePc/phenolic resin mixtures [57].

Fig. 6.5 TG of (a) FePc and CoPc.and (b) NT_FePc and NT_FePc_400

3.4 The role of surface chemistry in the ORR activity of FePc-

based catalysts

In order to study the differences in the interaction of the metal

phthalocyanine with the support, samples prepared using different

supports were also tested towards ORR. Provided the excellent behavior

of Fe samples, this approach was tested using only FePc. In first place, a

catalyst was prepared changing the order of the heat treatment, i.e. FePc

was first heat treated at 400 ºC and the resulting solid was dissolved in

DMF and impregnated in the CNTs (FePc_400_NT). Another catalyst

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700 800

W/W

0

T / ºC

FePcCoPc

(a)

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700 800

W/W

0

T / ºC

FePcNT_FePcNT_FePc_400

(b)

Page 261: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

246

was prepared using the NT_FePc with a post heat treatment at 500 ºC in

3125 ppm O2 with N2 as carrier (NT_FePc_500O). Finally, functionalized

CNTs with 4-ABA and heat treated in 3125 ppm O2 using N2 as carrier at

800 ºC were synthetized and employed as FePc support

(NT4ABA800O_FePc); the same sample was prepared and submitted to

a subsequent heat treatment under inert atmosphere at 400°C

(NT4ABA800O_FePc_400). The ABA-modified CNTs are known to be

active towards ORR because of the presence of several oxygen and

nitrogen functionalities in their surface which seem to modulate the

electron-donor properties and shows an enhanced activity towards ORR

[32]. In this sense, the use of this support with a different surface

chemistry can change the interaction of the phthalocyanine and the

modified CNTs. Fig. 6.6 shows the LSV of these samples.

Fig. 6.6 LSV in an O2-saturated 0.1 M KOH at 10 mV s-1 and 1600 rpm.

The behavior of the FePc400_NT catalyst is rather similar to that of the

catalyst prepared in the opposite order (NT_FePc_400), and similar redox

processes are shown in the CV (Fig. 6.7, charge of the Fe(III)/Fe(II) redox

couple of 2.6 C g-1). This fact points out that the availability and nature of

-6

-5

-4

-3

-2

-1

0

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

j / m

A c

m-2

E vs. RHE / V

NTs

FePc 400_NT

NT_FePc_500_O

NT4ABA800O_FePc

NT4ABA800O_FePc400

Pt-Vulcan

Page 262: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

247

the chemical species in these samples are similar, and consequently, show

similar activity. This indicates that the supported FePc does not

experience any important modification neither on its chemical structure

nor in the interaction with the support when treated at 400ºC. The atomic

composition calculated from XPS also confirms that the amount of

nitrogen and metal were very close (contents of 2.4 at.% for N and 0.7

at.% for Fe).

Fig. 6.7 Cyclic voltammetry of FePc400_NT and NT_FePc_500O in N2-saturated 0.1 M KOH at 50 mV s-1.

Fig. 6.8 N1s XPS spectra of (a) FePc_400_NT, (b) NT_FePc_500_O.

-80-60-40-20

0204060

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

C /

F g-1

E vs. RHE / V

NT_FePc_500OFePc400_NT

396397398399400401402403

Cou

nts /

a.u

B.E. / eV

(a)

396397398399400401402403

Cou

nts /

a.u

B.E. / eV

(b)

Page 263: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

248

A heat treatment at 500 ºC in a slightly oxidant atmosphere (3125 ppm

O2/N2) causes the loss of most of the ORR activity detected in the pristine

sample (Fig. 6.6). The onset potential shifts to a lower potential, the ORR

mechanism is shifted to a two-wave mechanism, and the limiting current

intensity is only reached at the lowest potentials. The CV for this sample

shows a change in the electroactivity of the iron species compared to the

initial NT_FePc (Fig. 6.7). The redox process at 0.8 V disappears and the

process at 0.2 V shifts to a broad process at lower potential values. This

result seems to be attributed to the change in the FePc species after the

heat treatment, which was confirmed by the XPS measurements (Fig.

6.8b). The N1s spectrum shows an increase in the amount of oxidized

nitrogen that may result in the breakage of the N4-chelate species. In

addition, the Fe2p XPS spectrum shows a peak at higher binding energies

(712.0 eV), attributed to the Fe(III) species [59]. A much lower nitrogen

content is also observed in the catalyst (0.9 at.%) due to the oxidative

decomposition of the phthalocyanine. Since CNTs have low reactivity

towards oxygen reduction under the tested conditions, it seems feasible

that these changes in the Fe species and the decomposition of the N4-

chelate are responsible in the lower ORR activity.

The changes in the activity using functionalized CNTs with and without a

post heat treatment a 400 ºC were studied. The NT4ABA800O_FePc

shows an increase in the activity and also in the limiting current intensity

with respect to that of CNT (purple line vs. black line, Fig. 6.6). However,

the activity is similar on the onset potential and lower in limiting current

than the ORR activity of NT_FePc sample. Furthermore, when the sample

Page 264: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

249

was heat treated at 400 ºC, it did not show a better activity towards ORR

as it was found when the pristine CNTs were used as support. The

interaction between the carbon support and the phthalocyanine is

determined by the extended, delocalized and conjugated π-electron

system in the walls of the CNTs, and also their surface chemistry. From

the results, it seems that the interaction of the phthalocyanine with the

pristine CNTs through the π-π stacking interaction is better than in the

case of the functionalized CNTs, in which the presence of pyrolyzed ABA

functionalities may provide stronger adsorption sites for FePc and prevent

electron transfer process thus reducing the electroactivity of the Fe species

as observed in Fig. 6.7, and making inactive for the ORR [60].

3.5 The role of Fe in the ORR activity of FePc-based catalysts

The role of Fe in FePc-based catalysts towards ORR was studied by

testing the activity of acid washed FePc-based catalysts. This study was

done for NT_FePc_400, FePc_400_NT and NT_FePc_500O samples.

The ICP-OES analysis shows a complete iron removal in NT_FePc_500O

after the acid washing. Nonetheless, the samples NT_FePc_400 and

FePc_400_NT still showed a small amount of Fe (0.3 % for both of them).

This fact can be attributed to the good interaction of the Fe atoms in the

phthalocyanine compound, which, as discussed above, remains intact

after the heat treatment at 400 ºC. On the other hand, the heat treatment at

500 ºC in a slightly oxidant atmosphere leads to the decomposition of the

macrocyclic structure and the oxidation of iron, facilitating its removal

during the acid washing process.

