46
© 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary © 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Low Frequency Electromagnetic Applications: Power Systems Design Methodology Mark Christini, P.E. Lead Application Engineer ANSYS, Inc.

Electromagnetic Applications: Design Methodology NE39 NE40 vsoll NE41. P. v_soll1 100. ssoll sist sschl T 7.500m-2.500m 0 5.000m 0 500.0m 812.9m s_ist s6 T 7.500m-2.500m 0 0 500.0m

Embed Size (px)

Citation preview

© 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary© 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

Low Frequency Electromagnetic Applications:

Power Systems Design Methodology

Mark Christini, P.E.Lead Application Engineer

ANSYS, Inc.

© 2010 ANSYS, Inc. All rights reserved. 2 ANSYS, Inc. Proprietary

ANSYS offers a complete low frequency electromagnetic design solution with the Power Systems Design Methodology

What is the Power Systems Design Methodology?Five combinable tools which assist engineers in designing and analyzing power systems, drives, and componentsProvides true multi-physics coupled simulationsIntegrates electromagnetic, circuit, and system engineering using a common desktop environment

The Power Systems Design Methodology includes:Simplorer – for complete system analysisMaxwell – for magnetic analysis of componentsANSYS CFD – thermal analysis using fluid flowPExprt – for transformer and inductor designQ3D Extractor – for parasitic extraction of interconnects, busbars, and cables

Overview

© 2010 ANSYS, Inc. All rights reserved. 3 ANSYS, Inc. Proprietary

Power & Drives Transportation

Power Conversion/Quality

Drives Power Supplies

Aerospace

Rail Automotive

Applications/Markets

© 2010 ANSYS, Inc. All rights reserved. 4 ANSYS, Inc. Proprietary

System

Control

Thermal

Digital

Challenges for Power Systems

© 2010 ANSYS, Inc. All rights reserved. 5 ANSYS, Inc. Proprietary

Simplorer

Simulink

MathcadCo Simulation

ModelSIM

Solutions for Power Systems

© 2010 ANSYS, Inc. All rights reserved. 6 ANSYS, Inc. Proprietary

Complete Power System Design

ThermalElectromagnetic MechanicalFluidicComponent

CircuitSubsystem

System

ANSYS: Multiphysics Solvers

XPrt Tools

Simplorer

FEA Field Solvers

© 2010 ANSYS, Inc. All rights reserved. 7 ANSYS, Inc. Proprietary

SimplorerSystem Design

MaxwellElectromagnetic Components

PExprtMagnetics

RMxprtMotor Design

Q3DParasitics

ANSYS MechanicalThermal/Stress

Electromechanical Design Flow

ANSYS CFDIcepack

Model order Reduction

Co-simulation

Field Solution

Model Generation

© 2010 ANSYS, Inc. All rights reserved. 8 ANSYS, Inc. Proprietary

Simplorer

© 2010 ANSYS, Inc. All rights reserved. 9 ANSYS, Inc. Proprietary

• Three Basic Simulation Types:• Circuits• Block Diagrams• State Machines

• Multi-domain simulator for electrical, magnetic, mechanical, fluid, and thermal systems

• Integrated analysis with EM tools (Maxwell, PExprt, Q3D, RMxprt, HFSS) and thermal tools (ANSYS CFD, Icepack)

• Co-simulation with Maxwell and Simulink• Optimization and Statistical analysis • VHDL-AMS capability

SUM2_6

CONST

id_ref

G(s)

