Electron Beam Lithography William Whelan-Curtin. What is EBL for? Nanopatterning – High Precision – Reliable – Versatile LPN

Embed Size (px)

Citation preview

  • Slide 1
  • Electron Beam Lithography William Whelan-Curtin
  • Slide 2
  • What is EBL for? Nanopatterning High Precision Reliable Versatile LPN
  • Slide 3
  • What is needed? Very narrow, precisely controllable beam of Electrons Lots of money, a big complex machine, and a lot of expertise!
  • Slide 4
  • Outline System description Exposure Examples
  • Slide 5
  • Electron Pencil System Schematic
  • Slide 6
  • Electron source Tungsten wire (Thermionic) 2300C Energy Spread 2-3eV Source size 25um Thermal (Schottky) field emitter 1800C Energy Spread 0.9eV Source size 20nm Cold Field Emitter 20C Energy Spread 0.22eV Source size 5nm Unstable current 10-20% => SEM Higher Current density =>EBL I -V Suppressor Tip Tungsten +V Extractor (Anode) /Zirconium Oxide (High Vacuum ~10e-9mB)
  • Slide 7
  • Electron Lenses Chromatic dispersion Monochromatic beam Aberrations Use centre of lens Electro-magnetic Electro-static F = q (E + v B)
  • Slide 8
  • Electron Lenses Magnetic versus Electrostatic Faster deflection Worse Aberrations EM lenses Simpler to implement
  • Slide 9
  • Beam Blanker Turns the beam/off quickly Control current for each pixel High speed Electrostatic +V Extractor +V
  • Slide 10
  • Column Source Apertures Blanking Collimation Stigmation control Deflectors Focus Final Lens (VISTEC VB6)
  • Slide 11
  • Types of Electron Beam Writer SEM (Electron Beam Reader) Generally magnetic lenses Up to 30kV Converted SEM (RAITH) Addition of (fast) beam blanker Pattern generator Deflection needs time to stablise raster scan vector scan
  • Slide 12
  • Types of Electron Beam Writer Purpose Built (LEICA/JEOL) Better control, calibration Up to 100kV Higher speeds Bigger writefields Secondary deflection system Can also correct for aberrations in the primary lens
  • Slide 13
  • Types of Electron Beam Writer Shaped Beam systems Very complex optics Higher current, lower resolution Photomask making (Not a research tool) GAUSSIAN
  • Slide 14
  • Patterning Electron sensitive polymer- the paper LPN
  • Slide 15
  • Resist Overview PositiveNegative
  • Slide 16
  • Electron-Solid Interactions Forward scattering Often Small angles High energy (~95% pass through the resist) Primary electrons
  • Slide 17
  • Electron-Solid Interactions Back scattering Rare Large angles Still High energy Primary electrons
  • Slide 18
  • Electron-Solid Interactions Secondary electrons Low energy (50eV) Low penetrating power Primary electrons Responsible for exposure
  • Slide 19
  • Electron Sensitive resist Poly methyl methyl acrylate Spin Coating Long polymer chains C C C C C C O O H H H H H HH H H H H H H H H H C C C C O O n C H H H H H H H H C C C H H CCC C C C CC C C C C C C C C C O O H H H H H H H O O O H H H H H H H O O H H H H H H H O H H H C H Substrate PMMA
  • Slide 20
  • Electron Sensitive resist Bonds broken (induced chain scission) Dissolved by suitable chemical Methyl Isobutyl ketone Isopropanol:Water C C C C C C O O H H H H H HH H H H H H H H H H C C C C O O n C H H H H H H H H C C C H H C CC C C C CC C C C C C C C C C O O H H H H H H H O O O H H H H H H H O O H H H H H H H O H H H C H Secondary Electrons Substrate PMMA
  • Slide 21
  • Contrast Curve Threshold electron density (lowerfaster exposure) Clearing Dose or Base Dose Slope -> Resolution Resist Thickness Dose (electrons/area) Function of: Voltage Resist Thickness Substrate e.g. 170uAs/cm2 for 500nm thick PMMA on Silicon @ 30kV
  • Slide 22
  • Contrast Curve- Experimental Determine for each new situation Recheck regularly Problem diagnosis 50um Dose
  • Slide 23
  • Negative Resist Microchem SU8 Photo acid generator Baking Crosslinking Acid Diffusion C C C C C C O O H H H H H H H H H H H H H H H H C C C C O O n C H H H H H H H H C C C H H C CC C C C CC C C C C C C C C C O O H H H H H H O O O H H H H H H H O O H H H H H H H O H H H C H Secondary Electrons Substrate SU8
  • Slide 24
  • Contrast Curve Threshold electron density Chemical amplification Lower clearing dose Resist Thickness Dose (electrons/area) e.g. 1uAs/cm2 for 200nm thick SU8 on Silicon @ 30kV
  • Slide 25
  • Resolution Most EBL systems -> 1nm spot sizes or less df = effective beam diameter (nm) Rt = resist thickness (nm) Vb = acceleration voltage (kV) 1nm dfdf RtRt VbVb J. Vac. Sci. Technol. B 12, 1305 (1975)
  • Slide 26
  • Resolution EBL advice: Keep resist as thin as possible
  • Slide 27
  • EBL vs Focused Ion Beam etching EBL Modification No removal of material FIB Energetic Gallium ions Etching of the material Substrate Heavy ions
  • Slide 28
  • Electron-Solid Interactions Secondary electrons Low energy (50eV) Low penetrating power Primary electrons Unintended Exposure!
  • Slide 29
  • Proximity Errors Stray electrons Bias t dose
  • Slide 30
  • Correction Shape Correction Difficult to generalise
  • Slide 31
  • Correction Dose Modulation Calculate the electron distribution Reduce in certain areas 1 2
  • Slide 32
  • Electron Distribution Forward Scattering- Back Scattering-
  • Slide 33
  • Parameters Depend on voltage/resist/substrate Determine in each instance Monte Carlo simulations Experiment Beam energy (keV) (um) (um) 51.330.180.74 100.390.600.74 200.122.00.74 500.0249.50.74 1000.00731.20.74 L. Stevens et al., Microelectronic Engineering 5, 141-150 (1986)
  • Slide 34
  • Correction Programs Nanopecs, Proxecco Pattern Fracture Calculate electron distributions Alter pattern Recalculate Iterate until convergence is reached
  • Slide 35
  • Guidelines PEC Computationally intensive