Page 265: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

250

Fig. 6.9 shows the LSV curves at 1600 rpm for these catalysts. The

NT_FePc_500O seems to lose most of its ORR activity when iron is

removed. The onset potential is slightly higher than the pristine CNTs but

the current intensity is the same, pointing out that a 2-electron pathway is

being achieved. In fact, the ORR performance is comparable to that found

for CNTs heat treated using a similar oxidant atmosphere [32]. Contrarily,

the activities of the samples NT_FePc_400 and FePc_400_NT are still

high, with the onset potentials scarcely shifted to a lower value, but still

close to the Pt-based catalyst. As expected, the limiting current intensity

decreased slightly comparing to the corresponding samples with higher

amount of Fe. This fact points out the importance of the Fe atoms in the

activity towards ORR of these catalysts, even when it is found in small

amounts. This is in agreement with previous studies by Lefèvre and

Dodelet, who reported that Fe content as low as 0.5% is enough for

achieving a 4-electron pathway (<5% H2O2 formation) and an

electrocatalytic activity towards ORR equivalent to that of catalysts

prepared with a higher amount of metal [61,62].

Fig. 6.9 LSV of samples washed in HCl in O2-saturated 0.1 M KOH at 10 mV s-1 and 1600 rpm (dashed lines correspond to the samples without wash).

-6

-5

-4

-3

-2

-1

0

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

j / m

A c

m-2

E vs. RHE / V

NT_FePc_400

NTFePc400_HCl37%

FePc 400_NT

FePc400NT_HCl37%

NT_FePc_500_O

NTFePc500O_HCl37%

Page 266: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

251

3.6 Stability study of the FePc-based electrocatalysts

The stability of the FePc-based catalysts towards the presence of methanol

and under potentiostatic conditions was evaluated, since it is one of the

major concerns in their performance as cathodes for fuel cell technology.

Fig. 6.10 shows a typical current vs. time plot for NT_FePc,

NT_FePc_400 and FePc400_NT. 20% Pt-C catalyst was included for

comparison purposes. The experiments were performed at a potential of

0.65 V in which the limiting specific current was reached for the catalysts.

The results show a loss in the current intensity of 46.0 and 25.8 % for

NT_FePc and NT_FePc_400, respectively. Regarding the applicability of

these materials, the stability of the samples is poor, especially when

compared to the Pt-based catalyst. Nevertheless, the FePc based catalysts

do not show any significant negative response to the addition of methanol

during the measurements. As expected, the Pt-Vulcan catalyst shows a

huge decline in its ORR performance when methanol is added to the cell.

This fact is another concern in direct methanol fuel cells, in which the

crossover effect leads to the deactivation of the Pt based catalyst.

Fig. 6.10 (a) Chronoamperometric response and (b) H2O2 formation of NT_FePc_400, NT_FePc, FePc400_NT and Pt-C in O2-saturated 0.1 M KOH at 0.65V and 1600 rpm

0%

20%

40%

60%

80%

100%

0 2000 4000 6000

Rel

ativ

e cu

rren

t

Time / s

NT_FePcNT_FePc_400FePc 400_NTPt-Vulcan

(a)

0%

10%

20%

30%

40%

0 2000 4000 6000

% H

2O2

Time / s

NT_FePcNT_FePc_400FePc400_NTPt-Vulcan

(b)

Page 267: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

252

The hydrogen peroxide formation was also tracked during these ORR

potentiostatic measurements (Fig. 6.10b). The NT_FePc_400 sample,

which shows a better stability than NT_FePc, is also producing a lower

amount of hydrogen peroxide since the beginning of the experiment.

These results seems to correlate the stability of the catalysts with the

formation of H2O2. The formed H2O2 could be responsible of the

oxidation of the nitrogen atoms in the phthalocyanine, leading to the loss

of the catalytic activity [63].

Another remarkable outcome of these experiments is the 40.1 % current

intensity drop registered for FePc_400_NT, which is 14.3 % higher than

that of the analogous sample NT_FePc_400. This is in agreement with the

formation of H2O2 being higher for this sample, and it highlights that the

best ORR performance is achieved when the FePc is heat treated after

being supported onto the CNTs. The same conclusions can be drawn when

the stability tests are carried out after the acid washing (Fig. 6.11). It seems

that the removal of more than two thirds of the iron content in the catalysts

only leads to a marginal increase in the H2O2 formation, which should

affect negatively the stability of the catalysts. Again, the

FePc_400_NT_HCl37% sample shows a worse performance than

NT_FePc_400_HCl37%. XPS results also pointed out that the interaction

between the FePc and CNTs is enhanced when they are heat treated

together at 400 ºC, that could be responsible of the stabilization of the M-

N complex. Interestingly, the acid-washed NT_FePc_400 shows the

lowest deactivation of the series, with an intensity drop after 6000 seconds

of 21%. Since only the most stable iron has remained attached in the

Page 268: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

253

surface of acid washed catalysts, this higher stability could also arise for

the preferential removal of Fe atoms that would otherwise be removed as

consequence of the attack of hydrogen peroxide.

Fig. 6.11 (a) Chronoamperometric response and (b) H2O2 formation of washed samples

of NT_FePc_400, FePc400_NT in O2-saturated 0.1 M KOH at 0.65V and 1600 rpm

4 Conclusions

FePc and CoPc supported on CNTs electrocatalysts have been prepared

by incipient wetness impregnation. These catalysts have catalytic activity

towards ORR, with the FePc-based catalysts showing the best ORR

performance, being close to that of a commercial 20% Pt-C based catalyst.

The CoPc catalysts displayed a lower onset potential and a low selectivity

to water. A heat treatment at 400 °C did not show a significant change in

the activity of this catalyst, while in the case of the FePc-based catalysts

it delivered a remarkable increase in ORR activity. XPS results

demonstrated that an enhanced interaction between the N4-chelate and the

CNTs is being achieved in the FePc-based catalysts. Thermogravimetric

analyses proved that phthalocyanines are stable up to 500 ºC, and when

supported on CNTs, no weight loss ascribable to the decomposition of

0%

20%

40%

60%

80%

100%

0 2000 4000 6000

Rel

ativ

e cu

rren

t

Time / s

NTFePc400_HCl37%FePc400NT_HCl37%

(a)

0%

10%

20%

30%

40%

0 2000 4000 6000%

H2O

2Time / s

NTFePc400_HCl37%FePc400NT_HCl37%

(b)

Page 269: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

254

phthalocyanines is detected above 600 ºC. Thus, the heat treatment at 400

ºC is not causing any relevant change in the composition of the FePc. This

fact was checked by the preparation of a sample in the opposite order, in

which the activity is maintained after the FePc is heat treated at 400 ºC

and supported on the CNTs. As depicted by TG and XPS, the

decomposition of the N4-chelate took place after the heat treatment at 800

ºC, rendering the inclusion of N atoms in the CNTs surface. Although the

inclusion of N groups on the CNTs increases its activity when compared

to that of bare CNTs, the ORR activity decreases when compared to that

of catalysts where the M-N4 complex is preserved.

The use of a slightly oxidant atmosphere during the heat treatment at 500

ºC renders the partial decomposition of the N4-chelate, which showed a

decrease in the ORR activity of its parent sample (NT_FePc), and thus

confirming the relevance of the M-N complex in the ORR performance of

these catalysts. A functionalized CNTs with oxidized nitrogen species was

also used as support in order to assess the effect of the surface chemistry

in the interaction between the FePc and the carbon nanotubes. It was found

that the presence of such functionalities on the support leads to a decrease

in the limiting current of the catalysts, since they prevent the π-π

interaction between the graphene surface and the FePc.