GS2

I

I_PART_id

GAINid

LIMIT

yd

UL := 9

LL := -9

GAIN

P_PART_id

KP := 0.76

IMP = 0

IMP = 1IMP = 0IMP = 1

IMP = 0 and RLine.I <= ILOW

IMP = 1 and RLine.I >= IUP

IMP = 0 and RLine.I >= IUP

IMP = 1 and RLine.I <= ILOW

SET: CS1:=-1SET: CS2:=-1SET: CS3:=-1SET: CS4:=-1

SET: CS1:=-1SET: CS2:=1SET: CS3:=-1SET: CS4:=-1

SET: CS1:=1SET: CS2:=-1SET: CS3:=-1SET: CS4:=-1

SET: CS1:=-1SET: CS2:=-1SET: CS3:=-1SET: CS4:=-1

Circuits

Block Diagrams

State Machines

12

R1 R2 R3 R450 1k 1k50

C1 C2

3.3u3.3u

V0 := 5 V0 := 0

N0005

N0003N0004

N0002

Simplorer - Introduction

© 2010 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary

IMP = 0

IMP = 1IMP = 0IMP = 1

IMP = 0 and RLine.I <= ILOW

IMP = 1 and RLine.I >= IUP

IMP = 0 and RLine.I >= IUP

IMP = 1 and RLine.I <= ILOW

SET: CS1:=-1SET: CS2:=-1SET: CS3:=-1SET: CS4:=-1

SET: CS1:=-1SET: CS2:=1SET: CS3:=-1SET: CS4:=-1

SET: CS1:=1SET: CS2:=-1SET: CS3:=-1SET: CS4:=-1

SET: CS1:=-1SET: CS2:=-1SET: CS3:=-1SET: CS4:=-1

Electrical/Electronics(analog and digital circuits)

Digital Control Systems(state machine)

Analog Control, Mechanics(block diagram)

12

R1 R2 R3 R450 1k 1k50

C1 C2

3.3u3.3u

V0 := 5 V0 := 0

N0005

N0003N0004

N0002

C14.7m

MS3 ~BA C

IGBT1 IGBT2 IGBT3

IGBT4 IGBT5 IGBT6

C

B

XOR

XOR2_DEL1

XOR

XOR2_DEL2

AND

AND2_DEL1

AND

AND2_DEL2 OR

OR2_DEL1

A

SUM

Carry

SUM2_6

CONST

id_ref

G(s)

GS2

I

I_PART_id

GAINid

LIMIT

yd

UL := 9

LL := -9

GAIN

P_PART_id

KP := 0.76

Each part of a complex technical system is represented by the most appropriate modeling language

Simplorer Simulation Types

© 2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

Multitude of DomainsMultitude of Tools & Methods

Mechanics

Power Converter

Electromechanical

Transformer

Sensors

Control

Power Utility

Multi-domain Simulator

© 2010 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary

Simulation initiated from SIMPLORER

Simplorer - Simulink Cosimulation

© 2010 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary

Power Characterization Tool

• Models DC/DC converters based on manufacturer data sheets and test results

• Creates behavioral model (not switching model) which solves quickly and efficiently

• Includes library of existing models from many converter manufacturers

© 2010 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary

Switch Mode Power Supply (SMPS) library contains a wide variety of average and switch level models

Switch Mode Power Supply Library

© 2010 ANSYS, Inc. All rights reserved. 15 ANSYS, Inc. Proprietary

i_a"Dc

T

30.00

-10.00

0

20.00

0 812.9m500.0m

t

ETR

t

ETS

t

ETT

TH11 TH12 TH13

TH14 TH15 TH16

TH21 TH22 TH23

TH24 TH25 TH26

UR US UT

USynR USynS USynT

UR

US

UT

ERS

ERS

EXT

v_soll

60

P

n_soll

100

P

un_soll

5m

LIMITER

um_sollB

10 -10

un

EXT

un_ist

0.04775omg"MasTacho"

NEG

NEG1

EXT

n_ist

omg"MasTacho"9.549

P

v_ist

0.16667m

I

s_ist

1

EXT

n6

9.549omg"MasTisch"

P

v6

0.16667m

I

s6

1

EXT

uni6

0.04775omg"MasTisch"

I

GRnI

350.385

P

GRnP

4.67

10 -10

ui_soll

LIMITER

ui_sollB

-7.57.5

ui

EXT

ui_ist

i_a"DcmpMotor"0.2

NEG

NEG2

I

GRiI

45.446-1010

P

GRiP

0.168

ustICA :

ICA1

VA1 :VA1_1

Start Sp

VSoll

NE1NE2

lTT2 lTT1

t Y

dssi

SR1

SR2

P2P1

NE3

NE4

NE5

NE6

NE7

NE8

NE9

NE10

W01 W02 W03

W04 W05 W06

V01 V02 V03

V04 V05 V06

Z11 Z21 Z12 Z22 Z13 Z23

Z14 Z24 Z15 Z25 Z16 Z26

NE11 NE12

NE13 NE14

NE15 NE16

NE17 NE18 NE19 NE20

NE21 NE22

NE23 NE24 NE25

NE26 NE27 NE28 NE29 NE30 NE31

NE32 NE33 NE34 NE35 NE36 NE37

NE38 NE39 NE40

vsoll

NE41

P

v_soll1

100

ssollsistsschl

T

7.500m

-2.500m

0

5.000m

0 812.9m500.0m

s_ists6

T

7.500m

-2.500m

0

5.000m

0 812.9m500.0m

v6v_ist

T

20.00m

-10.00m

0

0 812.9m500.0m

m_Dffm_Dffm_Dffm_Dffm_Dff

T

40.00

-20.00

0

25.00

0 812.9m500.0m

u_a"D

T

200.0

-100.0

0

0 812.9m500.0m

J

MasTachoJ := 0.15m

J

MasKupplgLiJ := 0.9m

J

MasKpplgReSpdlLiJ := 1.55m

J

MasSpindelReJ := 1.94m

J

MasTisch

J := 0.57m

STF

StfTachowellec := 20k

k_Vsc := 66.7m

STF

StfMotorwellec := 35k

k_Vsc := 0.24

STF

StfKpplgc := 186k

k_Vsc := 0.39

STF

StfSpindelc := 18k

k_Vsc := 0.223

STF

StfSpdlAxialc := 190

k_Vsc := 0.095

M

DCMP

DcmpMotorR_a := 1.28

L_a := 4.749m

k_e := 971m

I_a0 := 0

J := 2.1m

k_Vsc := 0.25

k_Vsc := 1

State MachineMechanical Elements

Control loop

Inverter Drive System

© 2010 ANSYS, Inc. All rights reserved. 16 ANSYS, Inc. Proprietary

Wind Power Generator System

© 2010 ANSYS, Inc. All rights reserved. 17 ANSYS, Inc. Proprietary

Active devices Magnetics

Controller

Power Supply with Analog Control

© 2010 ANSYS, Inc. All rights reserved. 18 ANSYS, Inc. Proprietary

B6U

D1 D3 D5

D2 D4 D6

B6U1

From "Power" lib

R1

p

n

load1

C1

Power := 700Imax := 1k

50k 820u

R250k

C2

820u

C3

820u

C4

820u

R350k

C5

820u

R450k

C6

820u

C7

820u

C8

820u

R550k

C9

820u

R650k

C10

820u

C11

820u

C12

820u

D1 C13560u

C14560u

C15560u

C16560u

C17560u

C18560u

C19560u

C20560u

C21560u

C22560u

From "SMPS" lib

p

n

load2Power := 30

Imax := 1k

volta

ge

-180.00

180.00

-100.00

0

100.00

curre

nt

-3.25

3.25

-2.00

0

2.00

75.00m 80.00m78.00m

Input Voltage, Current

current -1.00 *...voltage E1.V [V]

600.00

800.00

700.00

0 80.00m

Load 1 Power

Pload1

20.00

40.00

30.00

0 80.00m

Load 2 Power

Pload2

+ V

VM2

AAM2

EQU FML1

Pload2:=AM2.I * VM2.V

+ V VM1

AAM1

Pload1:=AM1.I * VM1.V

256.21

256.35

256.25

256.30

70.39m 80.00m75.00m

Output Voltage

VM1.V...