The role of the iron loading was also studied. It was found that a relevant

amount of iron remains on the catalysts after a strong acid wash, pointing

out the high stability of FePc supported on CNTs. Even at very small

amounts of Fe (0.3 %), the ORR catalytic activity of the sample heat

treated at 400 ºC is still high, close to the Pt-based catalyst. This suggests

Page 270: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

255

that most of the FePc initially supported on the CNT seemed to be both

electrochemically inactive in CV measurements and not required for

achieving a high ORR activity, the performance of ORR electrocatalysts

based on FePc could be greatly improved by using carbon materials where

an enhanced interaction and a high dispersion of FePc could be achieved.

In the case of the sample partially oxidized at 500 ºC, all the iron content

was removed after the acid washing, returning the ORR activity of the

resulting sample to that of oxidized CNTs. This fact points out that,

although the Fe atom plays a predominant role in the ORR activity, the

M-N complex is critical to the performance of the catalyst both in terms

of activity and stability.

The stability of the catalysts were studied by chronoamperometic

experiments. The fast deactivation of the catalysts seems to be related to

the H2O2 formation during the measurement. Hydrogen peroxide can

oxidize the nitrogen atoms of the N4-chelate leading to the loss of the

metal coordination, rendering a drop in the performance. Interestingly, the

FePc catalyst heat treated at 400 ºC showed the highest tolerance to

hydrogen peroxide formation, even after being washed with concentrated

hydrochloric acid, therefore confirming the huge impact on ORR

performance and stability derived from a good interaction between the

phthalocyanine and the surface of the carbon nanotube.

5 References [1] M. Winter, R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?,

Chem. Rev. 104 (2004) 4245–4270.

[2] A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices,

Page 271: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

256

Nat. Mater. 4 (2005) 366–377.

[3] F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J.-P. Dodelet, G. Wu, H.T. Chung, C.M. Johnston, P. Zelenay, Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuelcells, Energy Environ. Sci. 4 (2011) 114–130.

[4] X. Yu, S. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC, J. Power Sources. 172 (2007) 133–144.

[5] A. Morozan, B. Jousselme, S. Palacin, Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes, Energy Environ. Sci. 4 (2011) 1238–1254.

[6] M.T. Byrne, Y.K. Gun’ko, Recent Advances in Research on Carbon Nanotube-Polymer Composites, Adv. Mater. 22 (2010) 1672–1688.

[7] T. Fujigaya, N. Nakashima, Fuel Cell Electrocatalyst Using Polybenzimidazole-Modified Carbon Nanotubes As Support Materials, Adv. Mater. 25 (2013) 1666–1681.

[8] J. Masa, W. Xia, M. Muhler, W. Schuhmann, On the Role of Metals in Nitrogen-Doped Carbon Electrocatalysts for Oxygen Reduction, Angew. Chemie Int. Ed. 54 (2015) 10102–10120.

[9] S. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang, Z. Hu, Nitrogen-Doped Carbon Nanocages as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction, Adv. Mater. 24 (2012) 5593–5597.

[10] Y. Wang, X. Cui, Y. Li, L. Chen, H. Chen, L. Zhang, J. Shi, A co-pyrolysis route to synthesize nitrogen doped multiwall carbon nanotubes for oxygen reduction reaction, Carbon. 68 (2014) 232–239.

[11] I. Kruusenberg, L. Matisen, Q. Shah, A.M. Kannan, K. Tammeveski, Non-platinum cathode catalysts for alkaline membrane fuel cells, Int. J. Hydrogen Energy. 37 (2012) 4406–4412.

[12] R. Jasinski, A New Fuel Cell Cathode Catalyst, Nature. 201 (1964) 1212–1213.

[13] Y. Liang, H. Wang, P. Diao, W. Chang, G. Hong, Y. Li, M. Gong, L. Xie, J. Zhou, J. Wang, T.Z. Regier, F. Wei, H. Dai, Oxygen Reduction Electrocatalyst Based on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes, J. Am. Chem. Soc. 134 (2012) 15849–15857.

[14] R. Zhang, S. He, Y. Lu, W. Chen, Fe, Co, N-functionalized carbon nanotubes in situ grown on 3D porous N-doped carbon foams as a noble metal-free catalyst for oxygen reduction, J. Mater. Chem. A. 3 (2015) 3559–3567.

[15] A. a Gewirth, M.S. Thorum, Electroreduction of Dioxygen for Fuel-Cell Applications: Materials and Challenges, Inorg. Chem. 49 (2010) 3557–3566.

Page 272: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

257

[16] J.H. Zagal, S. Griveau, J.F. Silva, T. Nyokong, F. Bedioui, Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions, Coord. Chem. Rev. 254 (2010) 2755–2791.

[17] Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, A review on non-precious metal electrocatalysts for PEM fuel cells, Energy Environ. Sci. 4 (2011) 3167–3192.

[18] C.W.B. Bezerra, L. Zhang, H. Liu, K. Lee, A.L.B. Marques, E.P. Marques, H. Wang, J. Zhang, A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction, J. Power Sources. 173 (2007) 891–908.

[19] C.W.B. Bezerra, L. Zhang, K. Lee, H. Liu, A.L.B. Marques, E.P. Marques, H. Wang, J. Zhang, A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction, Electrochim. Acta. 53 (2008) 4937–4951.

[20] X. Fu, J.-Y. Choi, P. Zamani, G. Jiang, M.A. Hoque, F.M. Hassan, Z. Chen, Co–N Decorated Hierarchically Porous Graphene Aerogel for Efficient Oxygen Reduction Reaction in Acid, ACS Appl. Mater. Interfaces. 8 (2016) 6488–6495.

[21] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt, Science. 332 (2011) 443–447.

[22] M. Lefevre, E. Proietti, F. Jaouen, J.-P. Dodelet, Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells, Science. 324 (2009) 71–74.

[23] Y. Jiang, Y. Lu, X. Lv, D. Han, Q. Zhang, L. Niu, W. Chen, Enhanced Catalytic Performance of Pt-Free Iron Phthalocyanine by Graphene Support for Efficient Oxygen Reduction Reaction, ACS Catal. 3 (2013) 1263–1271.

[24] C. Zhang, R. Hao, H. Yin, F. Liu, Y. Hou, Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction, Nanoscale. 4 (2012) 7326–7329.

[25] R. Baker, D.P. Wilkinson, J. Zhang, Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures, Electrochim. Acta. 53 (2008) 6906–6919.

[26] D. Ohms, S. Herzog, R. Franke, V. Neumann, K. Wiesener, S. Gamburcev, A. Kaisheva, I. Iliev, Influence of metal ions on the electrocatalytic oxygen reduction of carbon materials prepared from pyrolyzed polyacrylonitrile, J. Power Sources. 38 (1992) 327–334.