L1

1.5m

L2

1.5m

L3

1.5m

E1

E2

E3

va

vb

vc

neutral

va2neutral:=va.V - neutral.V

R7

FFTProbe

FFT_Probe1 INPUT := E1.I

FUND := 400

DELAY := 75m

DigViewS...

Name ValueFFT_Probe1.A1 2.97FFT_Probe1.A2 656.50uFFT_Probe1.A3 170.04uFFT_Probe1.A4 161.83uFFT_Probe1.A5 819.83mFFT_Probe1.A6 104.94uFFT_Probe1.A7 251.09mFFT_Probe1.A8 218.15uFFT_Probe1.A9 100.73uFFT_Probe1.A10 168.47u

FFT_Probe1.THD [%] 30.04PWR_Probe1.PFE 919.17m

PF_dist 957.73mPF_total 880.31m

PWRProbe

PWR_Probe1 TSTART := 75m

TSTOP := Tend

FREQ := 400I[0] := -E1.I

V[0] := E1.V

PF_dist:=1/(sqrt(1 + squ(FFT_Probe1.THD/100) ) )

PF_total:=PWR_Probe1.PFE * PF_dist

-3.25

3.25

0

0 80.00m

2DGraphSel5

L1.I [A]

Power Factor Correction and Total Harmonic Distortion

© 2010 ANSYS, Inc. All rights reserved. 19 ANSYS, Inc. Proprietary

GAIN

n

GAIN

ust in

GAIN iq

Y t

ust

d-q-Current Controller

Speed Control

Yt

M LOAD

Phase Transformation / Control Signal Generation by Space Vector Modulation

G(s)

GS2

I

I id

GAIN

id

LIMIT

yq

UL := 10

LL := -10

LIMIT

yd

UL := 10LL := -10

GAIN

P id

KP := 1.96

G(s

)

GS1

I

I n

KI := 29.02kUL := 10

LL := -10

GAIN

P PART n

LIMIT

m ref

KP := 0.1161k

IGBT1 IGBT2 IGBT3

IGBT4 IGBT5 IGBT6

CONST

id ref

KI := 240

GAIN

P Iq

KP := 1.96

I

I iq

KI := 240

ICA: EQU

PI3:=pi / 3.

P18:=pi / 180.Tp:=1./fp

wu32:=sqrt(3.) / 2.

kA:=0.1

wu3:=sqrt(3.) gam1:=0.

fp:=10k

tx:=0 costhe:=cos(theta_el)

yalph:=costhe * yd.VAL - sinthe * yq.VAL

i1q:=i1beta * costhe - i1alph * sinthe

i1d:=i1alph * costhe + i1beta * sinthe

ybeta:=sinthe * yd.VAL + costhe * yq.VAL

sinthe:=sin(theta_el)

theta_el:=SYMPOD1.PHIDEG * P18

i1beta:=(SYMPOD1.I1A + 2 * SYMPOD1.I1B) / wu3

theta_m:=theta_el / 3.

i1alph:=SYMPOD1.I1A

SET: k:=k+1 SET: gam1:=gam1

SET: kr:=(k-1)*PI3SET: kl:=k*PI3

kl <= gam1

true

t-tx >= Tp

kr <= gam1 and kl > gam1

yalph > 0 and ybeta >= 0

SET: tx:=t SET: k:=1yalph = 0 and ybeta = 0PRI := 1

(ybeta > 0 and yalph <= 0) or (yalph < 0 and ybeta <= 0) ybeta < 0 and yalph >= 0

SET: gam1:=pi-ASIN(ybeta/y)SET: gam1:=2*pi+ASIN(ybeta/y)true

true

A126SET: z3:=0SET: z6:=1

B345SET: z6:=0SET: z3:=1

A234SET: z1:=0SET: z4:=1

B246SET: z5:=0SET: z2:=1

A135SET: z2:=0SET: z5:=1

B156

SET: z4:=0SET: z1:=1

A123 SET: z3:=1

SET: z4:=0SET: z1:=1

SET: z6:=0SET: z5:=0SET: z2:=1

E456 SET: z2:=0SET: z6:=1

SET: z1:=0

SET: z3:=0SET: z5:=1SET: z4:=1

t-tx >= t02+tr+tl

t-tx>=t02 and k=2

t-tx >= t02+tr+tl

t-tx>=t02 and k=4

t-tx >= t02+tr+tl

t-tx>=t02 and k=6 t-tx>=t02 and k=5

t-tx >= t02+tr+tlt-tx >= t02+tr+tl

t-tx>=t02 and k=3

t-tx >= t02+tr+tl

t-tx>=t02 and k=1

B234

SET: z3:=1SET: z6:=0

A246

SET: z4:=1SET: z1:=0

B135SET: z4:=0SET: z1:=1

A345

SET: z5:=1SET: z2:=0

A156SET: z3:=0SET: z6:=1

B126SET: z2:=1SET: z5:=0

t-tx >= t02+trt-tx >= t02+trt-tx >= t02+tr t-tx >= t02+tr t-tx >= t02+tr t-tx >= t02+tr

E123SET: z6:=0

SET: z4:=0

SET: z3:=1SET: z5:=0

SET: z1:=1SET: z2:=1

A456SET: z4:=1SET: z5:=1SET: z6:=1

SET: z1:=0

SET: z3:=0SET: z2:=0

SET: tl:=kA*y*Tp*sin(gamr)

SET: gamr:=gam1-krSET: tr:= kA*y*Tp*sin(PI3 - gamr)

SET: t02:=(Tp-tr-tl)/2

k=2 or k=4 or k=6 k=1 or k=3 or k=5

SET: k:=0true PRI := 1

t-tx >= Tp and k = 0 SET: tx:=t

SET: gam1:=ASIN(ybeta/y)

true

true

t-tx >= Tp

y:=SQRT(SQU(yalph)+SQU(ybeta))

if (y>10.) {y:=10.}

ω+

T

ECE - LINKECE - LINK

TA B C

Im β

Rotor

V ROT1

TTheta IN

Im_IN

beta IN

Battery- +

LBATT A1

Includes: High Fidelity Machine FEA Model, Battery, Manufacture IGBTs, Closed-loop Current/Speed Controls, Dynamic Mechanical Load and Digital Switching

Motor Drive System with coupled Maxwell FEA model

© 2010 ANSYS, Inc. All rights reserved. 20 ANSYS, Inc. Proprietary

Multi-domain State Space Models

Thermal

Mechanical

Electrical

© 2010 ANSYS, Inc. All rights reserved. 21 ANSYS, Inc. Proprietary

Maxwell

© 2010 ANSYS, Inc. All rights reserved. 22 ANSYS, Inc. Proprietary

• Solves 2D and 3D electromagnetic field problems using FEA

• Five Solution Types: Electrostatic, Magnetostatic, Eddy Current, Transient Electric, Transient Magnetic

• Determines R,L,C, forces, torques, losses, saturation, time-induced effects

• Simulation of: Power Magnetics, Inductors, Transformers, Motors, Generators, Actuators, Bus bars

• Co-simulation with Simplorer

• Direct link from PExprt, RMxprt

• Direct link to ANSYS Mechanical

Maxwell - Introduction

© 2010 ANSYS, Inc. All rights reserved. 23 ANSYS, Inc. Proprietary

Transformers

Planar Magnetic

Motors

Generators

Typical Maxwell Examples

© 2010 ANSYS, Inc. All rights reserved. 24 ANSYS, Inc. Proprietary

Measured

Automatic Adaptive Meshing

© 2010 ANSYS, Inc. All rights reserved. 25 ANSYS, Inc. Proprietary

• Use Maxwell Circuit Editor for control and drive circuitry (sources, switches, diodes, resistors, capacitors, inductors)