[27] E. Proietti, F. Jaouen, M. Lefèvre, N. Larouche, J. Tian, J. Herranz, J.-P. Dodelet, Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells, Nat. Commun. 2 (2011) 416.

Page 273: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

258

[28] M. Lefèvre, J.P. Dodelet, P. Bertrand, Molecular Oxygen Reduction in PEM Fuel Cells: Evidence for the Simultaneous Presence of Two Active Sites in Fe-Based Catalysts, J. Phys. Chem. B. 106 (2002) 8705–8713.

[29] A.L. Bouwkamp-Wijnoltz, W. Visscher, J.A.R. van Veen, E. Boellaard, A.M. van der Kraan, S.C. Tang, On Active-Site Heterogeneity in Pyrolyzed Carbon-Supported Iron Porphyrin Catalysts for the Electrochemical Reduction of Oxygen: An In Situ Mössbauer Study, J. Phys. Chem. B. 106 (2002) 12993–13001.

[30] J. Zagal, M. Páez, A.A. Tanaka, J.R. dos Santos, C.A. Linkous, Electrocatalytic activity of metal phthalocyanines for oxygen reduction, J. Electroanal. Chem. 339 (1992) 13–30.

[31] L. Zhang, J. Zhang, D.P. Wilkinson, H. Wang, Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions, J. Power Sources. 156 (2006) 171–182.

[32] C. González-Gaitán, R. Ruiz-Rosas, E. Morallón, D. Cazorla-Amorós, Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the oxygen reduction reaction, Int. J. Hydrogen Energy. 40 (2015) 11242–11253.

[33] M.J. Aguirre, M. Isaacs, F. Armijo, L. Basáez, J.H. Zagal, Effect of the Substituents on the Ligand of Iron Phthalocyanines Adsorbed on Graphite Electrodes on Their Activity for the Electrooxidation of 2-Mercaptoethanol, Electroanalysis. 14 (2002) 356–362.

[34] M. Gulppi, S. Griveau, F. Bedioui, J.H. Zagal, Electrocatalysis of 2-mercaptoethanesulfonic acid oxidation on cobalt phthalocyanine modified electrodes. Effect of surface concentration of the catalyst, Electrochim. Acta. 46 (2001) 3397–3404.

[35] A. Morozan, S. Campidelli, A. Filoramo, B. Jousselme, S. Palacin, Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction, Carbon. 49 (2011) 4839–4847.

[36] U. Tylus, Q. Jia, K. Strickland, N. Ramaswamy, A. Serov, P. Atanassov, S. Mukerjee, Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal–Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems, J. Phys. Chem. C. 118 (2014) 8999–9008.

[37] G. Wang, N. Ramesh, A. Hsu, D. Chu, R. Chen, Density functional theory study of the adsorption of oxygen molecule on iron phthalocyanine and cobalt phthalocyanine, Mol. Simul. 34 (2008) 1051–1056.

[38] S. Mussell, P. Choudhury, Density Functional Theory Study of Iron Phthalocyanine Porous Layer Deposited on Graphene Substrate: A Pt-Free

Page 274: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

259

Electrocatalyst for Hydrogen Fuel Cells, J. Phys. Chem. C. 120 (2016) 5384–5391.

[39] R. Chen, H. Li, D. Chu, G. Wang, Unraveling Oxygen Reduction Reaction Mechanisms on Carbon-Supported Fe-Phthalocyanine and Co-Phthalocyanine Catalysts in Alkaline Solutions, J. Phys. Chem. C. 113 (2009) 20689–20697.

[40] H.-H. Yang, R.L. McCreery, Elucidation of the Mechanism of Dioxygen Reduction on Metal-Free Carbon Electrodes, J. Electrochem. Soc. 147 (2000) 3420–3428.

[41] J.M. Ziegelbauer, T.S. Olson, S. Pylypenko, F. Alamgir, C. Jaye, P. Atanassov, S. Mukerjee, Direct Spectroscopic Observation of the Structural Origin of Peroxide Generation from Co-Based Pyrolyzed Porphyrins for ORR Applications, J. Phys. Chem. C. 112 (2008) 8839–8849.

[42] O. Ornelas, J.M. Sieben, R. Ruiz-Rosas, E. Morallón, D. Cazorla-Amorós, J. Geng, N. Soin, E. Siores, B.F.G. Johnson, On the origin of the high capacitance of nitrogen-containing carbon nanotubes in acidic and alkaline electrolytes, Chem. Commun. 50 (2014) 11343–11346.

[43] P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun, D. Cao, ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction, Energy Environ. Sci. 7 (2014) 442–450.

[44] Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction, Chem. Soc. Rev. 44 (2015) 2168–2201.

[45] N.P. Subramanian, X. Li, V. Nallathambi, S.P. Kumaraguru, H. Colon-Mercado, G. Wu, J.-W. Lee, B.N. Popov, Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells, J. Power Sources. 188 (2009) 38–44.

[46] J. Park, Y. Nabae, T. Hayakawa, M. Kakimoto, Highly Selective Two-Electron Oxygen Reduction Catalyzed by Mesoporous Nitrogen-Doped Carbon, ACS Catal. 4 (2014) 3749–3754.

[47] S.A. Mamuru, K.I. Ozoemena, T. Fukuda, N. Kobayashi, T. Nyokong, Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode, Electrochim. Acta. 55 (2010) 6367–6375.

[48] M. Ladouceur, Pyrolyzed Cobalt Phthalocyanine as Electrocatalyst for Oxygen Reduction, J. Electrochem. Soc. 140 (1993) 1974–1981.

[49] G. V. Ouedraogo, D. Benlian, L. Porte, X-ray photoelectron spectroscopy of phthalocyanine compounds, J. Chem. Phys. 73 (1980) 642–647.

[50] S. Maldonado, K.J. Stevenson, Direct Preparation of Carbon Nanofiber

Page 275: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 6

260

Electrodes via Pyrolysis of Iron(II) Phthalocyanine: Electrocatalytic Aspects for Oxygen Reduction, J. Phys. Chem. B. 108 (2004) 11375–11383.

[51] L. Lin, Q. Zhu, A.-W. Xu, Noble-Metal-Free Fe–N/C Catalyst for Highly Efficient Oxygen Reduction Reaction under Both Alkaline and Acidic Conditions, J. Am. Chem. Soc. 136 (2014) 11027–11033.

[52] J. Ahlund, K. Nilson, J. Schiessling, L. Kjeldgaard, S. Berner, N. Martensson, C. Puglia, B. Brena, M. Nyberg, Y. Luo, The electronic structure of iron phthalocyanine probed by photoelectron and x-ray absorption spectroscopies and density functional theory calculations, J. Chem. Phys. 125 (2006) 034709 1–7.

[53] Y. Alfredsson, B. Brena, K. Nilson, J. Ahlund, L. Kjeldgaard, M. Nyberg, Y. Luo, N. Martensson, A. Sandell, C. Puglia, H. Siegbahn, Electronic structure of a vapor-deposited metal-free phthalocyanine thin film, J. Chem. Phys. 122 (2005) 214723 1–6.

[54] H. Höchst, A. Goldmann, S. Hüfner, H. Malter, X-Ray Photoelectron Valence Band Studies on Phthalocyanine Compounds, Phys. Status Solidi. 76 (1976) 559–568.

[55] E. Raymundo-Piñero, D. Cazorla-Amorós, A. Linares-Solano, J. Find, U. Wild, R. Schlögl, Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin, Carbon. 40 (2002) 597–608.

[56] H.-S. Oh, H. Kim, The role of transition metals in non-precious nitrogen-modified carbon-based electrocatalysts for oxygen reduction reaction, J. Power Sources. 212 (2012) 220–225.

[57] Y. Nabae, M. Malon, S.M. Lyth, S. Moriya, K. Matsubayashi, N. Islam, S. Kuroki, M. Kakimoto, J. Ozaki, S. Miyata, The Role of Fe in the Preparation of Carbon Alloy Cathode Catalysts, in: ECS Trans., ECS, 2009: pp. 463–467.

[58] V. Bambagioni, C. Bianchini, J. Filippi, A. Lavacchi, W. Oberhauser, A. Marchionni, S. Moneti, F. Vizza, R. Psaro, V. Dal Santo, A. Gallo, S. Recchia, L. Sordelli, Single-site and nanosized Fe–Co electrocatalysts for oxygen reduction: Synthesis, characterization and catalytic performance, J. Power Sources. 196 (2011) 2519–2529.

[59] Y. Peng, Z. Li, D. Xia, L. Zheng, Y. Liao, K. Li, X. Zuo, Probing the influence of the center atom coordination structure in iron phthalocyanine multi-walled carbon nanotube-based oxygen reduction reaction catalysts by X-ray absorption fine structure spectroscopy, J. Power Sources. 291 (2015) 20–28.

[60] M. Ohtsuka, F. Kitamura, On the Formal Redox Potential of Oxygen Reduction Reaction at Iron Phthalocyanine/Graphene Composite Electrode in Alkaline Media, Electrochemistry. 83 (2015) 376–380.

Page 276: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Nitrogen – metal containing carbon nanotubes catalysts for oxygen reduction reaction

261

[61] M. Lefèvre, J.-P. Dodelet, Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts, Electrochim. Acta. 48 (2003) 2749–2760.

[62] F. Jaouen, F. Charreteur, J.P. Dodelet, Fe-Based Catalysts for Oxygen Reduction in PEMFCs, J. Electrochem. Soc. 153 (2006) A689–A698.

[63] H. Schulenburg, S. Stankov, V. Schünemann, J. Radnik, I. Dorbandt, S. Fiechter, P. Bogdanoff, H. Tributsch, Catalysts for the Oxygen Reduction from Heat-Treated Iron(III) Tetramethoxyphenylporphyrin Chloride: Structure and Stability of Active Sites, J. Phys. Chem. B. 107 (2003) 9034–9041.

Page 277: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán
Page 278: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

CHAPTER 7

General conclusions

Page 279: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán
Page 280: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

General conclusions

265

CHAPTER 7. GENERAL CONCLUSIONS

In this PhD Thesis, the functionalization of nanostructured carbon

materials using conventional chemical and thermal treatment methods and

novel electrochemical methods has been studied. The prepared materials

were tested in two different applications; as electrocatalysts for the

oxygen reduction reaction and as transducer elements of biosensors for

glucose detection. The results obtained from this study led to the

following general conclusions:

Electrochemical functionalization of carbon nanotubes with

aminobenzene acids. Electroactivity towards oxygen reduction reaction.

- The functionalization of CNTs with aminobenzoic,

aminobenzensulfonic and aminobenzylphosphonic acids has been

carried out using a potentiodynamic method at oxidative

conditions.

- The functionalization is achieved through the oxidative formation

of an aminobenzene radical that can form an electroactive polymer

layer. If the upper potential limit is increased enough, the

generation of surface oxygen groups takes place in the edge sites

and defects of the carbon nanotubes, together with the covalent

functionalization of the aminobenzenes present in the media.

- Different heat treatments using an inert and a slightly oxidant

atmospheres of the aminobenzoic acid-based samples produced

interesting changes in the surface chemistry of the materials. The

first one leads to the decomposition of the formed functionalities.

Page 281: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 7

266

The latter one favored the fixation of nitrogen groups of the

samples, indicating the occurrence of oxidation reactions that

stabilize the functionalities formed on the carbon surface.

- The functionalized materials did not show an enhancement in the

ORR activity compared to the pristine material, which points out

that the carboxylic, sulfonic and phosphonic functions do not seem

to have any effect on the electrocatalytic activity.

- The heat treated samples in a slightly oxidizing atmosphere

produced a material with an enhanced ORR activity, probably due

to the presence of oxygen and nitrogen functionalities on the

carbon nanotubes surface that modulate the electron-donor

properties of the resulting material.

Successful functionalization of superporous zeolite templated carbon

using aminobenzene acids and electrochemical methods.

- The functionalization of ZTC with 2- and 4- aminobenzoic acids

was performed using potentiodynamic techniques. Different

experimental condition were tested in order to perform a

successful functionalization without the loss of the unique

structure of the ZTC.

- The electrochemical behavior of the functionalized samples

showed the appearance of different redox process, characteristic

of each aminobenzoic acid, corresponding to the new ABA-

derived short chain polymers formed on the ZTC surface.

Page 282: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

General conclusions

267

- XRD, FTIR, XPS and TPD experiments confirmed the presence

of different ABA-derived nitrogen functionalities over the ZTC

surface.

- An increase in the capacitance due to pseudocapacitance

contribution was seen for both samples and was maintained at high

scan rates, pointing out a fast charge transfer between the inserted

functionalities and the ZTC electrodes.

- The stability of the anchored functionalities was studied by

successive cycling and exposure to high oxidative conditions. The

latter leads to the oxidation and removal of most of the ABA

functionalities in the ZTC surface. Nevertheless, the presence of

these functionalities protected ZTC towards electrooxidation, a

feature that can be interesting for the development of more durable

ZTC electrodes.

Electrochemical glucose biosensors based on nanostructured carbon

materials

- Electrochemical glucose biosensors based on immobilized glucose

oxidase over carbon nanotubes were developed by adsorption of

the enzyme. Several functionalization procedures were tested on

the pristine materials to study the effect of the surface chemistry

upon the glucose oxidase immobilization and its electrochemical

activity towards glucose detection.

- The successful enzyme immobilization was confirmed by cyclic

voltammetry, which demonstrated a direct electron transfer

between the enzyme and the carbon nanotubes by the detection of

Page 283: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 7

268

the electroactive group of the enzyme (FAD) in all tested

materials.

- The glucose detection was performed by using different

approaches: the detection of the H2O2 formed during the reaction

at 0.45 V, the introduction of a mediator as an electron carrier

between the glucose and the FAD at 0.2 V and the detection at

negative potentials, i.e. at -0.4 V, which is close to the potential of

the FAD/FADH2 redox processes.