• Automatically re-adjusts time step for switching conditions

External Circuit Coupling

© 2010 ANSYS, Inc. All rights reserved. 26 ANSYS, Inc. Proprietary

• 2D/3D transient co-simulation

• Improved performance with asynchronous time steps

Maxwell SIMPLORER

Lumped fieldcoupling parameters

Equivalent circuitcoupling parameters

Maxwell Simplorer Co-simulation

© 2010 ANSYS, Inc. All rights reserved. 27 ANSYS, Inc. Proprietary

Maxwell – ANSYS Mechanical Thermal Coupling

Eddy current distributionin inductor

Temperature distribution

Thermal Deformation

© 2010 ANSYS, Inc. All rights reserved. 28 ANSYS, Inc. Proprietary

ANSYS CFD

© 2010 ANSYS, Inc. All rights reserved. 29 ANSYS, Inc. Proprietary

• Steady-state and transient thermal-flow simulations considering all modes of heat transfer

• ANSYS CFD – includes Fluent and CFX multi-purpose fluid flow solvers

• Icepack – specifically for electronics thermal management at component, board and system level

• Models are created by importing models and by using predefined “smart” elements such as cabinets, fans, circuit boards, vents, heat sources & heat sinks

• Libraries for standard materials, packages and electronic components such as fans with operating curves

• Exports state-space thermal model of device to Simplorer

ANSYS CFD - Introduction

© 2010 ANSYS, Inc. All rights reserved. 30 ANSYS, Inc. Proprietary

• Uses superposition to determine temperature rise at any point in the system due to each thermal source

• Temperature assumed to be a linear function of heat sources• This requires that the fluid flow is constant (for each study) and

density and all properties are constants

ANSYS Icepack

IGBT Inverter Design

© 2010 ANSYS, Inc. All rights reserved. 31 ANSYS, Inc. Proprietary

IGBT Inverter Design

Line Current ProfileDC Current Profile

Icepakthermal model

ANSYS Icepack

© 2010 ANSYS, Inc. All rights reserved. 32 ANSYS, Inc. Proprietary

• Battery Pack performance– ANSYS CFD is primary tool– Focus on detailed cell level thermal performance– CFD approach: power losses may come from

circuit analysis• System performance

– Simplorer is primary tool– Focus on system (multiple packs) thermal

performance– Circuit network approach: CFD is used to

provide heat transfer coefficients needed in thermal circuit

• Bi-directional coupling of CFD and circuit network– ANSYS CFD and Simplorer run simultaneously to

obtain the most accurate thermal results

Thermal Model for Li-ion Battery

ANSYS CFD

© 2010 ANSYS, Inc. All rights reserved. 33 ANSYS, Inc. Proprietary

PExprt

© 2010 ANSYS, Inc. All rights reserved. 34 ANSYS, Inc. Proprietary

SIMPLORER

PExprt

Maxwell

• Magnetic Design and Optimization tool for Ferrite and Laminated Transformers and Inductors including: multi-winding transformers, coupled inductors, and flyback components

• Contains seven manufacturer libraries for common components:

• Cores, Bobbins, Wires

• Toroidal, Planar, Wire-wound

• Analytical or FEA based solution includes skin and proximity effects, gap effects, thermal effects

• Winding Losses, Core Losses, R,L,C Parameters and Temperature Rise

• Couples to Simplorer using frequency dependent netlist for device

PExprt - Introduction

© 2010 ANSYS, Inc. All rights reserved. 35 ANSYS, Inc. Proprietary

Time Domain Netlist

Frequency Domain Netlist

PExprt Simplorer Netlist

© 2010 ANSYS, Inc. All rights reserved. 36 ANSYS, Inc. Proprietary

C2 Load4250u 240m

a

p

c

ctr

BUCK_Converter

Diode_Characteristic

SMPS Library

FEA

Inductor_2

ctrvs

vctrl

vref

C2

R1

vref

R2C1

R3C3

+-

PID_Cont1

ET1

MEAN VALUE

Inductor_Losses

Typical PExprt Examples

© 2010 ANSYS, Inc. All rights reserved. 37 ANSYS, Inc. Proprietary

PEmag Buck Converter

Load step reduces current

and device moves to discontinuous

mode

Non-Regulated Output Voltage

Spike occurs since no control

loop is used

© 2010 ANSYS, Inc. All rights reserved. 38 ANSYS, Inc. Proprietary

PEmag Forward Converter

PExprt Transformer

Model

Over-Voltage at the Switch because of the leakage Inductance

Converter Losses: 1.7 W

© 2010 ANSYS, Inc. All rights reserved. 39 ANSYS, Inc. Proprietary

Q3D Extractor

© 2010 ANSYS, Inc. All rights reserved. 40 ANSYS, Inc. Proprietary

• Electrical Parasitic Extraction for Circuit Boards, Busbars, Cables, Connectors

• Circuit Extraction uses Numerical Analysis (MoM)

• Interfaces with popular layout tools

• Cadence

• Mentor

Q3D Extractor - Introduction

© 2010 ANSYS, Inc. All rights reserved. 41 ANSYS, Inc. Proprietary

• Q3D is a tool streamlined for quickly characterizing electrical parasitics of interconnects, busbars, and cables.

• Q3D includes two tools:• Q3D Extractor: 3D quasi-static lumped RLC parameter extractor.

Linear permeability = 1.• 2D Extractor: 2D T-line RLGC parameter extractor.

Linear permeability.

DC 1.5 GHz 15 GHz ???

Q3D

2D Extractor

HFSSX

10cm1 λ

≈=L

2mm5 λ

≈=W

What is Q3D Extractor?

© 2010 ANSYS, Inc. All rights reserved. 42 ANSYS, Inc. Proprietary

• Switch Mode Power Supplies• Cables, Connectors and Busbar Modeling• Ground Plane Modeling• EMI Prediction in Electric Drive Systems

Typical Q3D Examples

© 2010 ANSYS, Inc. All rights reserved. 43 ANSYS, Inc. Proprietary

• Products such as cabling and busbars which exhibit frequency-dependent behavior due to eddy current and skin effects

• Calculate R,L,C,G parasitics and create a frequency-dependent model using Q3D

• Simulate imported model in Simplorer• Traveling waves, over-voltages, and resonant frequencies can be

determined

+ V

VM_ab2

R4R5

C4L4

R3 R7

C2 L2

R8 R9

C3 L3

+ V

W

V

U

VM_abInverter

+ V VM_bc

+ V

VM_ca+ V

VM_bc2

+ VVM_ca2

T2D

ECELink1

N_1

N_2

N_3

N_4

N_5

N_6

N_7

Frequency Dependent Cable Model

© 2010 ANSYS, Inc. All rights reserved. 44 ANSYS, Inc. Proprietary

Quick Extraction of RLCG

N0125

N0135N0134

N0133

N0132

N0121

N0131N0130N0129N0128

Assign Nets – Define Sources and Sinks

View RLCG Matrix

Export Equivalent Circuit for System Simulation

Parasitic Extraction of Busbars

© 2010 ANSYS, Inc. All rights reserved. 45 ANSYS, Inc. Proprietary

Q3D Extractor Simplorer Model

O

N

P

S1

S2

• Q3D Extractor extracts the electrical circuit model (R,L,C lumped matrix) of the 3D interconnect

• Using direct link, the Q3D Extractor matrix is imported into Simplorer

Integrated Power Electronics Module

© 2010 ANSYS, Inc. All rights reserved. 46 ANSYS, Inc. Proprietary

Laptop

Yt

HeatBlower

AA

ABattery

- +

rotEngine

Yt

GAIN

Alternator

Engine_RPM

PWM_1Relay

Transfer

CableModelBusModel

• The Power Systems Design Methodology provides a complete low frequency electromagnetic design solution

• Includes five combinable tools which assist engineers in designing and analyzing power systems, drives, and components

• Provides coupled electromagnetic and thermal simulations• Integrates electromagnetic, circuit, and system engineering using a

common desktop environment

Conclusions