- Chronoamperometric experiments at oxidation potentials of 0.45

V showed a better sensor performance for the oxidized carbon

nanotubes, which seems to be related to the presence of the

carboxylic groups in the carbon surface that can promote the

formation of amide bridges with the amino groups of the protein

chains in the enzyme, thus promoting a higher enzyme

immobilization.

- The use of ferrocene as a redox mediator in the measurements

allowed to work at lower potentials (0.2V), removing uric acid

interference. The successful mediation was confirmed by cyclic

voltammetry with successive glucose additions and the sensitivity

of the biosensor was enhanced in two orders of magnitude

compared to the results at 0.45 V.

- The use of a potential close to the FAD/FADH2 redox processes (-

0.4 V) showed a good response towards glucose detection, while

removing all interference problems. It was found that the presence

of O2 plays a key role in the detection mechanism in which there

is a contribution of the changes in the local concentration of

Page 284: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

General conclusions

269

oxygen in the electrode surface with some indirect contribution of

the direct electron transfer mechanism.

Nitrogen–metal containing carbon nanotubes catalysts for oxygen

reduction reaction

- Catalysts based in FePc and CoPc loaded carbon nanotubes were

prepared by incipient wetness impregnation with further heat

treatments. They were characterized and tested as electrocatalysts

for the oxygen reduction reaction.

- The prepared catalysts displayed an enhanced activity towards

ORR compared to the pristine carbon nanotubes. The samples

based in FePc showed a better performance than the CoPc-based

samples, with equivalent performance to the state-of-the-art Pt-C

catalyst.

- According to the temperature of the heat treatment, changes in the

chemical properties of the materials are produced. At 400 °C no

relevant changes in the composition and kind of surface

functionalities and chemical structure were found but stronger

interaction of the FePc with the carbon nanotubes is observed. At

800 °C, the decomposition of the N4-chelate was observed,

rendering the inclusion of some of the nitrogen atoms in the carbon

nanotubes surface.

- The study of functionalized carbon nanotubes with oxidized

nitrogen species as support was done in order to assess the effect

of the surface chemistry in the interaction between the FePc and

the carbon nanotubes. It was found that the presence of such

Page 285: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 7

270

functionalities on the support leads to a decrease in the limiting

current intensity of the catalysts, since they prevent the π-π

interaction between the graphene surface and the FePc.

- The measurements conducted on acid washed FePc catalysts

revealed that even with a very low amount of Fe (0.3 %) in the

catalysts, an excellent electrocatalytic activity towards ORR is

observed. This suggests that most of the FePc initially supported

on the carbon nanotubes seems to be electrochemically inactive,

and therefore it would be possible to enhance ORR activity of

these catalytic systems by enhancing the amount of FePc directly

supported over the carbon material.

- Stability tests were performed with the prepared catalysts. The fast

deactivation seems to be related to the H2O2 formation during the

experiments. The H2O2 seems to oxidize the nitrogen atoms of the

N4-chelate, which changes the electronic configuration, rendering

a drop in the performance. The FePc catalyst heat treated at 400

ªC showed the highest tolerance hydrogen peroxide formation,

therefore confirming the huge impact on ORR performance and

stability derived from a good interaction between the

phthalocyanine and the surface of the carbon nanotube.

Page 286: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

General conclusions

271

CAPÍTULO 7. CONCLUSIONES GENERALES

En la presente Tesis Doctoral se ha estudiado la funcionalización de

materiales carbonosos nanoestructurados empleando métodos químicos,

tratamientos térmicos y novedosos métodos electroquímicos. Los

materiales preparados fueron estudiados en dos aplicaciones: (i) como

electrocatalizador para la reacción de reducción de oxígeno, (ii) como

elemento transductor en biosensores para detección de glucosa. Los

resultados obtenidos en este estudio dieron lugar a las siguientes

conclusiones generales:

Funcionalización electroquímica de nanotubos de carbono con ácidos

aminobencénicos. Electroactividad hacia la reacción de reducción de

oxígeno.

- La funcionalización de nanotubos de carbono con ácidos

aminobenzoico, aminobencensulfónico y aminobencilfosfónico

ha sido llevada a cabo empleando un método potenciodinámico en

condiciones oxidativas.

- La funcionalización se realizó por medio de la formación oxidativa

de un radical amino que da paso a la formación de una capa de

polímero electroquímicamente activo. Si el potencial límite

superior durante la funcionalización es suficientemente alto, es

posible la generación grupos superficiales oxigenados en los sitios

borde y en los defectos de los nanotubos de carbono junto con la

funcionalización covalente de los grupos aminobencénicos

presentes en el electrolito.

Page 287: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 7

272

- Una serie de tratamientos térmicos empleando dos atmósferas

diferentes, inerte y ligeramente oxidante, de las muestras basadas

en el ácido aminobenzoico produjo cambios en la química

superficial de los materiales. La primera lleva a la descomposición

de las funcionalidades formadas y la última favorece la fijación de

los grupos nitrogenados en los materiales, gracias a que se

producen reacciones de oxidación que estabilizan las

funcionalidades formadas en la superficie del material carbonoso.

- Los materiales funcionalizados no presentaron una mejora en la

actividad hacia la reacción de reducción de oxígeno comparados

con el material original, lo que indica que las funciones tipo

carboxilo, sulfónico y fosfónico no parecen afectar la actividad

electrocatalítica.

- El tratamiento de los materiales en una atmósfera ligeramente

oxidante produce un material con una actividad mejorada hacia la

reducción de oxígeno probablemente por la presencia de

funcionalidades oxigenadas y nitrogenadas en la superficie de los

nanotubos de carbono que modulan las propiedades electrón-

dador del material resultante.

Funcionalización de un material carbonoso con porosidad ordenada

(ZTC) empleando ácidos aminobencénicos y métodos electroquímicos.

- La funcionalización de ZTC con los ácidos 2- y 4- aminobenzoico

ha sido realizada empleando técnicas potenciodinámicas. Se

optimizaron las condiciones experimentales para conseguir la

Page 288: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

General conclusions

273

funcionalización del material sin perder la estructura única del

ZTC.

- Los materiales funcionalizados mostraron la presencia de

diferentes procesos redox, característicos de cada ácido

aminobenzoico, correspondientes a los polímeros de cadena corta

derivados de los ABA formados en la superficie del ZTC.

- Los experimentos de XRD, FTIR, XPS y TPD confirmaron la

presencia de diferentes funcionalidades nitrogenadas derivadas de

los ABA en la superficie del ZTC.

- Se observó un incremento en la capacidad de los materiales

funcionalizados por contribución de pseudocapacidad, la cual se

mantiene a elevadas velocidades de barrido, indicando la rápida

transferencia de carga entre las funcionalidades introducidas y los

electrodos de ZTC.

- Se estudió la estabilidad de las funcionalidades ancladas por medio

de ciclado y exposición de los materiales a condiciones altamente

oxidativas. La última lleva a la oxidación y eliminación de la

mayor parte de las funcionalidades de los ABA en la superficie del

ZTC. Sin embargo, la presencia de estas funcionalidades protegen

al ZTC de la electrooxidación, un factor que es interesante para el

desarrollo de electrodos de ZTC de mayor durabilidad.

Biosensores electroquímicos de glucosa basados en materiales

carbonosos nanoestructurados.

- Se desarrollaron biosensores electroquímicos de glucosa basados

en la inmovilización de glucosa oxidasa en nanotubos de carbono

Page 289: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 7

274

de distinta estructura (tipo tubular y tipo espina de pescado) por

medio de la adsorción de la enzima. Los materiales fueron

previamente funcionalizados para estudiar el efecto de la química

superficial en la inmovilización de glucosa oxidasa y su actividad

hacia la detección de glucosa.

- La inmovilización de la glucosa oxidasa se confirmó por

voltamperometría cíclica, en la cual se demostró la transferencia

electrónica directa entre la enzima y los nanotubos de carbono por

la detección del grupo electroactivo de la enzima (FAD) en todos

los materiales preparados.

- La detección de glucosa fue realizada empleando diferentes

enfoques: detección del H2O2 formado durante la reacción a 0.45

V, la introducción de un mediador como transportador de

electrones entre la glucosa y la FAD a 0.2 V y la detección a

potenciales negativos, a -0.4 V, el cual es cercano al potencial de

los procesos redox de la FAD/FADH2.

- Los experimentos de cronoamperometría realizados a potenciales

de oxidación de 0.45 V mostraron un mejor comportamiento como

sensor para los nanotubos de carbono oxidados, lo cual parece

estar relacionado con la presencia de grupos carboxílico en la

superficie del carbón que promueve la formación de puentes amida

con los grupos amino de las cadenas de proteínas presentes en la

enzima, promoviendo una mayor inmovilización de esta.

- El uso de ferroceno como mediador redox durante las medidas

permitió trabajar a potenciales bajos (0.2 V), eliminando la

interferencia del ácido úrico. La acción del mediador fue

Page 290: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

General conclusions

275

confirmada por voltamperometría cíclica con adiciones sucesivas

de glucosa y la sensibilidad del biosensor fue mejorada en dos

órdenes de magnitud comparada con los resultados a 0.45 V.

- El uso de un potencial cercano a los procesos redox de la

FAD/FADH2 (-0.4 V) produjo una buena respuesta a la detección

de glucosa, eliminando todos los interferentes. Se encontró que la

presencia del O2 juega un papel clave en el mecanismo de

detección, el cual parece consistir en la contribución conjunta del

cambio de concentración de local de oxígeno en la superficie del

electrodo por la acción de la enzima y la interferencia de la glucosa

en el mecanismo de transferencia electrónica directa.

Catalizadores basados en nanotubos de carbono con contenido en

nitrógeno-metal para la reacción de reducción de oxígeno

- Catalizadores basados en FePc y CoPc soportadas en nanotubos

de carbono fueron preparados por impregnación húmeda

incipiente con tratamientos térmicos posteriores. Los catalizadores

fueron caracterizados y probados como electrocatalizadores para

la reacción de reducción de oxígeno.

- Los catalizadores preparados mostraron una actividad mejorada

hacia la ORR comparados con los nanotubos de carbono

originales. Las muestras basadas en FePc mostraron una mayor

actividad catalítica que las muestras basadas en CoPc, con un

comportamiento equivalente al de los catalizadores de Pt-C.

- De acuerdo con la temperatura del tratamiento térmico, se

producen cambios en las propiedades químicas de los materiales.

Page 291: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 7

276

A 400 °C no se presentan cambios relevantes en la composición y

tipos de funcionalidades en la superficie y la estructura química,

pero se observó que se favorecía una fuerte interacción entre la

FePc y los nanotubos de carbono. A 800 °C, se observó la

descomposición del quelato, que lleva a la introducción de algunos

átomos de nitrógeno en la superficie de los nanotubos de carbono.

- El estudio del uso de nanotubos de carbono con especies

nitrogenadas oxidadas como soporte se realizó para determinar el

efecto de la química superficial en la interacción entre FePc y los

nanotubos de carbono. Se encontró que la presencia de dichas

funcionalidades en el soporte llevan a una disminución en la

densidad de corriente límite de los catalizadores, ya que impide las

interacciones π-π entre la lámina grafénica y la FePc.

- Las medidas realizadas en los catalizadores FePc lavados en ácido

revelaron que incluso con una muy pequeña cantidad de Fe (0.3

%) en los catalizadores, se observó una excelente actividad

electrocatalítica hacia la ORR. Esto sugiere que la mayoría de la

FePc inicialmente soportada en los nanotubos de carbono es

electroquímicamente inactiva y por lo tanto sería posible mejorar

la actividad hacía la ORR de estos sistemas catalíticos aumentando

la cantidad de FePc directamente soportada de un material

carbonoso.

- Se realizaron pruebas de estabilidad de los catalizadores

preparados. La rápida desactivación parece estar relacionada con

la formación de H2O2 durante los experimentos. El H2O2 parece

oxidar los átomos de nitrógeno del quelato, lo que cambia su

Page 292: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

General conclusions

277

configuración electrónica, llevando a una caída en el rendimiento.

El catalizador basado en FePc tratado a 400 °C mostró la mejor

tolerancia a la formación del peróxido de hidrógeno, confirmando

el impacto en la actividad hacia la ORR y la estabilidad derivada

de la buena interacción entre la ftalocianina y la superficie de los

nanotubos de carbono.

Page 293: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán
Page 294: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Summary

Page 295: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán
Page 296: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Summary

281

SUMMARY

The present PhD Thesis is focused in the functionalization of

nanostructured carbon materials by using chemical and electrochemical

techniques for their application as electrocatalysts for the oxygen

reduction reaction at the cathode of fuel cells and as transducer elements

in electrochemical biosensors. Thus, this PhD Thesis covers the

functionalization of the several nanostructured carbon materials, provides

the chemical and electrochemical characterization of the functionalized

materials and the study of their use in the mentioned applications.

The functionalization of CNTs using aminobenzene acids has been

performed by using potentiodynamic methods at oxidative conditions. A

noticeable increase in the capacitance for the functionalized CNTs points

out the formation of an electroactive polymer thin film on the CNTs

surface along with covalently bonded functionalities. The ORR activity of

the functionalized samples was similar to that of the parent CNTs,

independently of the functional group present in the aminobenzene acid.

A heat treatment in a slightly oxidizing atmosphere at 800 ºC of the CNTs

functionalized with aminobenzoic acid produced a material with high

amounts of surface oxygen and nitrogen groups, that seem to modulate

the electron-donor properties of the resulting material, which enhance the

ORR activity. These are promising results that validates the use of

electrochemistry for the synthesis of novel N-doped electrocatalysts for

ORR in combination with adequate heat treatments.

Page 297: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 7

282

A novel and selective electrochemical functionalization of a zeolite

templated carbon (ZTC) with two different aminobenzene acids (2-

aminobenzoic and 4-aminobenzoic acid) was performed. Optimization of

the functionalization conditions was achieved in order to preserve the

unique ZTC structure. It was possible to avoid the electrochemical

oxidation of the highly reactive ZTC structure by controlling the potential

limit of the potentiodynamic experiment in presence of aminobenzene

acids. The electrochemical characterization demonstrated the formation

of polymer chains along with covalently bonded functionalities to the

ZTC surface. The success of the proposed approach was also validated by

using other characterization techniques, which confirmed the presence of

different nitrogen groups in the ZTC surface. This promising method

could be used to achieve highly selective functionalization that could

enhance the electro-oxidation resistance of highly porous carbon

materials.

The development of glucose electrochemical sensors have been carried

out by the immobilization of GOx on carbon nanotubes, which were

previously modified using chemical and electrochemical methods. The

results show that all GOx-loaded materials were active to the glucose

detection using different approaches: the detection of the H2O2 formed

during the reaction at 0.45 V, the introduction of a mediator as an electron

carrier between the glucose and the FAD at 0.2 V and the detection at

negative potentials, i.e. at -0.4 V, which is close to the potential of the

FAD/FADH2 redox processes. The best results were achieved with

oxidized samples, which are proposed to immobilize a larger amount of

Page 298: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Summary

283

active enzymes owing to the presence of carboxylic functionalities. The

latter also remove the interference problems with other analytes usually

present in the biological fluids.

Catalyst based in FePc and CoPc loaded CNTs were prepared. The

prepared catalysts displayed an enhanced activity towards ORR compared

to the pristine CNTs. The samples based in FePc showed a better

performance than the CoPc-based samples, with equivalent performance

to the state-of-the-art Pt-C catalyst even with very low amount of metal.

According to the temperature of the heat treatment, changes in the

chemical properties of the materials are produced, which showed an

enhanced activity when the samples are heat treated at 400 ºC where a

stronger interaction of the FePc with the CNTs is observed. Additionally,

the use of functionalized carbon nanotubes with oxidized nitrogen species

as support showed that the presence of such functionalities leads to a

decrease in the ORR activity, since they prevent the π-π interaction

between the CNTs surface and the FePc. Finally, stability tests were

performed and it was found that the fast deactivation seems to be related

to the H2O2 formation during the experiments.

Page 299: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 7

284

Page 300: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Summary

285

RESUMEN

La presente Tesis doctoral se centra en la funcionalización de materiales

carbonosos nanoestructurados por medio de técnicas químicas y

electroquímicas para su aplicación como electrocatalizadores en la

reacción de reducción de oxígeno en el cátodo de las pilas de combustible

y como elemento transductor en biosensores electroquímicos. Así, en esta

Tesis Doctoral se lleva a cabo la funcionalización de diversos materiales

carbonosos nanoestructurados, se presenta la caracterización química y

electroquímica de los materiales funcionalizados y se detalla su estudio en

las aplicaciones mencionadas.

Se presenta la funcionalización de CNTs con ácidos aminobencénicos

empleando métodos potenciodinámicos en condiciones oxidativas. Los

CNTs funcionalizados presentan un notable incremento en la capacidad,

debido a la formación de una película delgada de polímero en la superficie

de los CNTs así como funcionalidades ancladas covalentemente. La

actividad hacia la ORR de los materiales funcionalizados es similar a los

CNTs originales, independientemente del grupo funcional presente en el

ácido aminobencénico. El tratamiento térmico en una atmósfera oxidante

a 800 ºC de los CNTs funcionalizados con el ácido aminobenzoico

producen un material con una alta cantidad de grupos oxigenados y

nitrogenados, que parecen modular las propiedades electrón-dador del

material resultante, lo que mejora la actividad hacia la ORR. Estos

resultados validan el uso de técnicas electroquímicas en combinación con

Page 301: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Chapter 7

286

tratamientos térmicos adecuados para la síntesis de electrocatalizadores

para la ORR.

Se ha estudiado la funcionalización selectiva de ZTC con los ácidos 2- y

4- aminobenzoicos. Se presenta la optimización de las condiciones de

funcionalización para preservar la estructura única del ZTC, en las que fue

posible evitar la oxidación electroquímica de la estructura altamente

reactiva del ZTC controlando el potencial del límite superior usado en el

experimento potenciodinámico. La caracterización electroquímica

demostró la formación de cadenas poliméricas así como funcionalidades

ancladas covalentemente a la superficie del ZTC. La exitosa

funcionalización del material carbonoso mediante el método de propuesto

fue confirmada usando otras técnicas de caracterización, que demostró la

presencia de diferentes grupos nitrogenados en la superficie del ZTC. Este

método puede ser usado para lograr una funcionalización altamente

selectiva en materiales carbonosos con elevada porosidad.

Se desarrollaron sensores electroquímicos para la detección de glucosa

empleando CNTs como soporte para inmovilizar GOx; los CNTs fueron

modificados previamente usando métodos químicos y electroquímicos.

Los resultados mostraron que todos los materiales son activos a la

detección de glucosa, se emplearon distintos enfoques: la detección del

H2O2 formado durante la reacción a 0.45 V, la introducción de un

mediador como transportador de electrones entre la glucosa y la FAD a

0.2 V y la detección a potenciales negativos (-0.4 V), que es un potencial

cercano al potencial del proceso redox de la FAD/FADH2. El mejor

resultado se obtuvo con las muestras oxidadas, que parecen inmovilizar

Page 302: Electrochemically modified carbon materials for ... · Electrochemically modified carbon materials for applications in electrocatalysis and biosensors . Carolina González Gaitán

Summary

287

una mayor cantidad de enzima debido a la presencia de grupos carboxílico

en la superficie. El último enfoque permite la eliminación de las

interferencias con otros analitos presentes en fluidos biológicos.

Se prepararon catalizadores basados en FePc y CoPc soportados en CNTs.

Todos los catalizadores preparados presentan una mejor actividad hacia la

ORR comparada con los CNTs originales. Las muestras basadas en FePc

mostraron un mejor rendimiento que las muestras basadas en CoPc, con

un comportamiento equivalente a los catalizadores de Pt-C comerciales

incluso con una cantidad baja en metal. De acuerdo con la temperatura del

tratamiento térmico, se producen cambios en la composición y estructura

del catalizador, el cual mostró una mejora en la actividad cuando las

muestras fueron tratadas térmicamente a 400 ºC, gracias a una mejor

interacción entre la FePc y los CNTs. Además, se emplearon como soporte

CNTs funcionalizados con especies nitrogenadas y se observó que estas

funcionalidades llevan a una disminución en la actividad hacía la ORR,

ya que previenen la interacción π-π entre la superficie de los CNTs y la

FePc, dificultando la transferencia de carga. Finalmente se realizaron

pruebas de estabilidad y se encontró que la desactivación está relacionada

con la formación de H2O2 durante la reacción.